Метод мора титрант среда индикаторы уравнения

Метод Мора: основы, реакции, процедура, использование

Метод Мора: основы, реакции, процедура, использование — Наука

Содержание:

В Метод Мора Это вариант аргентометрии, которая, в свою очередь, является одной из многих областей волюметрии, используемых для определения содержания хлорид-ионов в пробах воды. Концентрация Cl – указывает на качество воды, влияющее на ее органолептические свойства, такие как вкус и запах.

Этот метод, изобретенный в 1856 году немецким химиком Карлом Фридрихом Мором (106-1879), продолжает действовать благодаря своей простоте и практичности. Однако одним из его основных недостатков является то, что он основан на использовании хромата калия, K2CrO4, соль, вредная для здоровья, когда загрязняет воду.

Концентрация ионов Cl определяется объемным методом. – через степени или оценки. В них конечная точка, указывающая на то, что точка эквивалентности была достигнута. Это не изменение цвета, как мы видим в кислотно-щелочном индикаторе; но образование красноватого осадка Ag2CrO4 (верхнее изображение).

Когда появляется этот красноватый или кирпичный цвет, титрование завершается и после серии вычислений определяется концентрация хлоридов, присутствующих в пробе воды.

Основы

Хлорид серебра AgCl — это осадок молочного цвета, который образует только ионы Ag. + и Cl – они в растворе. Имея это в виду, можно подумать, что добавление достаточного количества серебра из растворимой соли, например нитрата серебра, AgNO3, до образца с хлоридами мы можем осаждать их все в виде AgCl.

Затем путем взвешивания этого AgCl определяется масса хлоридов, присутствующих в водной пробе.Это соответствовало бы гравиметрическому, а не волюметрическому методу. Однако есть проблема: AgCl — довольно нестабильное и нечистое твердое вещество, поскольку оно разлагается под солнечным светом, а также быстро осаждается, поглощая все примеси, которые его окружают.

Следовательно, AgCl не является твердым веществом, из которого можно получить надежные результаты. Вероятно, в этом причина изобретательности разработки объемного метода определения ионов Cl. – , без необходимости взвешивать какой-либо продукт.

Таким образом, метод Мора предлагает альтернативу: получить осадок хромата серебра Ag2CrO4, который служит конечной точкой титрования или титрования хлоридов. Его успех настолько велик, что он до сих пор используется для анализа хлоридов в пробах воды.

Реакции

Какие реакции происходят в методе Мора? Для начала у нас есть ионы Cl – растворяется в воде, где при добавлении ионов Ag + Сильно смещенное равновесие растворимости начинается с образования осадка AgCl:

Ag + (ас) + Cl – (ас) ⇋ AgCl (т)

С другой стороны, в середине тоже должны быть ионы хромата CrO4 2- , так как без них красноватый осадок Ag2CrO4:

Так что теоретически должен быть конфликт между обоими осадками, AgCl и Ag.2CrO4 (белый против красного соответственно). Однако в воде при 25 ºC AgCl более нерастворим, чем Ag.2CrO4, поэтому первое всегда выпадет в осадок раньше второго.

Фактически, Ag2CrO4 он не будет выпадать в осадок, пока не исчезнут хлориды, с которыми серебро будет образовывать соли; то есть минимально избыточные ионы Ag + больше не осаждается с Cl – но с CrO4 2- . Таким образом, мы увидим появление красноватого осадка, что будет последней точкой оценки.

Процесс

Реагенты и условия

Титрант должен попасть в бюретку, которая в данном случае представляет собой раствор AgNO.3 0,01 М. Поскольку AgNO3 Бюретка чувствительна к свету, после заполнения рекомендуется накрыть бюретку алюминиевой фольгой. А в качестве индикатора раствор K2CrO4 в 5%.

Эта концентрация K2CrO4 гарантирует отсутствие значительного избытка CrO4 2- относительно Cl – ; потому что если это произойдет, сначала выпадет Ag2CrO4 вместо AgCl, хотя последний более нерастворим.

С другой стороны, pH пробы воды должен иметь значение от 7 до 10. Если pH больше 10, гидроксид серебра выпадет в осадок:

Ag + (ас) + ОН – (ac) ⇋ AgOH (s)

Если pH меньше 7, Ag2CrO4 он станет более растворимым, потребуется добавить избыток AgNO3 для получения осадка, изменяющего результат. Это связано с балансом между видами CrO4 2- и CR2ИЛИ7 2- :

Вот почему pH пробы воды необходимо измерить до применения метода Мора.

Оценка

Титрант AgNO3 перед титрованием его необходимо стандартизировать с помощью раствора NaCl.

Как только это будет сделано, 15 мл пробы воды переносят в колбу Эрленмейера, разбавленную 50 мл воды. Это помогает, когда добавляются 5 капель индикатора K2CrO4, желтый цвет хромата не такой интенсивный и не препятствует обнаружению конечной точки.

Титрование начинается с открытия крана бюретки и капания раствора AgNO по капле.3. Видно, что жидкость в колбе станет мутно-желтоватой из-за выпадения в осадок AgCl. Как только появится красноватый цвет, остановите титрование, встряхните колбу и подождите около 15 секунд.

Если осадок Ag2CrO4 повторно растворяется, необходимо добавить другие капли AgNO3. Когда он остается постоянным и неизменным, титрование завершается и отмечается объем, выброшенный из бюретки. По этим объемам, факторам разбавления и стехиометрии определяется концентрация хлоридов в пробе воды.

Приложения

Метод Мора применим к любому типу водных образцов. Он позволяет определять не только хлориды, но и бромиды, Br – , и цианиды, CN – . Следовательно, это один из часто используемых методов оценки качества воды для потребления или для промышленных процессов.

Проблема с этим методом заключается в использовании K2CrO4, соль, которая является высокотоксичной из-за хромата и, следовательно, отрицательно влияет на воду и почвы.

Вот почему мы искали, как изменить метод, чтобы отказаться от этого индикатора. Один из вариантов — заменить его на NaHPO.4 и фенолфталеин, где образуется соль AgHPO4 достаточно изменить pH, чтобы получить надежную конечную точку.

Ссылки

  1. Дэй Р. и Андервуд А. (1965). Количественная аналитическая химия. (пятое изд.). ПИРСОН Прентис Холл, стр. 277.
  2. Анхелес Мендес. (22 февраля 2012 г.). Метод Мора. Получено с: quimica.laguia2000.com
  3. ChemBuddy. (2009). Метод Мора. Получено с: titrations.info
  4. Даниэле Навильо. (н.д.). Метод Мора. Federica Web Learning. Получено с: federica.unina.it
  5. Хонг, Т. К., Ким, М. Х., и Чаэ, М. З. (2010). Определение хлористости воды без использования индикатора хромата. Международный журнал аналитической химии, 2010, 602939. doi: 10.1155 / 2010/602939

Устойчивое потребление: для чего это нужно, важность, действия, примеры

Метод Мора

Этот метод позволяет определить содержание хлоридов или бромидов:

Ag + + Сl — = AgCl↓; Ag + + Br — = AgBr↓.

Рабочим раствором в методе Мора является раствор ни­трата серебра AgNO3. Исходным веществом для определе­ния молярной концентрации эквивалента раствора AgNO3 является хлорид натрия NaCl или хлорид калия КСl. Для определения конца титрования используется индикатор хромат калия К2СrO4, который с нитратом серебра образу­ет кирпично-красный осадок хромата серебра Ag2CrО4:

При титровании хлоридов и бромидов образуется бе­лый осадок AgCl или желтовато-белый осадок AgBr. Ког­да ионы Сl — или Вr — будут практически полностью в осад­ке, то в растворе появляется избыток AgNO3, взаимодействующий с К2СrО4 с образованием кирпично-красного осадка Ag2CrO4. Осадки галогенидов серебра окрашивают­ся при этом в розовый цвет, по появлению которого судят о том, что реакция между галогенид-ионами и ионами Ag + за­кончилась. Такая последовательность образования осадков объясняется тем, что растворимость AgCl (1,25 • 10 -5 моль/л) и растворимость AgBr (7,94 • 10 -7 моль/л) меньше раствори­мости Ag2CrO4 (1 • 10 -4 моль/л). Поэтому при титровании из растворов прежде всего выпадают осадки галогенидов серебра и только после полного осаждения ионов Сl — и Вr — начинает образовываться осадок хромата серебра.

Йодйд-ионы невозможно определить методом Мора, так как выпадающий осадок йодида серебра Agl сильно адсорбирует К2СrO4, вследствие чего осадок окрашивает­ся до точки эквивалентности.

Применение метода Мора ограничено, так как точные результаты можно получить только в нейтральной среде. В кислой среде К2СrO4 переходит в К2Сr2O7, не обладаю­щий свойствами индикатора в результате высокой раство­римости Ag2Cr2O7. В присутствии щелочей метод Мора также не применяется, так как в таких растворах образу­ется AgOH, распадающийся на Ag2O и Н2О:

В присутствии аммиака и его солей осадки AgCl и Ag2CrO4 растворяются с образованием комплексных со­единений. Этот метод не применяется также в присутст­вии ионов Ва 2+ , Pb 2+ , Bi 3+ , так как эти ионы образуют с хромат-ионами осадки.

Титрование по методу Мора следует проводить при комнатной температуре, так как с повышением темпера­туры увеличивается константа растворимости Ag2CrO4; вследствие этого уменьшается чувствительность индика­тора к иону Ag + .

При определении солей галогенов (рабочий раствор AgNO3) или солей серебра (рабочий раствор NaCl) реко­мендуется придерживаться следующего порядка титрова­ния: всегда приливать из бюретки раствор соли серебра к раствору соли галогена. Только при такой последователь­ности титрования получается резкое изменение окраски индикатора в конце титрования.

Рабочим раствором в методе Мора является 0,05000 н. или 0,1000 н. раствор AgNO3. Молярная масса эквивалента нит­рата серебра равна его молярной массе, т.е. 169,89 г/моль.

Следовательно, для приготовления 1 л 0,05 н. раствора на­до взять 8,5 г нитрата серебра. Эту навеску взвешивают на технических весах. Точную концентрацию приготовлен­ного раствора AgNO3 устанавливают по стандартному рас­твору хлорида натрия. Приготовленный раствор AgNO3 изменяется при длительном хранении. Под влиянием све­та разложение ускоряется. Вследствие этого раствор хра­нят в склянках из оранжевого стекла или в посуде, обер­нутой черной бумагой. С течением времени концентрацию раствора AgNO3 проверяют.

Стандартный раствор хлорида натрия получают раство­рением точно известного количества химически чистого хлорида натрия в определенном объеме воды. Если химиче­ски чистого хлорида натрия нет, то его получают перекрис­таллизацией поваренной соли из воды. Для приготовления 0,05000 н. раствора NaCl взвешивают на аналитических ве­сах 0,5844 г NaCl и количественно переносят в мерную кол­бу на 200 мл. Растворяют навеску в дистиллированной во­де, доводят водой до метки и тщательно перемешивают.

Метод Мора применяется при анализе пищевых про­дуктов (колбаса, соленая рыба, сливочное масло), где оп­ределяется количество поваренной соли. Для определения хлоридов в воде также используется этот метод. Мето­дом Мора анализируются лекарственные препараты — КСl, KBr, NaCl, NaBr и др.

Лабораторная работа 1. Стандартизация рабочего рас­твора нитрата серебра по 0,05000 н. раствору хлорида на­трия.

Цель работы. Получить навыки стандартизации рабо­чего раствора по первичному стандарту.

Оборудование. Бюретка вместимостью 25 мл, пипетка Мора, колбы для титрования.

Реактивы. Рабочий раствор AgNO3, стандартный рас­твор 0,05000 н. NaCl, индикатор хромат калия с массовой долей его 5 %.

Выполнение работы. В три колбы для титрования с по­мощью пипетки Мора вносят по 10 мл 0,05000 н. раствора хлорида натрия и добавляют по 0,5 мл раствора индикато­ра. При постоянном перемешивании из бюретки медленно приливают раствор нитрата серебра до появления неисчезающего красного окрашивания. Результаты титрования записывают в таблицу (см. гл. 20.6.).

Обработка результатов эксперимента. Находят средний объем раствора AgNO3, затраченного на титрование раствора NaCl. Рассчитывают молярную концентрацию эквивалента раствора AgNO3 из соотношения V(AgNO3) • C(AgNO3) = V(NaCl) • C(NaCl). Рассчитывают титр рабочего раствора AgNO3 по формуле (19.10). Формулируют вывод, характе­ризующий результат проведенного титрования.

Лабораторная работа 2.Определение содержания хло­рида натрия в растворе.

Цель работы.Закрепить навыки титрования по методу Мора.

ОборудованиеСм. лабораторную работу 1.

Реактивы.Раствор хлорида натрия, предложенный преподавателем, рабочий раствор AgNO3 с молярной кон­центрацией эквивалента 0,05000 моль/л, индикатор хро­мат калия с массовой долей его 0,5 %.

Выполнение работы.Раствор хлорида натрия помеща­ют в мерную колбу на 100 мл, добавляют воды до метки и перемешивают. В три колбы для титрования вносят с по­мощью пипетки Мора по 10 мл полученного раствора, до­бавляют по 0,5 мл раствора индикатора. Титруют раство­ром AgNO3 до появления неисчезающего красного окра­шивания.

Обработка результатов эксперимента.Рассчитывают концентрацию раствора NaCl в моль/л, используя закон эквивалентов: V(NaCl) • C(NaCl) = V(AgNO3) • C(AgNO3). За­тем рассчитывают титр раствора NaCl по формуле (19.10). Умножая титр раствора NaCl на объем колбы (100 мл), уз­нают массу хлорида натрия в растворе, предложенном преподавателем для анализа.

Делают вывод о полученных результатах.

Дата добавления: 2014-11-13 ; просмотров: 34 ; Нарушение авторских прав

Фармацевтическая химия

SHAPE \* MERGEFORMAT

Аргентометрия

Метод Мора. Прямая аргентометрия .

Только для Cl – , Br – ; (не исп для I – ).

Титрант – AgNO 3 , индикатор – K 2 CrO 4 , среда: pH =6–8.

NaBr + AgNO 3 → AgBr ↓ + NaNO 3 ,

f экв ( NaBr )=1, .

рН >8: 2 Ag + + 2 OH – → Ag 2 O + H 2 O .

Присутствие ионов : SO4 2– , S 2– , PO4 3– , AsO3 3– , BO3 3– , CO3 2– ; Bi 3+ , Ba 2+ , Pb 2+ .

Метод Фаянса. Прямая аргентометрия .

Титрант – AgNO 3 , индикаторы – эозинат натрия ( Br – , I – ), бромтимоловый синий ( Cl – ), среда – CH 3 COOH (30%).

SHAPE \* MERGEFORMAT

Читайте также:
  1. Amp; Методичні вказівки
  2. Amp; Методичні вказівки
  3. Amp; Методичні вказівки
  4. Amp; Методичні вказівки
  5. Amp; Методичні вказівки
  6. Amp; Методичні вказівки
  7. Amp; Методичні вказівки
  8. B. Искусственная вентиляция легких. Методики проведения искусственной вентиляции легких
  9. Cтруктуры внешней памяти, методы организации индексов
  10. FDDI. Архитектура сети, метод доступа, стек протоколов.

NaI + AgNO 3 → AgI ↓ + NaNO 3 .

Йодид серебра адсорбирует на себе одноименные ионы; появляется ярко-розовая окраска:

В точке эквивалентности коллоидная частица становится электронейтральной , в КТТ начинает адсорбировать Ag + ; идет перезарядка мицеллы, осадок коагулирует, раствор просветляется:

< m ( AgI )∙ n I – ( n – x ) K + > x – ∙ x Ag + + Ind 2– → ( x /2) Ag 2 Ind + < m ( AgI )∙ n I – ( n – x ) K + > x – .

f экв ( NaI )=1, .

Метод Фольдгарда . Обратная аргентометрия .

Титранты – 1) AgNO 3 , 2) NH 4 SCN ;

Среда – HNO 3 ( pH =3).

К раствору навески препарата прибавляют HNO 3 , точный избыточный объем AgNO 3 и индикатор:

KBr + AgNO 3 → AgBr ↓ + KNO 3 ,

В КТТ индикатор взаимодействует с титрантом :

f экв ( KI )=1, .

Преимущества пред другими методами:

1. Сильнокислая среда,

2. Не мешают друг ие ио ны;

1. Меньшая точность (обратный метод),

Особенности титрования хлоридов:

1. Низкая скорость титрования [ Ks ( AgCl )> Ks ( AgCNS )],

2. Очень слабое перемешивание,

3. Добавление толуола или бензола для экстракции AgCl .

Особенности титрования йодидов:

После добавления нитрата серебра ждут полного осаждения AgI , второй индикатор добавляют перед самым титрованием:

Метод Кальтгофа – Стенглера . /Только для Br /

Титранты – 1) AgNO 3 , 2) NH 4 SCN , индикатор – NH 4 Fe ( SO 4 )2, среда – HNO 3 ( pH =3).

К раствору навески препарата прибавляют HNO 3 , индикатор и точный избыточный объем NH 4 SCN (0,1 мл):

Титруют нитратом серебра до исчезновения красного окрашивания:

KBr + AgNO 3 → AgBr ↓ + KNO 3,

f экв ( KBr )=1, .

Метод Кальтгофа (Йодкрахмальный). / Для I – в присутствии Cl – и Br – /

Титрант – AgNO 3 , индикатор – крахмал, среда – H 2 SO 4 .

К ратсвору навески препарата прибавляют 1 каплю KIO 3 (0,1 моль/л), раствор крахмала и H 2 SO 4 (1:5) до появления синего окрашивания:

Титруют AgNO 3 (0,1 моль/л) до исчезновения синего окрашивания (после удаления йодида):

f экв ( KI )=1, .

Аргентометрия с внешним индикатором. /Для I – /

Титрант – AgNO 3 , индикатор – нитриткрахмальная бумага, среда – H 2 SO 4 .

К раствору навески препарата добавляют H 2 SO 4 (1:5), титруют AgNO 3 . Вблизи точки эквивалентности после каждого раза прибавления титранта наносят каплю раствора на нитриткрахмальную бумагу. Титрование заканчивают, когда синего окрашивания на бумаге от прибавления раствора не будет:

f экв ( NaI )=1, .


источники:

http://lektsii.com/1-6454.html

http://nesterovdmitriy.narod.ru/03-Nauchnaya_Deyat/pharm_chem/o_argentometr.htm