Метод переброски при решении квадратных уравнений примеры

Please wait.

We are checking your browser. mathvox.ru

Why do I have to complete a CAPTCHA?

Completing the CAPTCHA proves you are a human and gives you temporary access to the web property.

What can I do to prevent this in the future?

If you are on a personal connection, like at home, you can run an anti-virus scan on your device to make sure it is not infected with malware.

If you are at an office or shared network, you can ask the network administrator to run a scan across the network looking for misconfigured or infected devices.

Another way to prevent getting this page in the future is to use Privacy Pass. You may need to download version 2.0 now from the Chrome Web Store.

Cloudflare Ray ID: 6e0a3e048dee1683 • Your IP : 85.95.188.35 • Performance & security by Cloudflare

СПОСОБ: Решение уравнений способом «переброски»

5. СПОСОБ: Решение уравнений способом «переброски».

Рассмотрим квадратное уравнение

ах 2 + bх + с = 0, где а ≠ 0.

Умножая обе его части на а, получаем уравнение

а 2 х 2 + аbх + ас = 0.

Пусть ах = у, откуда х = у/а; тогда приходим к уравнению

равносильно данному. Его корни у1и у2 найдем с помощью теоремы Виета.

При этом способе коэффициент а умножается на свободный член, как бы «перебрасывается» к нему, поэтому его называют способом «переброски». Этот способ применяют, когда можно легко найти корни уравнения, используя теорему Виета и, что самое важное, когда дискриминант есть точный квадрат.

Решим уравнение 2х 2 – 11х + 15 = 0.

Решение. «Перебросим» коэффициент 2 к свободному члену, в результате получим уравнение

у 2 – 11у + 30 = 0.

Согласно теореме Виета

у1 = 5 х1 = 5/2 x1 = 2,5

6. СПОСОБ: Свойства коэффициентов квадратного уравнения.

А. Пусть дано квадратное уравнение

ах 2 + bх + с = 0, где а ≠ 0.

1) Если, а+ b + с = 0 (т.е. сумма коэффициентов равна нулю), то х1 = 1,

Доказательство. Разделим обе части уравнения на а ≠ 0, получим приведенное квадратное уравнение

x 2 + b/a • x + c/a = 0.

Согласно теореме Виета

По условию а – b + с = 0, откуда b = а + с. Таким образом,

x1 + x2 = — а + b/a= -1 – c/a,

т.е. х1 = -1 и х2 = c/a, что м требовалось доказать.

1) Решим уравнение 345х 2 – 137х – 208 = 0.

Решение. Так как а + b + с = 0 (345 – 137 – 208 = 0), то

2)Решим уравнение 132х 2 – 247х + 115 = 0.

Решение. Так как а + b + с = 0 (132 – 247 + 115 = 0), то

Б. Если второй коэффициент b = 2k – четное число, то формулу корней

Решим уравнение 3х2 — 14х + 16 = 0.

Решение. Имеем: а = 3, b = — 14, с = 16, k = — 7;

D = k 2 – ac = (- 7) 2 – 3 • 16 = 49 – 48 = 1, D > 0, два различных корня;

В. Приведенное уравнение

совпадает с уравнением общего вида, в котором а = 1, b = р и с = q. Поэтому для приведенного квадратного уравнения формула корней

Формулу (3) особенно удобно использовать, когда р — четное число.

Пример. Решим уравнение х 2 – 14х – 15 = 0.

7. СПОСОБ: Графическое решение квадратного уравнения.

Если в уравнении

перенести второй и третий члены в правую часть, то получим

Построим графики зависимости у = х 2 и у = — px — q.

График первой зависимости — парабола, проходящая через начало координат. График второй зависимости —

прямая (рис.1). Возможны следующие случаи:

— прямая и парабола могут пересекаться в двух точках, абсциссы точек пересечения являются корнями квад- ратного уравнения;

— прямая и парабола могут касаться ( только одна общая точка), т.е. уравнение имеет одно решение;

— прямая и парабола не имеют общих точек, т.е. квадратное уравнение не имеет корней.

1) Решим графически уравнение х 2 — 3х — 4 = 0 (рис. 2).

Решение. Запишем уравнение в виде х 2 = 3х + 4.

Построим параболу у = х 2 и прямую у = 3х + 4. Прямую

у = 3х + 4 можно построить по двум точкам М (0; 4) и

N (3; 13). Прямая и парабола пересекаются в двух точках

А и В с абсциссами х1 = — 1 и х2 = 4. Ответ: х1 = — 1;

2) Решим графически уравнение (рис. 3) х 2 — 2х + 1 = 0.

Решение. Запишем уравнение в виде х 2 = 2х — 1.

Построим параболу у = х 2 и прямую у = 2х — 1.

Прямую у = 2х — 1 построим по двум точкам М (0; — 1)

и N(1/2; 0). Прямая и парабола пересекаются в точке А с

абсциссой х = 1. Ответ: х = 1.

3) Решим графически уравнение х 2 — 2х + 5 = 0 (рис. 4).

Решение. Запишем уравнение в виде х 2 = 5х — 5. Построим параболу у = х 2 и прямую у = 2х — 5. Прямую у = 2х — 5 построим по двум точкам М(0; — 5) и N(2,5; 0). Прямая и парабола не имеют точек пересечения, т.е. данное уравнение корней не имеет.

Ответ. Уравнение х 2 — 2х + 5 = 0 корней не имеет.

Разработка урока по теме «Квадратные уравнения (методы решения)»

Разделы: Математика

Цели урока:

обучающие

  • обобщение и систематизация знаний по теме.
  • ликвидация пробелов в знаниях учащихся.
  • установление внутри предметных связей изученной темы с другими темами курса алгебры.

развивающие

  • расширение кругозора учащихся
  • пополнение словарного запаса
  • развитие мышления, внимания, умения учиться

воспитание общей культуры

Оборудование: PC, проектор, экран; у каждого ученика: конспект, пригласительный билет

Организационный момент.

— Приветствие учащихся; проверка готовности к уроку.

— Сообщение темы урока: “Квадратные уравнения. Методы решения”.

— Совместное формулирование цели урока

Сегодня у нас несколько необычный урок – урок-презентация методов решения квадратных уравнений. Как вы думаете, как можно сформулировать цель нашего урока исходя из его темы?

(Речь идет о методах, значит их много (больше одного), надо каждый вспомнить и проиллюстрировать примером)

Иными словами обобщить и систематизировать весь предшествующий опыт решения квадратных уравнений. А зачем нам это надо?

(Для возможности выбора рационального пути решения).

Итак, наша цель: обобщить опыт решения квадратных уравнений, научиться выбирать рациональный путь решения.

Актуализация знаний.

Прежде всего, вспомним, какие уравнения называются квадратными.

(Уравнение вида , где х — переменная, a,b,c – числа , называется квадратным.)

Квадратное уравнение, записанное в таком виде, является стандартным видом уравнения. Как называются числа a, b, c ?

(а – старший коэффициент, b – второй коэффициент, с – свободный член)

Вспомним, как традиционно решаются квадратные уравнения разных видов.

Первый вид квадратных уравнений – неполные квадратные уравнения.

С этим видом квадратных уравнений мы познакомились на первых уроках изучения квадратных уравнений. Вспомним, какие виды неполных квадратных уравнений бывают и как они решаются. (анализ таблицы)

(Подписывают и заполняют таблицу)

Проверим. Возьмите в руки простой карандаш и сверим ответы.

Поднимите руки те, кто безошибочно справились с работой. Молодцы! Передайте свои заполненные билеты вперед.

Презентация специальных методов.

Обратимся к конспекту урока. Помимо традиционных методов решения квадратных уравнений есть еще специальные и общие методы. Рассмотрим каждый из специальных методов в отдельности. И оценим его “перспективы”.

Метод выделения квадрата двучлена.

Цель: Привести уравнение общего вида к неполному квадратному уравнению.

В этом нам помогут формулы сокращенного умножения, а именно, квадратов суммы и разности:

Решим уравнение х 2 -6х+8=0 методом выделения квадрата двучлена.

или

Замечание: метод применим для любых квадратных уравнений, но не всегда удобен в использовании. Используется для доказательства формулы корней квадратного уравнения.

(Обратить внимание на возможность пойти иным путем, применяя формулу разности квадратов).

Метод “переброски” старшего коэффициента

Суть метода состоит в то, что корни квадратных уравнений

ax 2 + bx + c = 0 и y 2 +by+ac=0

и

В некоторых случаях удобно решать сначала не данное уравнение ax 2 + bx + c = 0, а приведенное y 2 +by+ac=0, которое получается из данного “переброской” коэффициента а, а затем разделить найденные корни на а для нахождения корней исходного уравнения.

Пример: решите уравнение

заменим приведенным квадратным уравнением с “переброской” коэффициента а

( D>0 ), по теореме, обратной теореме Виета, подбором найдем корни

вернемся к корням исходного уравнения

Замечание: метод хорош для квадратных уравнений с “удобными” коэффициентами. В некоторых случаях позволяет решить квадратное уравнение устно.

Следующие два метода также применимы при определенных условиях и позволяют избежать громоздких вычислений.

Если в квадратном уравнении a+b+c=0, то один из корней равен 1, а второй по теореме Виета равен

Пример: решите уравнение

a = 157, b = 20, c = -177

a + b+ c =157+20-177=0

x2 = =

Ответ: 1;

Если в квадратном уравнении a+c=b, то один из корней равен -1, а второй по теореме Виета равен

Пример: решите уравнение

a = 203, b = 220, c = 17

a + c = 203 + 17 = 220 = b

Ответ: -1;

Вывод: при решении квадратного уравнения стандартного вида полезно сначала проверить являются ли числа 1 и -1 корнями уравнения.

Однако, при выборе пути решения квадратного уравнения следует помнить, что помимо специальных методов возможно применение и общих методов решения уравнений.

К таким методам относятся:

  • Разложение на множители;
  • Введение новой переменной;
  • Графический способ.

Презентация общих методов решения уравнений (Презентация).

Метод разложения на множители.

Цель: Привести квадратное уравнение общего вида к виду А(х)·В(х)=0, где А(х) и В(х) – многочлены относительно х.

Способы:

  • Вынесение общего множителя за скобки;
  • Использование формул сокращенного умножения;
  • Способ группировки.

Пример: решите уравнение

произведение двух множителей равно нулю, если хотя бы один из них равен нулю, а второй при этом не теряет смысла, или когда оба равны нулю.

Ответ: -1; .

Метод введения новой переменной

Умение удачно ввести новую переменную – важный элемент математической культуры. Удачный выбор новой переменной делает структуру уравнения более прозрачной.

Пример: решите уравнение

Произведем замену переменной

(Устно проверим условие D > 0) по теореме, обратной теореме Виета

Произведем обратную замену и вернемся к переменной х

Вывод: при решении уравнения не следует торопиться выполнять преобразования. Посмотрите, нельзя ли записать уравнение проще, введя новую переменную.

И, наконец, наиболее “зрелищный” метод.

Графический метод.

Для решения уравнения f(x) = g(x) необходимо построить графики функций y = f(x),

y = g(x) и найти точки их пересечения; абсциссы точек пересечения и будут корнями уравнения.

Вспомним применение этого метода при решении квадратного уравнения:

(Устно обсудить области определения )

Построим график функции

Графиком является парабола, “ветви” которой направлены вверх (0;0) – вершина параболы график симметричен относительно оси ординат

X123
Y149

Построим график функции y = x + 2

Линейная функция. Графиком является прямая.

X0-2
Y20

Точки пересечения: А(-1;1) и В(2;4)

Применяя графический метод в данном случае мы нашли точное значение корней, но так бывает не всегда. Однако, графический метод часто применяют не для нахождения корней уравнения, а для определения их количества.

Историческая справка

Посмотрите на многообразие методов решения. Как, когда, сразу ли появилось такое многообразие? Как много вопросов…

Безусловно, человечество “додумалось” до всего не сразу и в одночасье. Для этого потребовались долгие годы и даже столетия.

Обратимся к историческому путеводителю.

Первые упоминания о способах решения уравнений, которые мы сейчас называем квадратными относятся во второму тысячелетию до н.э. Это эпоха расцвета Вавилонии и Древнего Египта.

Первое тысячелетие н.э. – Римские завоевательные войны. К этому периоду относится творчество Диофанта. Его трактат “Арифметика” содержит ряд задач, решаемых при помощи квадратных уравнений. В IX веке узбекский математик Аль-Хорезми в Трактате “Алгебра” классифицирует квадратные уравнения. Для нас это время знаковое тем, что приблизительно в это время образуется древнерусское государство Киевская Русь.

Все это время отличные по записи уравнения считались различными. Не было единого подхода к их решению.

И только в XVI веке французский юрист, тайный советник короля Франции и математик Франсуа Виет впервые вводит в обращение буквенные обозначения не только для неизвестных величин, но и для данных, то есть коэффициентов уравнения. Тем самым заложил основы буквенной алгебры.

Более подробно с этапами развития методов решения квадратных уравнений, а так же личностью Виета и его вклада в развитие алгебры мы сможем познакомиться на конференции.

Подведение итогов.

Итак, подведем итог.

Решение квадратных уравнений, возможно, осуществлять разными методами. Для квадратных уравнений применимы не только традиционные и специальные методы решения, но и общие методы решения уравнений.

Сегодня мы обобщили опыт решения квадратных уравнений и посмотрим, как научились выбирать наиболее рациональный метод решения.

Попробуйте расшифровать высказывание из копилки “Золотых мыслей”.

Для этого проанализируйте представленные уравнения, выберите для каждого более рациональный метод решения и укажите номер этого метода. Затем согласно ключу расставьте в нижней таблице слоги и прочтите высказывание.

Итак, получили высказывание Ян Амос Коменского: “Учиться нелегко, но интересно”.

Я думаю, эти слова как нельзя, кстати, подходят для окончания нашей сегодняшней презентации.

Домашнее задание

  • Решите уравнение х 2 +6х-16=0 по формуле, выделением квадрата двучлена и графическим методом
  • Составьте уравнения на применение теорем (метод 9, 10).
  • Решите уравнение 3х 2 +5х+2=0 пятью способами.
  • Решите уравнение (х 2 -х) 2 -14(х 2 -х)+24=0 методом введения новой переменной.


источники:

http://kazedu.com/referat/167427/3

http://urok.1sept.ru/articles/414416