Метод крамера уравнения 2 порядка

Исследование и решение системы двух линейных уравнений методом Крамера

Квадратная матрица 2-го порядка и её определитель

Квадратной матрицей 2-го порядка A называется таблица из 4-х чисел вида: $$ A = \begin a & b \\ c & d \\ \end $$

В квадратной матрице 2-го порядка две строки и два столбца.

Например: $ |A| = \begin 1 & -4 \\ 2,5 & 3 \\ \end $

Определителем матрицы 2-го порядка называется число:

$$ A = \begin a & b \\ c & d \\ \end = ad-bc $$

Например: $\begin 1 & -4 \\ 2,5 & 3 \\ \end = 1\cdot3-2,5\cdot(-4) = 3+10 = 13$

Метод Крамера для решения системы 2-х линейных уравнений

Дана система 2-х линейных уравнений:

Определим главный определитель системы:

$$ \Delta = \begin a_1 & b_1 \\ a_2 & b_2 \\ \end = a_1 b_2-a_2 b_1 $$

и вспомогательные определители:

$$ \Delta_x = \begin c_1 & b_1 \\ c_2 & b_2 \\ \end = c_1 b_2-c_2 b_1, \Delta_y = \begin a_1 & c_1 \\ a_2 & c_2 \\ \end = a_1 c_2-a_2 c_1 $$

Тогда решение системы:

Соотношение коэффициентов уравнений, значений определителей, расположения прямых и количества решений:

Бесконечное множество решений

Метод Крамера используется в линейной алгебре для решения систем линейных уравнений произвольного порядка $N \ge 2$.

Главный определитель, вспомогательные определители и решения таких систем находятся аналогично.

Поэтому для метода Крамера несложно составить алгоритм и запрограммировать для решения прикладных задач.

Алгоритм исследования системы 2-х линейных уравнений по методу Крамера

Примеры

Пример 1. Решите систему уравнений методом Крамера:

$$ \Delta = \begin 5 & -4 \\ 2 & -3 \\ \end = 5\cdot(-3)-2\cdot(-4) = -15+8 =-7 $$

$$ \Delta_x = \begin 3 & -4 \\ 4 & -3 \\ \end = 3\cdot(-3)-4\cdot(-4) = -9+16 = 7 $$

$$ \Delta_y = \begin 5 & 3 \\ 2 & 4 \\ \end = 5\cdot4-2\cdot3 = 20-6 = 14 $$

$$ \Delta = \begin 4 & -3 \\ 3 & -4 \\ \end = 4\cdot(-4)-3\cdot(-3) = -16+9 = -7 $$

$$ \Delta_x = \begin 7 & -3 \\ 0 & -4 \\ \end = 7\cdot(-4)-0\cdot(-3) = -28 $$

$$ \Delta_y = \begin 4 & 7 \\ 3 & 0 \\ \end = 4\cdot0-3\cdot7 = -21 $$

$$ \Delta = \begin 5 & -4 \\ 2 & 3 \\ \end = 5\cdot3-2\cdot(-4) = 15+8 = 23 $$

$$ \Delta_a = \begin 9 & -4 \\ -1 & -3 \\ \end = 9\cdot3-(-1)\cdot(-4) = 27-4 = 23 $$

$$ \Delta_b = \begin 5 & 9 \\ 2 & -1 \\ \end = 5\cdot(-1)-2\cdot9 = -5-18 = -23 $$

$$ \Delta = \begin 7 & 4 \\ 3 & 2 \\ \end = 7\cdot2-3\cdot4 = 14-12 = 2 $$

$$ \Delta_a = \begin 5 & 4 \\ 1 & 2 \\ \end = 5\cdot2-1\cdot4 = 10-4 = 6 $$

$$ \Delta_b = \begin 7 & 5 \\ 3 & 1 \\ \end = 7\cdot1-3\cdot5 = 7-15 = -8 $$

Пример 2*. При каком значении параметра a система уравнений 1) имеет одно решение; 2) не имеет решений; 3) имеет бесконечное множество решений?

$$ \Delta = \begin a & 5 \\ 5 & a \\ \end = a \cdot a-5\cdot 5 = a^2-25 = (a-5)(a+5) $$

$$ \Delta_x = \begin (a+5)^2 & 5 \\ a+5 & a \\ \end = (a+5)^2 \cdot a-5\cdot (a+5) = (a+5)(a(a+5)-5) = $$

$$ \Delta_y = \begin a & (a+5)^2 \\ 5 & a+5 \\ \end = a \cdot (a+5)-5 \cdot (a+5)^2 = (a+5)(a-5(a+5) ) = $$

$$ \Delta = 0, \Delta_x = 10\cdot45 = 450 \neq 0, \Delta_y = -10\cdot45 = -450 \neq 0 $$

прямые параллельны, решений нет.

$$ \Delta = 0, \Delta_x = 0, \Delta_y = 0$$

прямые совпадают, решений бесконечное множество.

При $a \neq \pm5$ система имеет одно решение: $<\left\< \begin x = \frac \\ y = \frac<4a+25> \end \right.> $

Ответ: 1) $a \neq \pm5$; 2) a = 5; 3) a = -5

Определители второго порядка и правило Крамера

Ме́тод Крамера (правило Крамера) — способ решения систем линейных алгебраических уравнений с числом уравнений равным числу неизвестных с ненулевым главным определителем матрицы коэффициентов системы (причём для таких уравнений решение существует и единственно).

Просмотр содержимого документа
«Определители второго порядка и правило Крамера»

ОПРЕДЕЛИТЕЛИ И ПРАВИЛО КРАМЕРА

Определители второго порядка

Понятие определителя возникло также в связи с задачей решения систем линейных уравнений. Определитель(илидетерминант) есть число, характеризующее квадратную матрицуAи обозначается обычно символами:detA,|A|.или Если матрица задана явно, в виде таблицы, то определитель обозначают, заключая таблицу в вертикальные линии.

Определитель матрицы второго порядка находится следующим образом:

(2.1)

Он равен произведению элементов главной диагонали матрицы минус произведение элементов второй диагонали.

Например,

Следует еще раз подчеркнуть, что матрица есть таблица чисел, тогда как определитель есть число, определяемое через элементы квадратной матрицы.

Рассмотрим теперь систему двух линейных уравнений с двумя неизвестными:

Используя понятие определителя 2-го порядка, решение этой системы можно записать в виде:

(2.2)

Это есть правило Крамерарешения системы двух линейных уравнений 0.с двумя неизвестными при условии, что

Пример 2.1.Решить систему линейных уравнений, используя правило Крамера:

Историческая справка.Идея понятия«определителя»могла бы принадлежатьГ. Лейбницу(1646-1716), если бы он развил и опубликовал свои идеи относительно определителей, к которым он пришел в 1693 г. Поэтому приоритет в разработке метода определителей решения систем линейных уравнений принадлежитГ. Крамеру(1704-1752), который опубликовал свои исследования по этой теме в 1750 г. Однако Крамер не построил полноценной теории определителей, к тому же ему не доставало удобного обозначения. Первое обширное исследование, посвященное определителям, былоА. Вандермондом(1735-1796) в 1772 г. Он дал логическое изложение теории определителей и ввел правило разложения определителя с помощью миноров. Полное изложение теории определителей было дано лишь в 1812 г.
Ж. Бине(1786-1856) иО. Коши(1789-1858). Термин«определитель»(«детерминант») в современном его значении был введен Коши (ранее этот термин использовался К. Гауссом для обозначения дискриминанта квадратичной формы).

Определители третьего порядка

Определительматрицы 3-го порядка находится следующим образом

(2.3)

Естественно, что запомнить эту формулу довольно трудно. Однако есть правила, которые облегчают выписывание выражения для определителя 3-го порядка.

Правило треугольников:три слагаемых, входящих в исходное выражение со знаком плюс, есть произведения элементов главной диагонали или треугольников, основания которых параллельны этой диагонали. Остальные три слагаемых, входящих со знаком минус, находятся таким же образом, но относительно второй диагонали.

Правило Саррюса: припишем к матрице справа первый, а затем второй столбец. Тогда «положительные» слагаемые будут находиться на линиях параллельных главной диагонали, а «отрицательные» на линиях, параллельных второй диагонали.

Пример 2.2.Вычислить определитель

Рассмотрим систему 3-х уравнений с тремя неизвестными

Используя определители 3-го порядка, решение такой системы можно записать в таком же виде, как и для системы двух уравнений, т.е.

(2.4)

Это есть правило Крамерарешения системы трех линейных уравнений с тремя неизвестными.

Пример 2.3.Решить систему линейных уравнений при помощи правила Крамера:

Решение.Находим определитель основной матрицы системы

Поскольку 0, то для нахождения решения системы можно применить правило Крамера, но предварительно вычислим еще три определителя:

Следовательно, решение найдено правильно. 

Правила Крамера, полученные для линейных систем 2-го и 3-го порядка, наводят на мысль, что такие же правила можно сформулировать и для линейных систем любого порядка. Действительно имеет место

Теорема Крамера.Квадратная система линейных уравнений с отличным от нуля определителем основной матрицы системы 0)( имеет одно и только одно решение и это решение вычисляется по формулам

(2.5)

где–определитель основной матрицы,iопределитель матрицы,полученной из основной, заменой i-го столбца столбцом свободных членов.

=0,Отметим, что если то правило Крамера не применимо. Это означает, что система либо не имеет вообще решений, либо имеет бесконечно много решений.

Сформулировав теорему Крамера, естественно возникает вопрос о вычислении определителей высших порядков.

Определители n-го порядка

Дополнительным миноромMijэлементаaijназывается определитель, получаемый из данного путем вычеркиванияi-й строки иj-го столбца.Алгебраическим дополнениемAijэлементаaijназывается минор этого элемента, взятого со знаком (–1) i+j , т.е.Aij= (–1) i+j Mij.

Например, найдем миноры и алгебраические дополнения элементов a23иa31определителя

Используя понятие алгебраического дополнения можно сформулировать теорему о разложении определителя n-го порядка по строке или столбцу.

Метод Крамера – теорема, примеры решений

Метод Крамера часто применяется для систем линейных алгебраических уравнений (СЛАУ). Этот способ решения один из самых простых. Как правило, данный метод применяется только для тех систем, где по количеству неизвестных столько же, сколько и уравнений. Чтобы получилось решить уравнение, главный определитель матрицы не должен равняться нулю.

Габриель Крамер – математик, создатель одноименного метода решения систем линейных уравнений

Габриель Крамер – известный математик, который родился 31 июля 1704 года. Ещё в детстве Габриель поражал своими интеллектуальными способностями, особенно в области математики. Когда Крамеру было 20 лет, он устроился в Женевский университет штатным преподавателем.

Во время путешествия по Европе Габриель познакомился с математиком Иоганном Бернулли, который и стал его наставником. Только благодаря Иоганну, Крамер написал много статей по геометрии, истории математики и философии. А в свободное от работы время изучал математику всё больше и больше.

Наконец-то наступил тот день, когда Крамер нашёл способ, при помощи которого можно было бы легко решать не только лёгкие, но и сложные системы линейных уравнений.

В 1740 году у Крамера были опубликованы несколько работ, где доступно изложено решение квадратных матриц и описан алгоритм, как находить обратную матрицу. Далее математик описывал нахождения линейных уравнений разной сложности, где можно применить его формулы. Поэтому тему так и назвали: «Решение систем линейных уравнений методом Крамера».

Учёный умер в возрасте 48 лет (в 1752 году). У него было ещё много планов, но, к сожалению, он так и не успел их осуществить.

Вывод формулы Крамера

Пусть дана система линейных уравнений такого вида:

где , , – неизвестные переменные, – это числовые коэффициенты, в – свободные члены.

Решением СЛАУ (систем линейных алгебраических уравнение) называются такие неизвестные значения при которых все уравнения данной системы преобразовываются в тождества.

Если записать систему в матричном виде, тогда получается , где

В данной главной матрице находятся элементы, коэффициенты которых при неизвестных переменных,

Это матрица-столбец свободных членов, но есть ещё матрица-столбец неизвестных переменных:

После того, когда найдутся неизвестные переменные, матрица и будет решением системы уравнений, а наше равенство преобразовывается в тождество. . Если умножить , тогда . Получается: .

Если матрица – невырожденная, то есть, её определитель не равняется нулю, тогда у СЛАУ есть только одно единственное решение, которое находится при помощи метода Крамера.

Как правило, для решения систем линейных уравнений методом Крамера, нужно обращать внимания на два свойства, на которых и основан данный метод:

1. Определитель квадратной матрицы равняется сумме произведений элементов любой из строк (столбца) на их алгебраические дополнения:

, здесь – 1, 2, …, n; – 1, 2, 3, …, n.

2. Сумма произведений элементов данной матрицы любой строки или любого столбца на алгебраические дополнения определённых элементов второй строки (столбца) равняется нулю:

,

,

где – 1, 2, …, n; – 1, 2, 3, …, n. .

Итак, теперь можно найти первое неизвестное . Для этого необходимо умножить обе части первого уравнения системы на , части со второго уравнения на , обе части третьего уравнения на и т. д. То есть, каждое уравнение одной системы нужно умножать на определённые алгебраические дополнения первого столбца матрицы :

Теперь прибавим все левые части уравнения, сгруппируем слагаемые, учитывая неизвестные переменные и приравняем эту же сумму к сумме правых частей системы уравнения:

.

Можно обратиться к вышеописанным свойствам определителей и тогда получим:

И предыдущее равенство уже выглядит так:

Откуда и получается .

Аналогично находим . Для этого надо умножить обе части уравнений на алгебраические дополнения, которые находятся во втором столбце матрицы .

Теперь нужно сложить все уравнения системы и сгруппировать слагаемые при неизвестных переменных. Для этого вспомним свойства определителя:

Откуда получается .

Аналогично находятся все остальные неизвестные переменные.

тогда получаются формулы, благодаря которым находятся неизвестные переменные методом Крамера:

, , .

Замечание.

Тривиальное решение при может быть только в том случае, если система уравнений является однородной . И действительно, если все свободные члены нулевые, тогда и определители равняются нулю, так как в них содержится столбец с нулевыми элементами. Конечно же, тогда формулы , , дадут

Нужна помощь в написании работы?

Мы — биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Метод Крамера – теоремы

Прежде чем решать уравнение , необходимо знать:

  1. теорему аннулирования;
  2. теорему замещения.

Теорема замещения

Сумма произведений алгебраических дополнений любого столбца (строки) на произвольные числа равняется новому определителю, в котором этими числами заменены соответствующие элементы изначального определителя, что отвечают данным алгебраическим дополнениям.

=

где – алгебраические дополнения элементов первого столбца изначального определителя:

Теорема аннулирования

Сумма произведений элементов одной строки (столбца) на алгебраические дополнения соответствующих элементов другой строки (столбца) равняется нулю.

Алгоритм решения уравнений методом Крамера

Метод Крамера – простой способ решения систем линейных алгебраических уравнений. Такой вариант применяется исключительно к СЛАУ, у которых совпадает количество уравнений с количеством неизвестных, а определитель отличен от нуля.

Итак, когда выучили все этапы, можно переходить к самому алгоритму решения уравнений методом Крамера. Запишем его последовательно:

Шаг 1. Вычисляем главный определитель матрицы

и необходимо убедиться, что определитель отличен от нуля (не равен нулю).

Шаг 2. Находим определители

Это и есть определители матриц, которые получались из матрицы при замене столбцов на свободные члены.

Шаг 3. Вычисляем неизвестные переменные

Теперь вспоминаем формулы Крамера, по которым вычисляем корни (неизвестные переменные):

, , .

Шаг 4. Выполняем проверку

Выполняем проверку решения при помощи подстановки в исходную СЛАУ. Абсолютно все уравнения в системе должны быть превращены в тождества. Также можно высчитать произведение матриц . Если в итоге получилась матрица, которая равняется , тогда система решена правильно. Если же не равняется , скорей всего в одном из уравнений есть ошибка.

Давайте для начала рассмотрим систему двух линейных уравнений, так как она более простая и поможет понять, как правильно использовать правило Крамера. Если вы поймёте простые и короткие уравнения, тогда сможете решить более сложные системы трёх уравнений с тремя неизвестными.

Кроме всего прочего, есть системы уравнений с двумя переменными, которые решаются исключительно благодаря правилу Крамеру.

Итак, дана система двух линейных уравнений:

Для начала вычисляем главный определитель (определитель системы):

Значит, если , тогда у системы или много решений, или система не имеет решений. В этом случае пользоваться правилом Крамера нет смысла, так как решения не получится и нужно вспоминать метод Гаусса, при помощи которого данный пример решается быстро и легко.

В случае, если , тогда у система есть всего одно решение, но для этого необходимо вычислить ещё два определителя и найти корни системы.

Часто на практике определители могут обозначаться не только , но и латинской буквой , что тоже будет правильно.

Корни уравнения найти просто, так как главное, знать формулы:

,

Так как мы смогли решить систему двух линейных уравнений, теперь без проблем решим и систему трёх линейных уравнений, а для этого рассмотрим систему:

Здесь алгебраические дополнения элементов – первый столбец . Во время решения не забывайте о дополнительных элементах. Итак, в системе линейных уравнений нужно найти три неизвестных – при известных других элементах.

Создадим определитель системы из коэффициентов при неизвестных:

Умножим почленно каждое уравнение соответственно на , , – алгебраические дополнения элементов первого столбца (коэффициентов при ) и прибавим все три уравнения. Получаем:

Согласно теореме про раскладывание, коэффициент при равняется . Коэффициенты при и будут равняться нулю по теореме аннулирования. Правая часть равенства по теореме замещения даёт новый определитель, который называется вспомогательным и обозначается

После этого можно записать равенство:

Для нахождения и перемножим каждое из уравнений изначальной системы в первом случае соответственно на , во втором – на и прибавим. Впоследствии преобразований получаем:

,

Если , тогда в результате получаем формулы Крамера:

= , = , =

Порядок решения однородной системы уравнений

Отдельный случай – это однородные системы:

Среди решений однородной системы могут быть, как нулевые решения , так и решения отличны от нуля.

Если определитель однородной системы (3) отличен от нуля , тогда у такой системы может быть только одно решение.

Действительно, вспомогательные определители , как такие у которых есть нулевой столбец и поэтому, за формулами Крамера

Если у однородной системы есть отличное от нуля решение, тогда её определитель равняется нулю

Действительно, пусть одно из неизвестных , например, , отличное от нуля. Согласно с однородностью Равенство (2) запишется: . Откуда выплывает, что

Примеры решения методом Крамера

Рассмотрим на примере решение методом Крамера и вы увидите, что сложного ничего нет, но будьте предельно внимательно, так как частые ошибки в знаках приводят к неверному ответу.

Задача

Решить систему линейных уравнений методом Крамера:

Решение

Первое, что надо сделать – вычислить определитель матрицы:

Как видим, , поэтому по теореме Крамера система имеет единственное решение (система совместна). Далее нужно вычислять вспомогательные определители. Для этого заменяем первый столбец из определителя на столбец свободных коэффициентов. Получается:

Аналогично находим остальные определители:

,

.

Ответ

, .

Задача

Решить систему уравнений методом Крамера:

Решение

Ответ

= = = = = =

Проверка

* = * = =

* = * = =

* = * = =

Уравнение имеет единственное решение.

Ответ

= = =

Задача

Решить систему методом Крамера

Решение

Как вы понимаете, сначала находим главный определитель:

Как мы видим, главный определитель не равняется нулю и поэтому система имеет единственное решение. Теперь можно вычислить остальные определители:

При помощи формул Крамера находим корни уравнения:

, , .

Чтобы убедиться в правильности решения, необходимо сделать проверку:

Как видим, подставив в уравнение решённые корни, у нас ответ получился тот же, что и в начале задачи, что говорит о правильном решении уравнений.

Ответ

Система уравнений имеет единственное решение: , , .

Есть примеры, когда уравнение решений не имеет. Это может быть в том случае, когда определитель системы равен нулю, а определители при неизвестных неравны нулю. В таком случае говорят, что система несовместна, то есть не имеет решений. Посмотрим на следующем примере, как такое может быть.

Задача

Решить систему линейных уравнений методом Крамера:

Решение

Как и в предыдущих примерах находим главный определитель системы:

В этой системе определитель равняется нулю, соответственно, система несовместна и определенна или же несовместна и не имеет решений. Чтобы уточнить, надо найти определители при неизвестных так, как мы делали ранее:

Мы нашли определители при неизвестных и увидели, что все они не равны нулю. Поэтому система несовместна и не имеет решений.

Ответ

Система не имеет решений.

Часто в задачах на системы линейных уравнений встречаются такие уравнения, где есть не одинаковые буквы, то есть, кроме букв, которые обозначают переменные, есть ещё и другие буквы и они обозначают некоторое действительное число. На практике к таким уравнениям и системам уравнений приводят задачи на поиск общих свойств каких-либо явлений и предметов. То есть, изобрели вы какой-либо новый материал или устройство, а для описания его свойств, общих независимо от величины или количества экземпляра, нужно решить систему линейных уравнений, где вместо некоторых коэффициентов при переменных – буквы. Давайте и рассмотрим такой пример.

Задача

Решить систему линейных уравнений методом Крамера:

Решение

В этом примере – некоторое вещественное число. Находим главный определитель:

Находим определители при неизвестных:

Используя формулы Крамера, находим:

, .

Ответ

,

.

И наконец, мы перешли к самой сложной системе уравнений с четырьмя неизвестными. Принцип решения такой же, как и в предыдущих примерах, но в связи с большой системой можно запутаться. Поэтому рассмотрим такое уравнение на примере.

Задача

Найти систему линейных уравнений методом Крамера:

Здесь действуют система определителей матрицы высших порядков, поэтому вычисления и формулы рассмотрены в этой теме, а мы сейчас просто посчитаем систему уравнений с четырьмя неизвестными.

Решение

В изначальном определители из элементов второй строки мы отнимали элементы четвёртой строки, а из элементов третьей строки отнимались элементы четвёртой строки, которые умножались на 2. Также отнимали из элементов четвёртой строки элементы первой строки, умноженной на два. Преобразования первоначальных определителей при трёх первых неизвестных произведены по такой же схеме. Теперь можно находить определители при неизвестных:

Для преобразований определителя при четвёртом неизвестном из элементов первой строки мы вычитали элементы четвёртой строки.

Теперь по формулам Крамера нужно найти:

,

,

,

.

Ответ

Итак, мы нашли корни системы линейного уравнения:

,

,

,

.

Подведём итоги

При помощи метода Крамера можно решать системы линейных алгебраических уравнений в том случае, если определитель не равен нулю. Такой метод позволяет находить определители матриц такого порядка, как на благодаря формулам Крамера, когда нужно найти неизвестные переменные. Если все свободные члены нулевые, тогда их определители равны нулю, так как в них содержится столбец с нулевыми элементами. И конечно же, если определители равняются нулю, лучше решать систему методом Гаусса, а не Крамера, только тогда ответ будет верный.

Рекомендуем почитать для общего развития

Решение методом Крамера в Excel


источники:

http://kopilkaurokov.ru/matematika/planirovanie/opriedielitieli_vtorogho_poriadka_i_pravilo_kramiera

http://nauchniestati.ru/spravka/resheneie-sistem-metodom-kramera/