Метод неопределенных коэффициентов системы уравнений

Метод неопределенных коэффициентов и его универсальность

Разделы: Математика

Применение метода неопределённых коэффициентов основано на следующих двух теоремах.

Теорема №1 (о многочлене, тождественно равном нулю).

Если при произвольных значениях аргумента x значение многочлена f(x) = а0+ а1х + а2х 2 +. + а nx n , заданного в стандартном виде, равно нулю, то все его коэффициенты а0, а1, а2, . аn равны нулю.

Теорема №2 (следствие теоремы № 1).

Деление многочлена на многочлен.

Пример 1. Выполнить деление многочлена х 5 – 6х 3 + 2х 2 -4 на многочлен х 2 – х + 1.

Решение: Надо найти такие многочлены Q(x) и R(x), что х 5 – 6х 3 + 2х 2 -4 = (х 2 – х + 1) Q(x) + R(x), причём степень многочлена R(x) меньше степени многочлена (х 2 – х + 1). Из того, что степень произведения многочленов равна сумме их степеней, следует, что степень многочлена Q(x) равна 5 – 2 = 3.

Многочлены Q(x) и R(x) имеют вид:

Раскроем скобки в правой части равенства:

Для отыскания неизвестных коэффициентов получаем систему уравнений:

Ответ: Q(x) = x 3 + x 2 — 6x — 5, R(x) = x + 1.

Пример 2. Выполнить деление многочлена х 7 –1 на многочлен х 3 + х + 1.

Решение: Надо найти такие многочлены Q(x) и R(x), что х 7 –1 = (х 3 + х + 1) Q(x) + R(x), причём степень многочлена R(x) меньше степени многочлена (х 3 + х + 1).

Из того, что степень произведения многочленов равна сумме их степеней, следует, что степень многочлена Q(x) равна 7– 3 = 4.

Многочлены Q(x) и R(x) имеют вид: Q(x) = q 4x 4 + q 3x 3 + q 2x 2 + q 1x + q0,
R(x) = r 2x 2 + r 1x + r0.

Подставим Q(x) и R(x):

Раскроем скобки в правой части равенства:

Получаем систему уравнений:

Ответ: Q(x) = x 4 — x 2 — x + 1, R(x) = 2x 2 — 2.

Расположение многочлена по степеням.

Возьмем функцию Поставим перед собой задачу «расположить многочлен по степеням f(x) по степеням (х-х0).

Задача сводится к нахождению неизвестных коэффициентов а0, а1, . аn. В каждом конкретном случае эти числа найти легко. Действительно, расположим многочлены, находящиеся в левой и правой частях равенства, по степеням x. Так как мы имеем тождество, то (по теореме № 2) коэффициенты при одинаковых степенях x должны быть равны между собой. Приравняв коэффициенты правой части соответствующим заданным коэффициентам левой, мы придем к системе n+1 уравнений с n+1 неизвестными а0, а1, . аn , которую нужно решить.

Пример 3. Расположим многочлен по степеням.


Приравниваем коэффициенты при одинаковых степенях и получаем систему:

Решая систему, находим:

Ответ: .

Пример 4. Расположим f(x) = х 4 — 8х 3 + 24х 2 — 50х + 90 по степеням (х-2).

Решение: Полагаем х4 — 8х 3 + 24х 2 — 50х + 90

Ответ: f(x) =

Представление произведения в виде многочлена стандартного вида.

Пример 5. Не выполняя действий, представим в виде многочлена стандартного вида произведение (х — 1)(х + 3)(х + 5).

Решение: Произведение есть многочлен третьей степени, коэффициент при старшем члене равен 1, а свободный член равен (- 15), тогда запишем:

(х — 1)(х + 3)(х + 5) = х 3 + ах 2 + вх — 15, где а и в — неизвестные коэффициенты.

Для вычисления их положим х = 1 и х = — 3, тогда получим:

откуда а =7, в = 7.

Ответ: х 3 +7х 2 + 7х — 15.

Разложение многочлена на множители

Пример 6. Дан многочлен

Разложим его на множители, если известно, сто все его корни – целые числа.

Решение: Будем искать разложение в виде:

полагая числа a, b, c и d его корнями. Раскроем скобки в правой части и сгруппируем по одинаковым степеням.

Приравниваем коэффициенты при одинаковых степенях.

Так как корни нашего многочлена – целые, то из последнего уравнения системы заключаем, что они должны быть делителями числа 30. Следовательно, их следует искать среди чисел

Проведя испытания, установим, что корни нашего многочлена -2, -5, 1 и 3. Следовательно х 4 + 3х 3 — 15х 2 — 19х + 30 = (х — 1)(х — 3)(х + 2)(х + 5)

Пример 7. Дан многочлен .

Разложим его на множители, если известно, сто все его корни – целые числа.

Решение: Будем искать разложение в виде:

полагая числа a, b, c и d его корнями. Раскроем скобки в правой части и сгруппируем по одинаковым степеням.

Приравниваем коэффициенты при одинаковых степенях.

Так как корни нашего многочлена – целые, то из последнего уравнения системы заключаем, что они должны быть делителями числа 84. Следовательно, их следует искать среди чисел

Проведя испытания, установим, что корни нашего многочлена -7,-2,2,3. Следовательно х 4 + 4х 3 — 25х 2 — 16х + 84 = (х — 2)(х — 3)(х + 2)(х + 7)

Пример 8. Разность является целым числом. Найдем это число.

Решение: Так как,

Тогда

Положим где a и b – неизвестные коэффициенты.

Тогда

Решая данную систему уравнений, получим а = 5, b = -4.

Значит так как

Аналогично устанавливаем, что

Следовательно

Пример 9. Является ли разность целым числом.

Решение: Т.к.

тогда —

Положим где a и b – неизвестные коэффициенты.

Тогда откуда

из второго уравнения тогда первое уравнение принимает вид

b 2 = 12,5 — — не удовлетворяет условию задачи, или b 2 = 9, откуда b = -3 или b = 3 — не удовлетворяет числу Значит, а = 5.

Аналогично,

Окончательно получаем: — иррациональное число.

Уничтожение иррациональности в знаменателе

Пример 10. Избавимся от иррациональности в знаменателе:

Решение:

отсюда

Раскроем скобки, сгруппируем:

Ответ:

Пример 11. Избавимся от иррациональности в знаменателе:

Решение: ,

отсюда

Раскроем скобки, сгруппируем

Отсюда

Итак

Следовательно

Ответ:

Применение метода неопределенных коэффициентов при решении уравнений

Пример 12. Решим уравнение х 4 + х 3 — 4х 2 — 9х — 3 = 0.

Решение: Предположим, что корни уравнения — целые числа, тогда их надо искать среди чисел

Если х = 1, то
если х = -1, то
если х = 3, то
если х = -3, то

Отсюда делаем вывод, что рациональных корней наше уравнение не имеет.

Попробуем разложить многочлен на множители в следующем виде:

, где a, b, c и d – целые. Раскроем скобки:

Приравнивая соответствующие коэффициенты выражений для неизвестных a, b, c и d получаем систему уравнений:

Так как bd = -3, то будем искать решения среди вариантов:

Проверим вариант № 2, когда b = —1; d = 3:

Пример 13. Решить уравнение: х 4 — 15х 2 + 12х + 5= 0.

Решение: Разложим многочлен f(х) = х 4 — 15х 2 + 12х + 5 на множители в следующем виде: , где a, b, c и d -целые. Раскроем скобки:

Приравнивая соответствующие коэффициенты выражений для неизвестных a, b, c и d получаем систему уравнений:

Так как , bd = 5, то будем искать решения среди вариантов:

Системе удовлетворяет вариант №2, т.е. а = 3, b = -1, c = -3, d = 5.

Итак,


D =13
D = 29

Ответ:

О решении одного класса кубических уравнений.

Пусть дано кубическое уравнение: а 1 х 3 + b 1х 2 +с 1х +d1 = 0, где а ≠ 0.
Приведём его к виду х 3 + ах 2 +bх + с = 0 (1), где а = , в = , с =
Положим в уравнении (1) х = у + m. Тогда получим уравнение:
Раскроем скобки, сгруппируем: y 3 +3у 2 m + 3ym 2 + m 3 + ay 2 + 2aym +am 2 + by +bm + с = 0,
y 3 + y 2 (a +3m) +y(3m 2 +2am +b) + m 3 +am 2 +bm + с = 0.

Для того, чтобы уравнение (1) было двучленным, должно выполняться условие:

Решения этой системы: m = —; a 2 = 3b. Таким образом, при произвольном с и при a 2 = 3b уравнение подстановкой х = уможно привести к двучленному уравнению третьей степени.

Пример14. Решить уравнение: х 3 + 3х 2 +3х — 9 =0.

Решение: В данном уравнении а = 3, в =3, тогда условие a 2 = 3b выполняется, а m = — = -1. Выполним подстановку х = у -1.

Уравнение принимает вид: (у -1) 3 +3(у -1) 2 +3(у -1) – 9 = 0.
y 3 -3y 2 +3у -1 +3у 2 – 6у +3 +3у –3 – 9 = 0.
y 3 – 10 = 0, откуда у = , а х = — 1.

Ответ: — 1.

Пример15. Решить уравнение: х 3 + 6х 2 + 12х + 5 = 0.

Решение: а = 6, в =12, тогда условие a 2 = 3b (62 = 3×12) выполняется, а m = — = -2.

Выполним подстановку х = у — 2. Уравнение принимает вид: (у -2) 3 +6(у -2) 2 +12(у -2) + 5 = 0.

у 3 – 6у 2 + 12у – 8 + 6у 2 -24у + 24 + 12у – 24 + 5 = 0.
у 3 – 3 = 0, у = , а х = — 2.

Ответ: – 2.

Рассмотренные в работе примеры могут быть решены и другими способами. Но цель работы заключалась в том, чтобы решить их методом неопределённых коэффициентов, показать универсальность этого метода, его оригинальность и рациональность, не отрицая того, что в некоторых случаях он приводит к громоздким, но не сложным преобразованиям.

Разложение многочлена на множители методом неопределенных коэффициентов

Разложение многочлена на множители методом неопределенных коэффициентов

В этой статье мы рассмотрим решение уравнения четвертой степени с помощью разложения на множители методом неопределенных коэффициентов.

Решить уравнение:

Перед нами уравнение четвертой степени.

Чтобы решить это уравнение, разложим левую часть уравнения на множители.

Многочлен четвертой степени можно разложить на произведение двух многочленов второй степени.

Воспользуемся методом неопределенных коэффициентов.

Пусть выполняется равенство:

Здесь -целые числа.

Перемножим две скобки справа и приведем подобные члены. Получим:

Два многочлена равны тогда и только тогда, когда равны их коэффициенты.

Приравняем коэффициенты при одинаковых степенях и получим систему уравнений:

Без ограничения общности можем считать, что

, тогда пусть

, отсюда или .

Рассмотрим два случая:

  1. ,

Получим систему уравнений:

Из второго и третьего уравнений получаем — что не удовлетворяет третьему уравнению. Система не имеет решений.

2. ,

Из второго и третьего уравнений получаем — и эти значения удовлетворяет третьему уравнению.

Получили:

Тогда наше разложение имеет вид:

Осталось приравнять квадратные трехчлены в скобках к нулю и найти корни:

Ответ: ,

Элективный курс «Метод неопределенных коэффициентов»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Выберите документ из архива для просмотра:

Выбранный для просмотра документ MНK.doc

МИНИСТЕРСТВО НАУКИ И ОБРАЗОВАНИЯ РЕСПУБЛИКИ БАШКОРТО СТАН

ГАОУ СПО Башкирский архитектурно-строительный колледж

Халиуллин Асхат Адельзянович,

преподаватель математики Башкирского

ОГЛАВЛЕНИЕ

Введение ___________________________________________________ 3

Глава I . Теоретические аспекты использования метода неопределенных коэффициентов______________________________________________ 4

Глава II . Поиски решения задач с многочленами методом неопределенных коэффициентов_______________________________ 7

2.1.Разложение многочлена на множители____________________ _ 7

2.2. Задачи с параметрами__________________________________ 10

2.3. Решение уравнений____________________________________ 14

2.4. Функциональные уравнения_____________________________ 19

Список использованной литературы____________________________ 24

Данная работа посвящена теоретическим и практическим аспектам внедрения в школьный курс математики метода неопределенных коэффициентов. Актуальность данной темы определяется следующими обстоятельствами.

Никто не будет спорить с тем, что математика как наука не стоит на одном месте, все время развивается, появляются новые задачи повышенной сложности, что часто вызывает определенные трудности, поскольку эти задачи, как правило, связаны с исследованием. Такие задачи в последние годы предлагались на школьных, районных и республиканских математических олимпиадах, они также имеются в вариантах ЕГЭ. Поэтому потребовалось специальный метод, который позволял бы наиболее быстро, эффективно и доступно решать хотя бы часть из них. В этой работе доступно излагается содержание метода неопределенных коэффициентов, широко применяющегося в самых разнообразных разделах математики, начиная от вопросов, входящих в курс общеобразовательной школы, и до самых продвинутых ее частей. В частности, применения метода неопределенных коэффициентов в решении задач с параметрами, дробно-рациональных и функциональных уравнений особенно интересны и эффективны; они легко могут заинтересовать любого, кто интересуется математикой. Главная цель предлагаемой работы и подборки задач состоит в том, чтобы предоставить широкие возможности для оттачивания и развития способности находить короткие и нестандартные решения.

Данная работа состоит из двух глав. В первой рассматриваются теоретические аспекты использования

метода неопределенных коэффициентов, во второй-практико-методологические аспекты такого использования.

В приложении к работе приведены условия конкретных задач для самостоятельного решения.

Глава I . Теоретические аспекты использования метод а неопределенных коэффициентов

«Человек … родился быть господином,

повелителем, царем природы, но мудрость,

с которой он должен править, не дана ему

от рождения: она приобретается учением »

Н.И.Лобачевский

Существуют различные способы и методы решения задач, но одним из самым удобным, наиболее эффективным, оригинальным, изящным и вместе с тем очень простым и понятным всем является метод неопределенных коэффициентов. Метод неопределенных коэффициентов —метод, применяемый в математике для отыскания коэффициентов выражений, вид которых заранее известен.

Прежде чем рассмотреть применение метода неопределенных коэффициентов к решению различного рода задач, приведем ряд сведений теоретического характера.

многочлены относительно х с любыми коэффициентами.

Очевидно, что равные многочлены принимают при всех значениях х одинаковые значения. И наоборот, если значения двух многочленов равны при всех значениях х, то многочлены равны, то есть их коэффициенты при одинаковых степенях х совпадают.

Следовательно, идея применения метода неопределенных коэффициентов к решению задач состоит в следующем.

Пусть нам известно, что в результате некоторых преобразований получается выражение определенного вида и неизвестны лишь коэффициенты в этом выражении. Тогда эти коэффициенты обозначают буквами и рассматривают как неизвестные. Затем для определения этих неизвестных составляется система уравнений.

Например, в случае многочленов эти уравнения составляют из условия равенства коэффициентов при одинаковых степенях х у двух равных многочленов.

Покажем сказанное выше на следующих конкретных примерах, причем начнем с самого простого.

Так, например, на основании теоретических соображений дробь

может быть представлена в виде суммы

, где a , b и c коэффициенты, подлежащие определению. Чтобы найти их, приравниваем второе выражение первому :

=

и освобождаясь от знаменателя и собирая слева члены с одинаковыми степенями х , получаем :

Так как последнее равенство должно выполняться для всех значений х , то коэффициенты при одинаковых степенях х справа и слева должны быть одинаковы. Таким образом, получаются три уравнения для определения трех неизвестных коэффициентов:

a + b + c = 2

= ,

справедливость этого равенства легко проверить непосред-ственно.

Пусть ещё нужно представить дробь

в виде a + b + c + d , где a , b , c и d — неизвестные рациональные коэффициенты. Приравниваем второе выражение первому :

a + b + c + d = или , освобождаясь от знаменателя, вынося, где можно, рациональные множители из-под знаков корней и приводя подобные члены в левой части, получаем :

( a — 2 b + 3 c ) + ( — a + b +3 d ) + ( a + c — 2 d ) +

+ ( b — c + d ) = 1 + .

Но такое равенство возможно лишь в случае, когда равны между собой рациональные слагаемые обеих частей и коэффициенты при одинаковых радикалах. Таким образом, получаются четыре уравнения для нахождения неизвестных коэффициентов a , b , c и d :

a —2 b + 3c = 1

b c + d = 0 , откуда a = 0 ; b = — ; c = 0 ; d = , то есть = — + .

Глава II . Поиски решения задач с многочленами методом неопределенных коэффициентов .

«Ничто так не содействует усвоению предме-

та, как действие с ним в разных ситуациях »

2. 1. Разложение многочлена на множители.

Способы разложения многочленов на множители:

1) вынесение общего множителя за скобки;2) метод груп — пировки; 3) применение основных формул умножения; 4) введение вспомогательных членов;5)предварительное преобразование данного многочлена с помощью тех или иных формул; 6) разложение с помощью отыскания корней данного многочлена; 7) метод введения параметра; 8)метод неопределенных коэффициентов.

З а д а ч а 1. Разложить на действительные множители многочлен х 4 + х 2 + 1 .

Решение. Среди делителей свободного члена данного многочлена нет корней. Другими элементарными средствами корни многочлена найти не можем. Поэтому выполнить требуемое разложение с помощью предварительного отыскания корней данного многочлена не представляется возможным. Остается искать решение задачи либо методом введения вспомогательных членов, либо методом неопределенных коэффициентов. Очевидно, что х 4 + х 2 + 1 = х 4 + х 3 + х 2 — х 3 — х 2 — х + х 2 + х + 1 =

Полученные квадратные трёхчлены не имеют корней, а потому неразложимы на действительные линейные множители.

Изложенный способ технически прост, но труден вследствие своей искусственности. Действительно, очень трудно придумать требующиеся вспомогательные члены. Найти это разложение нам помогла всего лишь догадка. Но

существуют и более надёжные способы решения таких задач.

Можно было бы действовать так: предположить, что данный многочлен разлагается в произведение

двух квадратных трёхчленов с целыми коэффициентами.

Таким образом, будем иметь, что

Остается определить коэффициенты a , b , c и d .

Перемножив многочлены, стоящие в правой части последнего равенства, получим : х 4 + х 2 + 1 = х 4 +

Но поскольку нам необходимо, чтобы правая часть этого равенства превратилась в такой же многочлен, который стоит в левой части, потребуем выполнения следующих условий :

а + с = 0

Получилась система четырех уравнений с четырьмя неизвестными a , b , c и d . Легко найти из этой системы коэффициенты a = 1 , b = 1 , c = -1 и d = 1.

Теперь задача решена полностью. Мы получили :

З а д а ч а 2. Разложить на действительные множители многочлен х 3 – 6 х 2 + 14 х – 15 .

Решение. Представим данный многочлен в виде

х 3 – 6 х 2 + 14 х – 15 = ( х + а )( х 2 + bx + c ) , где a , b и с — не определённые пока коэффициенты. Так как два многочлена тождественно равны тогда и только тогда, когда коэффициенты при одинаковых степенях х равны, то, приравнивая коэффициенты соответственно при х 2 , х и свободные члены , получим систему трёх уравнений с тремя неизвестными:

a + b = — 6

Решение этой системы значительно упростится, если учесть, что число 3 (делитель свободного члена) является корнем данного уравнения, и, следовательно, a = — 3 ,

Тогда х 3 – 6 х 2 + 14 х – 15 = ( х – 3 )( х 2 – 3 x + 5).

Примененный метод неопределенных коэффициентов по сравнению с изложенным выше методом введения вспомогательных членов не содержит ничего искусственного, но зато требует применения многих теоретических положений и сопровождается довольно большими выкладками. Для многочленов более высокой степени такой метод неопределенных коэффициентов приводит к громоздким системам уравнений.


источники:

http://ege-ok.ru/2016/08/29/razlozhenie-mnogochlena-na-mnozhiteli-metodom-neopredelennyx-koefficientov

http://infourok.ru/material.html?mid=29050