Метод крамера для уравнений 4 порядка

Метод Крамера онлайн

Данный онлайн калькулятор находит решение системы линейных уравнений (СЛУ) методом Крамера. Дается подробное решение. Для вычисления выбирайте количество переменных. Затем введите данные в ячейки и нажимайте на кнопку «Вычислить.»

Предупреждение

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Метод Крамера

Метод Крамера − это метод решения квадратной системы линейных уравнений с отличным от нуля определителем основной матрицы. Такая система линейных уравнений имеет единственное решение.

Пусть задана следующая система линейных уравнений:

(1)

Заменим данную систему (1) эквивалентным ей матричным уравнением

Ax=b(2)

где A -основная матрица системы:

(3)

а x и b − векторы столбцы:

первый из которых нужно найти, а второй задан.

Так как мы предполагаем, что определитель Δ матрицы A отличен от нуля, то существует обратная к A матрица A -1 . Тогда умножая тождество (2) слева на обратную матрицу A -1 , получим:

A -1 Ax=A -1 b.

Учитывая, что произведение взаимно обратных матриц является единичной матрицей (A -1 A=E), получим

x=A -1 b.(4)

Обратная матрица имеет следующий вид:

(5)

где Aij − алгебраическое дополнение матрицы A, Δ − определитель матрицы A.

где Δi − это определитель матрицы, полученной из матрицы A, заменой столбца i на вектор b.

Мы получили формулы Крамера:

Алгоритм решения системы линейных уравнений методом Крамера

  1. Вычислить определитель Δ основной матрицы A.
  2. Замена столбца 1 матрицы A на вектор свободных членов b.
  3. Вычисление определителя Δ1 полученной матрицы A1.
  4. Вычислить переменную x11/Δ.
  5. Повторить шаги 2−4 для столбцов 2, 3, . n матрицы A.

Примеры решения СЛУ методом Крамера

Пример 1. Решить следующую систему линейных уравнений методом Крамера:

Запишем ее в матричной форме: Ax=b, где

.

Вычислим определитель основной матрицы A:

.

Заменим столбец 1 матрицы A на вектор столбец b:

.

Вычислим определитель матрицы A1:

.

Заменим столбец 2 матрицы A на вектор столбец b:

.

Вычислим определитель матрицы A2:

.

Заменим столбец 3 матрицы A на вектор столбец b:

.

Вычислим определитель матрицы A3:

.

Решение системы линейных уравнений вычисляется так:

Пример 2. Решить следующую систему линейных уравнений методом Крамера:

Запишем ее в матричной форме: Ax=b, где

Найдем определитель матрицы A. Для вычисления определителя матрицы, приведем матрицу к верхнему треугольному виду.

Исключим элементы 1-го столбца матрицы ниже главной диагонали. Для этого сложим строки 2,3,4 со строкой 1, умноженной на -1/4,-3/4,-2/4 соответственно:

Выбираем самый большой по модулю ведущий элемент столбца 2. Для этого меняем местами строки 2 и 4. При этом меняется знак определителя на «−».

Исключим элементы 2-го столбца матрицы ниже главной диагонали. Для этого сложим строки 3,4 со строкой 2, умноженной на -26/76,2/76 соответственно:

Выбираем самый большой по модулю ведущий элемент столбца 3. Для этого меняем местами строки 3 и 4. При этом меняется знак определителя на «+».

Исключим элементы 3-го столбца матрицы ниже главной диагонали. Для этого сложим строку 4 со строкой 3, умноженной на -817/1159:

Мы привели матрицу к верхнему треугольному виду. Определитель матрицы равен произведению всех элементов главной диагонали:

Заменим столбец 1 матрицы A на вектор столбец b:

Для вычисления определителя матрицы A1, приведем матрицу к верхнему треугольному виду, аналогично вышеизложенной процедуре. Получим следующую матрицу:

Определитель матрицы равен произведению всех элементов главной диагонали:

Заменяем столбец 2 матрицы A на вектор столбец b, приводим матрицу к верхнему треугольному виду и вычисляем определитель матрицы:

Заменяем столбец 3 матрицы A на вектор столбец b, приводим матрицу к верхнему треугольному виду и вычисляем определитель матрицы:

Заменяем столбец 4 матрицы A на вектор столбец b, приводим матрицу к верхнему треугольному виду и вычисляем определитель матрицы:

Решение системы линейных уравнений вычисляется так:

Метод крамера для уравнений 4 порядка

Учасники групи мають 10% знижку при замовленні робіт, і ще багато бонусів!

Контакты

Администратор, решение задач
Роман

Tel. +380685083397
[email protected]
skype, facebook:
roman.yukhym

Решение задач
Андрей

facebook:
dniprovets25

Пример решения методом Крамера

Решение находим с помощью калькулятора. Запишем систему в виде:

B T = (20,11,40,37)
Найдем главный определитель:
Минор для (1,1):

Найдем определитель для этого минора.
1,1 = 3∙(9∙2-9∙9)-10∙(2∙2-9∙1)+8∙(2∙9-9∙1)= -67
Минор для (2,1):

4,1 = 5∙(2∙9-9∙1)-3∙(4∙9-9∙1)+10∙(4∙1-2∙1)= -16
Главный определитель:
∆ = 2∙(-67)-1∙(-89)+2∙(-6)-3∙(-16) = -9
Заменим 1-ый столбец матрицы А на вектор результата В .

Найдем определитель полученной матрицы.
Минор для (1,1):

Заменим 2-ый столбец матрицы А на вектор результата В .

Найдем определитель полученной матрицы.
Минор для (1,1):

Заменим 3-ый столбец матрицы А на вектор результата В .

Найдем определитель полученной матрицы.
Минор для (1,1):

Заменим 4-ый столбец матрицы А на вектор результата В .

Найдем определитель полученной матрицы.
Минор для (1,1):

Выпишем отдельно найденные переменные Х:

Пример №2 . Решение находим с помощью калькулятора. Запишем систему в виде:

A =
123
456
780

B T = (6,9,-6)
Главный определитель:
∆ = 1 • (5 • 0-8 • 6)-4 • (2 • 0-8 • 3)+7 • (2 • 6-5 • 3) = 27 = 27
Заменим 1-ый столбец матрицы А на вектор результата В.

1 =
623
956
-680

Найдем определитель полученной матрицы.
1 = 6 • (5 • 0-8 • 6)-9 • (2 • 0-8 • 3)+(-6 • (2 • 6-5 • 3)) = -54
x1 = -54/27 = -2
Заменим 2-ый столбец матрицы А на вектор результата В.

2 =
163
496
7-60

Найдем определитель полученной матрицы.
2 = 1 • (9 • 0-(-6 • 6))-4 • (6 • 0-(-6 • 3))+7 • (6 • 6-9 • 3) = 27
x2 = 27/27 = 1
Заменим 3-ый столбец матрицы А на вектор результата В.

3 =
126
459
78-6

Найдем определитель полученной матрицы.
3 = 1 • (5 • (-6)-8 • 9)-4 • (2 • (-6)-8 • 6)+7 • (2 • 9-5 • 6) = 54
x3 = 54/27 = 2
Выпишем отдельно найденные переменные Х
x1 = -54/27 = -2
x2 = 27/27 = 1
x3 = 54/27 = 2
Проверка.
1•-2+2•1+3•2 = 6
4•-2+5•1+6•2 = 9
7•-2+8•1+0•2 = -6

Пример №2 . Запишем систему в виде:

A =
2-112-5
1-1-50
3-2-2-5
7-5-9-1

B T = (1,0,3,-4)
Найдем главный определитель:
Минор для (1,1):

1,1 =
-1-50
-2-2-5
-5-9-1

Найдем определитель для этого минора.
1,1 = -1 • (-2 • (-1)-(-9 • (-5)))-(-2 • (-5 • (-1)-(-9 • 0)))+(-5 • (-5 • (-5)-(-2 • 0))) = -72
Минор для (2,1):

2,1 =
-112-5
-2-2-5
-5-9-1

2,1 = -1 • (-2 • (-1)-(-9 • (-5)))-(-2 • (12 • (-1)-(-9 • (-5))))+(-5 • (12 • (-5)-(-2 • (-5)))) = 279
Минор для (3,1):

3,1 =
-112-5
-1-50
-5-9-1

3,1 = -1 • (-5 • (-1)-(-9 • 0))-(-1 • (12 • (-1)-(-9 • (-5))))+(-5 • (12 • 0-(-5 • (-5)))) = 63
Минор для (4,1):

4,1 =
-112-5
-1-50
-2-2-5

4,1 = -1 • (-5 • (-5)-(-2 • 0))-(-1 • (12 • (-5)-(-2 • (-5))))+(-2 • (12 • 0-(-5 • (-5)))) = -45
Главный определитель:
∆ = 2 • (-72)-1 • 279+3 • 63-7 • (-45) = 81
Заменим 1-ый столбец матрицы А на вектор результата В.

1 =
1-112-5
0-1-50
3-2-2-5
-4-5-9-1

Минор для (1,1):

1,1 =
-1-50
-2-2-5
-5-9-1

1,1 = -1 • (-2 • (-1)-(-9 • (-5)))-(-2 • (-5 • (-1)-(-9 • 0)))+(-5 • (-5 • (-5)-(-2 • 0))) = -72
Минор для (2,1):

2,1 =
-112-5
-2-2-5
-5-9-1

2,1 = -1 • (-2 • (-1)-(-9 • (-5)))-(-2 • (12 • (-1)-(-9 • (-5))))+(-5 • (12 • (-5)-(-2 • (-5)))) = 279
Минор для (3,1):

3,1 =
-112-5
-1-50
-5-9-1

3,1 = -1 • (-5 • (-1)-(-9 • 0))-(-1 • (12 • (-1)-(-9 • (-5))))+(-5 • (12 • 0-(-5 • (-5)))) = 63
Минор для (4,1):

4,1 =
-112-5
-1-50
-2-2-5

4,1 = -1 • (-5 • (-5)-(-2 • 0))-(-1 • (12 • (-5)-(-2 • (-5))))+(-2 • (12 • 0-(-5 • (-5)))) = -45
Определитель минора:
1 = 1 • (-72)-0 • 279+3 • 63-(-4 • (-45))
x1 = -63/81 = -0.78
Заменим 2-ый столбец матрицы А на вектор результата В.

2 =
2112-5
10-50
33-2-5
7-4-9-1

Минор для (1,1):

1,1 =
0-50
3-2-5
-4-9-1

1,1 = 0 • (-2 • (-1)-(-9 • (-5)))-3 • (-5 • (-1)-(-9 • 0))+(-4 • (-5 • (-5)-(-2 • 0))) = -115
Минор для (2,1):

2,1 =
112-5
3-2-5
-4-9-1

2,1 = 1 • (-2 • (-1)-(-9 • (-5)))-3 • (12 • (-1)-(-9 • (-5)))+(-4 • (12 • (-5)-(-2 • (-5)))) = 408
Минор для (3,1):

3,1 =
112-5
0-50
-4-9-1

3,1 = 1 • (-5 • (-1)-(-9 • 0))-0 • (12 • (-1)-(-9 • (-5)))+(-4 • (12 • 0-(-5 • (-5)))) = 105
Минор для (4,1):

4,1 =
112-5
0-50
3-2-5

4,1 = 1 • (-5 • (-5)-(-2 • 0))-0 • (12 • (-5)-(-2 • (-5)))+3 • (12 • 0-(-5 • (-5))) = -50
Определитель минора:
2 = 2 • (-115)-1 • 408+3 • 105-7 • (-50)
x2 = 27/81 = 0.33
Заменим 3-ый столбец матрицы А на вектор результата В.

3 =
2-11-5
1-100
3-23-5
7-5-4-1

Минор для (1,1):

1,1 =
-100
-23-5
-5-4-1

Найдем определитель для этого минора.
1,1 = -1 • (3 • (-1)-(-4 • (-5)))-(-2 • (0 • (-1)-(-4 • 0)))+(-5 • (0 • (-5)-3 • 0)) = 23
Минор для (2,1):

2,1 =
-11-5
-23-5
-5-4-1

2,1 = -1 • (3 • (-1)-(-4 • (-5)))-(-2 • (1 • (-1)-(-4 • (-5))))+(-5 • (1 • (-5)-3 • (-5))) = -69
Минор для (3,1):

3,1 =
-11-5
-100
-5-4-1

3,1 = -1 • (0 • (-1)-(-4 • 0))-(-1 • (1 • (-1)-(-4 • (-5))))+(-5 • (1 • 0-0 • (-5))) = -21
Минор для (4,1):

4,1 =
-11-5
-100
-23-5

4,1 = -1 • (0 • (-5)-3 • 0)-(-1 • (1 • (-5)-3 • (-5)))+(-2 • (1 • 0-0 • (-5))) = 10
Определитель минора:
3 = 2 • 23-1 • (-69)+3 • (-21)-7 • 10
x3 = -18/81 = -0.22
Заменим 4-ый столбец матрицы А на вектор результата В.

4 =
2-1121
1-1-50
3-2-23
7-5-9-4

Минор для (1,1):

1,1 =
-1-50
-2-23
-5-9-4

1,1 = -1 • (-2 • (-4)-(-9 • 3))-(-2 • (-5 • (-4)-(-9 • 0)))+(-5 • (-5 • 3-(-2 • 0))) = 80
Минор для (2,1):

2,1 =
-1121
-2-23
-5-9-4

2,1 = -1 • (-2 • (-4)-(-9 • 3))-(-2 • (12 • (-4)-(-9 • 1)))+(-5 • (12 • 3-(-2 • 1))) = -303
Минор для (3,1):

3,1 =
-1121
-1-50
-5-9-4

3,1 = -1 • (-5 • (-4)-(-9 • 0))-(-1 • (12 • (-4)-(-9 • 1)))+(-5 • (12 • 0-(-5 • 1))) = -84
Минор для (4,1):

4,1 =
-1121
-1-50
-2-23

4,1 = -1 • (-5 • 3-(-2 • 0))-(-1 • (12 • 3-(-2 • 1)))+(-2 • (12 • 0-(-5 • 1))) = 43
Определитель минора:
4 = 2 • 80-1 • (-303)+3 • (-84)-7 • 43
x4 = -90/81 = -1.11
Выпишем отдельно найденные переменные Х
x1 = -63/81 = -0.78
x2 = 27/81 = 0.33
x3 = -18/81 = -0.22
x4 = -90/81 = -1.11
Проверка.
2•-0.78+-1•0.33+12•-0.22+-5•-1.11 = 1
1•-0.78+-1•0.33+-5•-0.22+0•-1.11 = 0
3•-0.78+-2•0.33+-2•-0.22+-5•-1.11 = 3
7•-0.78+-5•0.33+-9•-0.22+-1•-1.11 = -4

Пример №3 . Запишем систему в виде:

A =
21-1
1-22
311

B T = (-1,-3,-8)
Главный определитель:
∆ = 2 • (-2 • 1-1 • 2)-1 • (1 • 1-1 • (-1))+3 • (1 • 2-(-2 • (-1))) = -10 = -10
Заменим 1-ый столбец матрицы А на вектор результата В.

1 =
-11-1
-3-22
-811

1 = -1 • (-2 • 1-1 • 2)-(-3 • (1 • 1-1 • (-1)))+(-8 • (1 • 2-(-2 • (-1)))) = 10
x1 = 10/-10 = -1
Заменим 2-ый столбец матрицы А на вектор результата В.

2 =
2-1-1
1-32
3-81

2 = 2 • (-3 • 1-(-8 • 2))-1 • (-1 • 1-(-8 • (-1)))+3 • (-1 • 2-(-3 • (-1))) = 20
x2 = 20/-10 = -2
Заменим 3-ый столбец матрицы А на вектор результата В.

3 =
21-1
1-2-3
31-8

3 = 2 • (-2 • (-8)-1 • (-3))-1 • (1 • (-8)-1 • (-1))+3 • (1 • (-3)-(-2 • (-1))) = 30
x3 = 30/-10 = -3
Выпишем отдельно найденные переменные Х
x1 = 10/-10 = -1
x2 = 20/-10 = -2
x3 = 30/(-10) = -3
Проверка.
2•-1+1•-2+-1•-3 = -1
1•-1+-2•-2+2•-3 = -3
3•-1+1•-2+1•-3 = -8

Пример №4 . Запишем систему в виде:

A =
1-11
43-2
2-15

B T = (0,-4,11)
Главный определитель:
∆ = 1 • (3 • 5-(-1 • (-2)))-4 • (-1 • 5-(-1 • 1))+2 • (-1 • (-2)-3 • 1) = 27 = 27
Заменим 1-ый столбец матрицы А на вектор результата В.

1 =
0-11
-43-2
11-15

1 = 0 • (3 • 5-(-1 • (-2)))-(-4 • (-1 • 5-(-1 • 1)))+11 • (-1 • (-2)-3 • 1) = -27
x1 = -27/27 = -1
Заменим 2-ый столбец матрицы А на вектор результата В.

2 =
101
4-4-2
2115

2 = 1 • (-4 • 5-11 • (-2))-4 • (0 • 5-11 • 1)+2 • (0 • (-2)-(-4 • 1)) = 54
x2 = 54/27 = 2
Заменим 3-ый столбец матрицы А на вектор результата В.

3 =
1-10
43-4
2-111

3 = 1 • (3 • 11-(-1 • (-4)))-4 • (-1 • 11-(-1 • 0))+2 • (-1 • (-4)-3 • 0) = 81
x3 = 81/27 = 3
Выпишем отдельно найденные переменные Х
x1 = -27/27 = -1
x2 = 54/27 = 2
x3 = 81/27 = 3
Проверка.
1•-1+-1•2+1•3 = 0
4•-1+3•2+-2•3 = -4
2•-1+-1•2+5•3 = 11

Пример №5 . Запишем матрицу в виде:

A =
122
2-21
31-1

Главный определитель:
∆ = 1 • (-2 • (-1)-1 • 1)-2 • (2 • (-1)-1 • 2)+3 • (2 • 1-(-2 • 2)) = 27

Пример №6 . При решении системы линейных уравнений с квадратной матрицей коэффициентов А можно применять формулы Крамера, если:

  • столбцы матрицы А линейно независимы;
  • определитель матрицы А не равен нулю;

Пример №7 . Дана система трех линейных уравнений с тремя неизвестными. Найти ее решение с помощью формул Крамера. Выполнить проверку полученного решения.
-75x 1 + 35 x 2 + 25 x 3 = -4,5
25x 1 — 70x 2 + 25 x 3 = -20
15x 1 + 10x 2 — 5 5 x 3 = -30

  • Решение
  • Видеоинструкция

Решение получаем через калькулятор. Запишем систему в виде:

B T = (-4.5,-20,-30)
Главный определитель:
∆ = -75∙(-70∙(-55)-10∙25)-25∙(35∙(-55)-10∙25)+15∙(35∙25-(-70∙25))= -176250 = -176250
Заменим 1-ый столбец матрицы А на вектор результата В .

Найдем определитель полученной матрицы.
1 = -4.5∙(-70∙(-55)-10∙25)-(-20∙(35∙(-55)-10∙25))+(-30∙(35∙25-(-70∙25)))= -138450

Заменим 2-ый столбец матрицы А на вектор результата В .

Найдем определитель полученной матрицы.
2 = -75∙(-20∙(-55)-(-30∙25))-25∙(-4.5∙(-55)-(-30∙25))+15∙(-4.5∙25-(-20∙25))= -157875

Заменим 3-ый столбец матрицы А на вектор результата В .

Выпишем отдельно найденные переменные Х


источники:

http://yukhym.com/ru/sistemy-linejnykh-uravnenij/reshenie-metodom-kramera-sistemy-linejnykh-uravnenij-tretego-chetvertogo-poryadka.html

http://math.semestr.ru/kramer/prim1.php