Метод ньютона решения уравнений с одной переменной

Метод Ньютона

Инструкция . Введите выражение F(x) , нажмите Далее . Полученное решение сохраняется в файле Word . Также создается шаблон решения в Excel .

  • Решение онлайн
  • Видеоинструкция
  • Оформление Word

Правила ввода функции, заданной в явном виде

  1. Примеры правильного написания F(x) :
    1. 10•x•e 2x = 10*x*exp(2*x)
    2. x•e -x +cos(3x) = x*exp(-x)+cos(3*x)
    3. x 3 -x 2 +3 = x^3-x^2+3
    4. Выражение 0.9*x=sin(x)+1 необходимо преобразовать к виду: sin(x)+1-0.9*x . Аналогично, x^2-7=5-3x к виду x^2+3x-12 .

    Пусть дано уравнение f(x)=0 , где f(x) определено и непрерывно в некотором конечном или бесконечном интервале a ≤ x ≤ b . Всякое значение ξ, обращающее функцию f(x) в нуль, то есть такое, что f(ξ)=0 называется корнем уравнения или нулем функции f(x) . Число ξ называется корнем k -ой кратности, если при x = ξ вместе с функцией f(x) обращаются в нуль ее производные до (k-1) порядка включительно: f(ξ)=f’(ξ)= … =f k-1 (ξ) = 0 . Однократный корень называется простым.
    Приближенное нахождение корней уравнения складывается из двух этапов:

    1. Отделение корней, то есть установление интервалов [αii] , в которых содержится один корень уравнения.
      1. f(a)•f(b) , т.е. значения функции на его концах имеют противоположные знаки.
      2. f’(x) сохраняет постоянный знак, т.е. функция монотонна (эти два условия достаточны, но НЕ необходимы) для единственности корня на искомом отрезке).
      3. f”(x) сохраняет постоянный знак, т.е. функция выпукла вверх, либо – вниз.
    2. Уточнение приближенных корней, то есть доведение их до заданной точности.

    Геометрическая интерпретация метода Ньютона (метод касательных)

    Критерий завершения итерационного процесса имеет вид

    Численные методы решения нелинейных уравнений. Метод Ньютона для решения уравнений с одной переменной

    Численные методы решения нелинейных уравнений. Метод Ньютона для решения уравнений с одной переменной

    Метод Ньютона (также известный как метод касательных) — это итерационный численный метод нахождения корня (нуля) заданной функции. Метод был впервые предложен английским физиком, математиком и астрономом Исааком Ньютоном (1643-1727), под именем которого и обрёл свою известность.

    Метод был описан Исааком Ньютоном в рукописи De analysi per aequationes numero terminorum infinitas ( лат .О б анализе уравнениями бесконечных рядов), адресованной в 1669 году Барроу , и в работе De metodis fluxionum et serierum infinitarum ( лат.Метод флюксий и бесконечные ряды) или Geometria analytica ( лат.Аналитическая геометрия) в собраниях трудов Ньютона, которая была написана в 1671 году. Однако описание метода существенно отличалось от его нынешнего изложения: Ньютон применял свой метод исключительно к полиномам. Он вычислял не последовательные приближения xn , а последовательность полиномов и в результате получал приближённое решение x.

    Впервые метод был опубликован в трактате Алгебра Джона Валлиса в 1685 году, по просьбе которого он был кратко описан самим Ньютоном. В 1690 году Джозеф Рафсон опубликовал упрощённое описание в работе Analysis aequationum universalis (лат. Общий анализ уравнений). Рафсон рассматривал метод Ньютона как чисто алгебраический и ограничил его применение полиномами, однако при этом он описал метод на основе последовательных приближений xn вместо более трудной для понимания последовательности полиномов, использованной Ньютоном.

    Наконец, в 1740 году метод Ньютона был описан Томасом Симпсоном как итеративный метод первого порядка решения нелинейных уравнений с использованием производной в том виде, в котором он излагается здесь. В той же публикации Симпсон обобщил метод на случай системы из двух уравнений и отметил, что метод Ньютона также может быть применён для решения задач оптимизации путём нахождения нуля производной или градиента.

    В соответствии с данным методом задача поиска корня функции сводится к задаче поиска точки пересечения с осью абсцисс касательной, построенной к графику функции .

    Рис.1 . График изменение функции

    Проведенная в любой точке касательная линия к графику функции определяется производной данной функции в рассматриваемой точке, которая в свою очередь определяется тангенсом угла α ( ). Точка пересечения касательной с осью абсцисс определяется исходя из следующего соотношения в прямоугольном треугольнике: тангенс угла в прямоугольном треугольнике определяется отношением противолежащего катета к прилежащему катету треугольнику. Таким образом, на каждом шаге строится касательная к графику функции в точке очередного приближения . Точка пересечения касательной с осью Ox будет являться следующей точкой приближения . В соответствии с рассматриваемым методом расчет приближенного значения корня на i -итерации производится по формуле:

    Наклон прямой подстраивается на каждом шаге наилучшим образом, однако следует обратить внимание на то, что алгоритм не учитывает кривизну графика и следовательно в процессе расчета остается неизвестно в какую сторону может отклониться график.

    Условием окончания итерационного процесса является выполнение следующего условия:

    где ˗ допустимая погрешность определения корня.

    Метод обладает квадратичной сходимостью. Квадратичная скорость сходимость означает, что число верных знаков в приближённом значении удваивается с каждой итерацией.

    Математическое обоснование

    Пусть дана вещественная функция , которая определена и непрерывна на рассматриваемом участке. Необходимо найти вещественный корень рассматриваемой функции.

    Вывод уравнения основано на методе простых итераций, в соответствии с которым уравнение приводят к эквивалентному уравнению при любой функции . Введем понятие сжимающего отображения, которое определяется соотношением .

    Для наилучшей сходимости метода в точке очередного приближения должно выполняться условие . Данное требование означает, что корень функции должен соответствовать экстремуму функции .

    Производная сжимающего отображения определяется в следующем виде:

    Выразим из данного выражение переменную при условии принятого ранее утверждения о том, что при необходимо обеспечить условие . В результате получим выражение для определения переменной :

    С учетом этого сжимающая функция прием следующий вид:

    Таким образом, алгоритм нахождения численного решения уравнения сводится к итерационной процедуре вычисления:

    Алгоритм нахождения корня нелинейного уравнения по методу Ньютона для уравнения с одной переменной

    1. Задать начальную точку приближенного значения корня функции , а также погрешность расчета (малое положительное число ) и начальный шаг итерации ( ).

    2. Выполнить расчет приближенного значения корня функции в соответствии с формулой:

    3. Проверяем приближенное значение корня на предмет заданной точности, в случае:

    — если разность двух последовательных приближений станет меньше заданной точности , то итерационный процесс заканчивается.

    — если разность двух последовательных приближений не достигает необходимой точности , то необходимо продолжить итерационный процесс и перейти к п.2 рассматриваемого алгоритма.

    Пример решения уравнений

    по методу Ньютона для уравнения с одной переменной

    В качестве примера, рассмотрим решение нелинейного уравнения методом Ньютона для уравнения с одной переменной . Корень необходимо найти с точностью в качестве первого приближения .

    Вариант решения нелинейного уравнения в программном комплексе MathCAD представлен на рисунке 3.

    Результаты расчетов, а именно динамика изменения приближенного значения корня, а также погрешности расчета от шага итерации представлены в графической форме (см. рис.2).

    Рис.2 . Результаты расчета по методу Ньютона для уравнения с одной переменной

    Для обеспечения заданной точности при поиске приближенного значения корня уравнения в диапазоне необходимо выполнить 4 итерации. На последнем шаге итерации приближенное значение корня нелинейного уравнения будет определяться значением: .

    Рис.3 . Листинг программы в MathCad

    Модификации метода Ньютона для уравнения с одной переменной

    Существует несколько модификаций метода Ньютона, которые направлены на упрощение вычислительного процесса.

    Упрощенный метод Ньютона

    В соответствии с методом Ньютона требуется вычислять производную функции f(x) на каждом шаге итерации, что ведет к увеличению вычислительных затрат. Для уменьшения затрат, связанных с вычислением производной на каждом шаге расчета, можно произвести замену производной f’( xn ) в точке xn в формуле на производную f’(x0) в точке x0. В соответствии с данным методом расчета приближенное значение корня определяется по следующей формуле:

    Таким образом, на каждом шаге расчета строятся прямые , которые параллельны касательной к кривой y=f(x) в точке B0 (см. рис.4). Преимуществом данного метода является то, что производная функции вычисляется один раз.

    Разностный метод Ньютона

    В соответствии с методом Ньютона требуется вычислять производную функции f(x) на каждом шаге итерации, что не всегда удобно, а иногда практически невозможно. Данный способ позволяет производную функции заменить разностным отношением (приближенным значением):

    В результате приближенное значение корня функции f(x) будет определяться выражением разностного метода Ньютона:

    Двух шаговый метод Ньютона

    В соответствии с методом Ньютона требуется вычислять производную функции f(x) на каждом шаге итерации, что не всегда удобно, а иногда практически невозможно. Данный способ позволяет производную функции заменить разностным отношением (приближенным значением):

    В результате приближенное значение корня функции f(x) будет определяться следующим выражением:

    Метод секущих является двух шаговым, то есть новое приближение определяется двумя предыдущими итерациями и . В методе необходимо задавать два начальных приближения и . Скорость сходимости метода будет линейной.

    Для того, чтобы добавить Ваш комментарий к статье, пожалуйста, зарегистрируйтесь на сайте.

    Метод Ньютона

    Единственные требования, накладываемые на функцию $f$ — что у неё есть хотя бы один корень и что она непрерывна и дифференцируема на интервале поиска.

    #Описание алгоритма

    Алгоритм начинает с какого-то изначального приближения $x_0$ и затем итеративно строит лучшее решение, строя касательную к графику в точке $x = x_i$ и присваивая в качестве следующего приближения $x_$ координату пересечения касательной с осью $x$. Интуиция в том, что если функция $f$ «хорошая», и $x_i$ уже достаточно близок к корню, то $x_$ будет ещё ближе.

    Чтобы получить точку пересечения для $x_i$, нужно приравнять уравнение касательной к нулю:

    $$ 0 = f(x_i) + (x_ — x_i) f'(x_i) $$ откуда можно выразить $$ x_ = x_i — \frac $$

    Метод Ньютона крайне важен в вычислительной математике: в большинстве случаев именно он используется для нахождения численных решений уравнений.

    #Поиск квадратных корней

    В качестве конкретного примера рассмотрим задачу нахождения квадратных корней, которую можно переформулировать как решение следующего уравнения:

    $$ x = \sqrt n \iff x^2 = n \iff f(x) = x^2 — n = 0 $$ Если в методе Ньютона подставим $f(x) = x^2 — n$, мы получим следующее правило: $$ x_ = x_i — \frac <2 x_i>= \frac <2>$$

    Если нам нужно посчитать корень с некоторой заданной точностью $\epsilon$, можно на каждой итерации делать соответствующую проверку:

    Алгоритм успешно сходится к правильному ответу для многих функций, однако это происходит надежно и доказуемо только для определенного множества функций (например, выпуклых). Другой вопрос — как быстра эта сходимость, если она происходит.

    #Скорость сходимости

    Запустим метод Ньютона для поиска квадратного корня $2$, начиная с $x_0 = 1$, и посмотрим, сколько первых цифр оказались правильными после каждой итерации:

    Можно заметить, что число корректных цифр примерно удваивается после каждой итерации. Такая прекрасная скорость сходимости не просто совпадение.

    Чтобы оценить скорость сходимости численно, рассмотрим небольшую относительную ошибку $\delta_i$ на $i$-ой итерации и посмотрим, насколько меньше станет ошибка $\delta_$ на следующей итерации.

    $$ |\delta_i| = \frac<|x_n - x|> $$ В терминах относительных ошибок, мы можем выразить $x_i$ как $x \cdot (1 + \delta_i)$. Подставляя это выражение в формулу для следующей итерации и деля обе стороны на $x$ получаем $$ 1 + \delta_ = \frac<1> <2>(1 + \delta_i + \frac<1><1 + \delta_i>) = \frac<1> <2>(1 + \delta_i + 1 — \delta_i + \delta_i^2 + o(\delta_i^2)) = 1 + \frac<\delta_i^2> <2>+ o(\delta_i^2) $$

    Здесь мы разложили $(1 + \delta_i)^<-1>$ в ряд Тейлора в точке $0$, используя предположение что ошибка $d_i$ мала: так как последовательность $x_i$ сходится к $x$, то $d_i \ll 1$ для достаточно больших $n$.

    Наконец, выражая $\delta_$, получаем

    что означает, что относительная ошибка примерно возводится в квадрат и делится пополам на каждой итерации, когда мы уже близки к решению. Так как логарифм $(- \log_ <10>\delta_i)$ примерно равен числу правильных значимых цифр числа $x_i$, возведение ошибки в квадрат соответствует удвоению значимых цифр ответа, что мы и наблюдали ранее.

    Это свойство называется квадратичной сходимостью, и оно относится не только к нахождению квадратных корней. Оставляя формальное доказательство в качестве упражнения, можно показать, что в общем случае

    $$ |\delta_| = \frac<|f''(x_i)|> <2 \cdot |f'(x_n)|>\cdot \delta_i^2 $$ что означает хотя бы квадратичную сходимость при нескольких дополнительных предположениях, а именно что $f'(x)$ не равна нулю и $f»(x)$ непрерывна.


    источники:

    http://simenergy.ru/math-analysis/solution-methods/45-method-newton-s

    http://ru.algorithmica.org/cs/numerical/newton/