Метод кардано при решении кубических уравнений онлайн

Решение кубических уравнений онлайн

Кубическое уравнение— это уравнение вида:

Данный калькулятор предназначен для решения кубических уравнений. В его основе лежит формула Кардано, однако различные частные случаи кубических уравнений (когда один или несколько коэффициентов равны нулю или между коэффициентами присуствует некоторая зависимость и т.д.) решаются более простым путем.

В калькулятор можно вводить как числа и дроби, так и параметры. Коэффициент при x 3 не может быть равен нулю. Ввод уравнения в калькулятор осуществляется в естественном формате. Для ввода десятичных цифр используйте точку в качестве разделителя целой и дробной частей, например 1.45.

Решение кубических уравнений. Формула Кардано

Схема метода Кардано
Приведение кубических уравнений к трехчленному виду
Сведение трёхчленных кубических уравнений к квадратным уравнениям при помощи метода Никколо Тартальи
Формула Кардано
Пример решения кубического уравнения

Схема метода Кардано

Целью данного раздела является вывод формулы Кардано для решения уравнений третьей степени ( кубических уравнений )

a0x 3 + a1x 2 +
+ a2x + a3= 0,
(1)

где a0, a1, a2, a3 – произвольные вещественные числа,

Вывод формулы Кардано состоит из двух этапов.

На первом этапе кубические уравнения вида (1) приводятся к кубическим уравнениям, у которых отсутствует член со второй степенью неизвестного. Такие кубические уравнения называют трёхчленными кубическими уравнениями .

На втором этапе трёхчленные кубические уравнения решаются при помощи сведения их к квадратным уравнениям.

Приведение кубических уравнений к трехчленному виду

Разделим уравнение (1) на старший коэффициент a0 . Тогда оно примет вид

x 3 + ax 2 + bx + c = 0,(2)

где a, b, c – произвольные вещественные числа.

Заменим в уравнении (2) переменную x на новую переменную y по формуле:

(3)

то уравнение (2) примет вид

В результате уравнение (2) примет вид

Если ввести обозначения

то уравнение (4) примет вид

y 3 + py + q= 0,(5)

где p, q – вещественные числа.

Уравнения вида (5) и являются трёхчленными кубическими уравнениями , у которых отсутствует член со второй степенью неизвестного.

Первый этап вывода формулы Кардано завершён.

Сведение трёхчленных кубических уравнений к квадратным уравнениям при помощи метода Никколо Тартальи

Следуя методу, примененому Никколо Тартальей (1499-1557) для решения трехчленных кубических уравнений, будем искать решение уравнения (5) в виде

(6)

где t – новая переменная.

то выполнено равенство:

Следовательно, уравнение (5) переписывается в виде

(7)

Если теперь уравнение (7) умножить на t , то мы получим квадратное уравнение относительно t :

(8)

Формула Кардано

Решение уравнения (8) имеет вид:

В соответствии с (6), отсюда вытекает, что уравнение (5) имеет два решения:

В развернутой форме эти решения записываются так:

Покажем, что, несмотря на кажущиеся различия, решения (10) и (11) совпадают.

С другой стороны,

и для решения уравнения (5) мы получили формулу

которая и называется «Формула Кардано» .

Замечание . Поскольку у каждого комплексного числа, отличного от нуля, существуют три различных кубических корня, то, для того, чтобы избежать ошибок при решении кубических уравнений в области комплексных чисел, рекомендуется использовать формулу Кардано в виде (10) или (11).

Пример решения кубического уравнения

Пример . Решить уравнение

x 3 – 6x 2 – 6x – 2 = 0.(13)

Решение . Сначала приведем уравнение (13) к трехчленному виду. Для этого в соответствии с формулой (3) сделаем в уравнении (13) замену

x = y + 2.(14)

Следовательно, уравнение (13) принимает вид

y 3 – 18y – 30 = 0.(15)

Теперь в соответствии с формулой (6) сделаем в уравнении (15) еще одну замену

(16)

то уравнение (15) примет вид

(17)

Далее из (17) получаем:

Отсюда по формуле (16) получаем:

Заметим, что такое же, как и в формуле (18), значение получилось бы, если бы мы использовали формулу

или использовали формулу

Далее из равенства (18) в соответствии с (14) получаем:

Таким образом, мы нашли у уравнения (13) вещественный корень

Замечание 1 . У уравнения (13) других вещественных корней нет.

Замечание 2 . Поскольку произвольное кубическое уравнение в комплексной области имеет 3 корня с учетом кратностей, то до полного решения уравнения (13) остается найти еще 2 корня. Эти корни можно найти разными способами, в частности, применив вариант формулы Кардано для области комплексных чисел. Однако применение такого варианта формулы Кардано значительно выходит за рамки курса математики даже специализированных математических школ.

Решение кубических уравнений онлайн

Онлайн калькулятор для подробного решения кубических уравнений

Решение кубического уравнения (уравнения третьего порядка) на нашем сайте производится по методу Виета-Кардано. С помощью ряда формул находятся кубические корни x1, x2 и x3. При вычислении результатов корни могут получиться вещественными или комплексными в зависимости от значения S.

Кубическое уравнение имеет вид ax 3 + bx 2 + cx + d = 0, где
a, b ,c, d – некоторые числа, причём a не равно нулю (a ≠ 0).

x 3 + x 2 + x + = 0 Решить

Как решить кубическое уравнение?


Последовательность решения кубического уравнения вида x 3 +a·x 2 +b·x+c=0:

(воспользуемся тригонометрической формулой Виета)

1. Для начала необходимо вычислить значения Q, R, S по формулам:
Q = (a 2 — 3 · b) / 9
R = (2 · a 3 — 9 · a · b + 27 · c) / 54
S = Q 3 — R 2

Если S > 0, то уравнение будет иметь три действительных корня.

2. Вычисляем параметр φ:
φ = (1 / 3) · arccos (R / √ Q 3 )

3. Находим корни кубического уравнения по формулам:
x1 = -2 · √ Q · cos (φ) — a / 3,
x2 = -2 · √ Q · cos (φ + 2 · π / 3) — a / 3,
x3 = -2 · √ Q · cos (φ — 2 · π / 3) — a / 3,

4. Если получится S 0 уравнение будет иметь один действительный и два комплексных корня, а при Q of your page —>


источники:

http://www.resolventa.ru/spr/algebra/cardano.htm

http://belgut.ru/kubicheskoe-uravnenie.html