Метод перехода при решении уравнений

Методы решения уравнений — обзор

В этой статье дан краткий обзор всех основных методов решения уравнений. Здесь также приведены ссылки на материалы с подробной информацией по каждому методу. Это дает возможность познакомиться со всеми методами решения уравнений, а в случае необходимости — изучить методы решения уравнений углубленно.

Метод введения новой переменной (замены переменной)

Метод введения новой переменной, он же метод замены переменной, позволяет решать уравнения f(g(x))=0 или f1(g(x))=f2(g(x)) , где f , f1 и f2 – некоторые функции, а x – неизвестная переменная, а также уравнения, которые могут быть приведены к указанному виду. Состоит метод во введении новой переменной t=g(x) . Введение переменной позволяет от исходного уравнения f(g(x))=0 или f1(g(x))=f2(g(x)) перейти к уравнению с новой переменной f(t)=0 или f1(t)=f2(t) соответственно. Дальше находятся корни полученного уравнения с новой переменной: t1, t2, …, tn . После этого осуществляется возврат к старой переменной, для чего составляется совокупность уравнений g(x)=t1, g(x)=t2, …, g(x)=tn . Решение этой совокупности дает интересующее нас решение исходного уравнения.

Например, метод введения новой переменной позволяет решить уравнение . Здесь стоит принять . Это позволяет перейти от исходного уравнения к квадратному уравнению t 2 −3·t+2=0 с новой переменной t , которое имеет два корня t1=1 и t2=2 . Обратная замена происходит путем составления совокупности двух уравнений и . Это рациональные уравнения. Решением первого является x=2 , а решением второго является x=1,5 . Так методом введения новой переменной получено решение исходного уравнения: 1,5 , 2 .

Подробное описание метода введения новой переменной, включающее обоснование метода, алгоритм решения уравнений этим методом и примеры решения характерных уравнений, дано в этой статье.

Метод разложения на множители

Метод разложения на множители предназначен для решения уравнений f1(x)·f2(x)·…·fn(x)=0 , где f1(x), f2(x),…, fn(x) – некоторые выражения, x – переменная. То есть, методом разложения на множители решаются уравнения, в левой части которых находится произведение нескольких выражений, а в правой – нуль. Суть метода состоит в замене решения уравнения f1(x)·f2(x)·…·fn(x)=0 решением совокупности уравнений f1(x)=0, f2(x)=0, …, fn(x)=0 на области допустимых значений (ОДЗ) для исходного уравнения.

Приведем простой пример. Уравнение может быть решено методом разложения на множители. Переходим от исходного уравнения к совокупности двух уравнений и . Иррациональное уравнение имеет единственное решение x1=1 . Логарифмическое уравнение тоже имеет единственное решение x2=4 . Значит, совокупность уравнений имеет два решения x1=1 , x2=4 . Но области допустимых значений для исходного уравнения, которой является множество (3, +∞) , принадлежит лишь одно из решений x1=1 , x2=4 , а именно, x2=4 . Оно и является единственным корнем уравнения .

Подробное описание этого метода и решения других характерных примеров смотрите в статье «метод разложения на множители».

Метод решения уравнений «дробь равна нулю»

Из названия понятно, что этот метод используется при решении уравнений f(x)/g(x)=0 . Например, он позволяет решить уравнение . Метод состоит в переходе от решения уравнения f(x)/g(x)=0 к решению уравнения f(x)=0 на ОДЗ для исходного уравнения. Следовательно, чтобы решить уравнение , надо решить уравнение (x−1)·(x 2 −4)=0 на ОДЗ для исходного уравнения.

Обоснование метода и примеры с решениями смотрите здесь.

Метод решения уравнений через преобразования

Метод базируется на преобразовании уравнений с целью выстраивания последовательностей равносильных уравнений и уравнений-следствий со сравнительно простыми последними уравнениями, по решениям которых находятся решения исходных уравнений.

Например, для решения уравнения 3·x 4 −48=0 последовательно проводятся два преобразования: переносится слагаемое −48 из левой части уравнения в правую с противоположным знаком, после чего проводится деление обеих частей уравнения на число 3 . В результате получается равносильное уравнение x 4 =16 , причем очень простое в плане решения. Оно имеет два корня x1=−2 и x2=2 . Они и составляют решение исходного уравнения.

Вот другой пример. Замена выражения в левой части уравнения тождественно равным выражением (x−1)·(x+2) дает уравнение-следствие (x−1)·(x+2)=0 , имеющее два корня x1=1 и x2=−2 . Проверка показывает, что только первый корень является корнем исходного уравнения, а второй корень – посторонний.

Какие преобразования используются при решении уравнений? Когда нужно делать проверку для отсеивания посторонних корней, а когда такую проверку делать необязательно? Ответы на эти и многие другие вопросы по теме есть в этом материале.

Метод решения уравнений, сводящихся к числовым равенствам

Иногда в результате преобразования уравнений получаются числовые равенства. Например, уравнение сводится к верному числовому равенству 0=0 , а уравнение сводится к неверному числовому равенству 0=5 . Решением уравнений, сводящихся к верным числовым равенствам, является множество, совпадающее с ОДЗ для исходного уравнения. Так, решением уравнения является множество x≥0 . А уравнения, сводящиеся к неверным числовым равенствам, не имеют решений. То есть, уравнение не имеет решений.

Здесь есть один нюанс. Если среди преобразований, приводящих уравнение к верному числовому равенству, есть возведение обеих частей уравнения в одну и ту же четную степень, то нельзя утверждать, что решением уравнения является любое число из ОДЗ. Этот нюанс разобран в статье «решение уравнений, сводящихся к числовым равенствам».

Функционально-графический метод

Обзор методов решения уравнений продолжаем функционально-графическии методом. Этот метод предполагает использование функций, отвечающих частям решаемого уравнения, а точнее, их графиков и свойств. Можно выделить три основных направления функционально-графического метода:

  • Графический метод
  • Метод, базирующийся на возрастании-убывании функций
  • Метод оценки

Давайте рассмотрим их.

Графический метод

Первое направление базируется на использовании графиков функций. Это так называемый графический метод решения уравнений. По этому методу, во-первых, выполняется построение в одной прямоугольной системе координат графиков функций, отвечающих частям уравнения. Во-вторых, по чертежу определяется количество точек пересечения графиков, сколько точек пересечения – столько и корней у решаемого уравнения. В-третьих, определяются абсциссы точек пересечения – это значения корней.

Например, графически можно решить уравнение . Из чертежа, приведенного ниже, видно, что графики имеют единственную точку пересечения с абсциссой 2 . Это единственный корень уравнения.

Метод, базирующийся на возрастании-убывании функций

Второе направление в своей основе имеет использование свойств возрастающих и убывающих функций. Соответствующий метод используется тогда, когда есть возможность подобрать корень уравнения и доказать возрастание функции, отвечающей одной из частей уравнения, и убывание функции, отвечающей другой части уравнения. В этом случае подобранный корень является единственным.
Приведем пример. Для уравнения 3 (1−x) 3 +1=2 x несложно подобрать корень, им является число 1 . Также несложно обосновать убывание функции, соответствующей левой части уравнения, и возрастание функции, отвечающей правой части уравнения. Это доказывает единственность подобранного корня.

За более полной информацией следуйте сюда

Метод оценки

Третье направление основано на использовании свойств ограниченности функций. Это так называемый метод оценки. Согласно этому методу, в первую очередь нужно оценить значения выражений, находящихся в левой и правой части уравнения. Если множества, соответствующие полученным оценкам, не пересекаются, то уравнение не имеет корней. Если множества имеют конечное число общих элементов t1 , t2 , …, tn , то решение уравнения f(x)=g(x) заменяется решением совокупности систем , , …, . Если же множества, соответствующие оценкам имеют бесконечно много общих элементов, то надо либо уточнять оценки, либо искать другой метод решения.

Например, методом оценки можно решить уравнение . Значения левой части этого уравнения не превосходят нуля, а значения правой части не меньше нуля. Это позволяет перейти к системе , решение которой дает искомое решение уравнения.

Метод освобождения от внешней функции

Метод освобождения от внешней функции используется для решения уравнений h(f(x))=h(g(x)) , где f , g и h – функции, причем функция y=h(t) принимает каждое свое значение по одному разу, в частности, строго возрастает или строго убывает, а x – независимая переменная. Этот метод состоит в переходе от уравнения h(f(x))=h(g(x)) к уравнению f(x)=g(x) на ОДЗ для исходного уравнения.

Например, методом освобождения от внешней функции можно решить уравнение . Здесь в качестве внешней функции выступает y=h(t) , где . Эта функция возрастающая как сумма двух возрастающих функций и , значит, каждое свое значение она принимает по одному разу. Это позволяет перейти от исходного уравнения к уравнению . Равносильные преобразования позволяют привести последнее уравнение к квадратному уравнению x 2 +x−2=0 , которое имеет два корня x1=−2 и x2=1 . Из этих корней только x1=−2 принадлежит ОДЗ для исходного уравнения. Следовательно, x1=−2 – единственный корень исходного уравнения.

Рекомендуем детально разобраться с этим методом решения уравнений, обратившись к материалу статьи «метод освобождения от внешней функции».

Метод решения уравнений через ОДЗ

Через ОДЗ решаются уравнения, области допустимых значений которых являются либо пустыми множествами, либо состоят из конечного количества чисел. Когда ОДЗ есть пустое множество, уравнение не имеет решений. Когда ОДЗ состоит из конечного количества чисел, то следует по очереди проверить эти числа через подстановку. Те из них, которые удовлетворяют решаемому уравнению являются его корнями, остальные – не являются.

Например, уравнение не имеет решений, так как ОДЗ для него есть пустое множество. А для уравнения ОДЗ состоит из двух чисел −1 и 7 . Проверка подстановкой показывает, что −1 является корнем уравнения, а 7 – не является.

Более полная информация по этому методу решения уравнений содержится в этой статье.

Метод возведения обеих частей уравнения в одну и ту же степень

Этот метод, в основном, используется для решения иррациональных уравнений. Он заключается в возведении обеих частей уравнения в одну и ту же степень с целью избавления от корней. Например, возведение обеих частей уравнения в квадрат дает уравнение без корня 1−5·x=(x−3) 2 . Возведение в нечетную степень дает равносильное уравнение. Возведение в четную степень в общем случае дает уравнение-следствие, поэтому, при этом необходимо позаботиться об отсеивании посторонних корней. Причем отсеивание следует проводить способом, не связанным с ОДЗ, обычно, через проверку подстановкой, так как возведение частей уравнения в четную степень может приводить к появлению посторонних корней в рамках ОДЗ.

Аналогично разбираемый метод может использоваться и для решения уравнений, в которых фигурируют степени с рациональными и иррациональными показателями. Решения соответствующих примеров смотрите здесь.

Метод решения уравнений по определению логарифма

По определению логарифма, как правило, решают уравнения следующего вида logh(x)f(x)=g(x) , например, log2(x 2 +4·x+3)=3 , log2(9−2 x )=3−x , logx(3·x lgx +4)=2·lgx и т.п.

Согласно методу решения уравнений по определению логарифма, решение уравнения logh(x)f(x)=g(x) заменяется решением уравнения f(x)=(h(x)) g(x) на ОДЗ переменной x для исходного уравнения. Например, от уравнения logx(3·x lgx +4)=2·lgx можно перейти к уравнению 3·x lgx +4=x 2·lgx на ОДЗ для исходного уравнения.

Более полная информация содержится в основной статье.

Метод потенцирования

Методом потенцирования решаются логарифмические уравнения, обе части которых являются логарифмами по одному и тому же основанию, например, lgx=lg(3·x+5) , и т.п. Метод заключается в замене решения уравнения logh(x)f(x)=logh(x)g(x) решением уравнения f(x)=g(x) на ОДЗ для исходного уравнения. По этому методу от уравнения lgx=lg(3·x+5) следует перейти к уравнению x=3·x+5 на ОДЗ для исходного уравнения, которая определяется двумя условиями: x>0 , 3·x+5>0 .

Обоснование метода и примеры с подробными решениями смотрите в этой статье.

Метод логарифмирования

Метод подразумевает логарифмирование обеих частей уравнения по одному и тому же основанию. К нему следует прибегать тогда, когда логарифмирование позволяет избавиться от степеней с переменной в показателях. В частности, его можно использовать для решения показательных уравнений, обе части которых являются степенями с одинаковыми основаниями, например, 5 1−x =5 2·x+1 . Почленное логарифмирование этого уравнения дает очень простое уравнение 1−x=2·x+1 , решение которого дает решение исходного уравнения.

Также метод подходит для решения показательных уравнений, степени в которых имеют разные основания и отличающиеся показатели, например, . Более того, метод логарифмирования является чуть ли не основным методом решения показательно-степенных уравнений, вроде таких x lgx−1 =100 , .

Более детальная информация и примеры с решениями есть в этом материале.

Использование равносильных переходов и нестандартных приемов при решении иррациональных и логарифмических уравнений

Разделы: Математика

Цели урока:

  1. показать широкие возможности использования равносильных переходов при решении уравнений,
  2. показать некоторые нестандартные приёмы при решении иррациональных уравнений.

Анализ решения уравнений при проведении ЕГЭ показывает, что с уравнениями обычно складывается странное положение. Эти задачи не считаются обычно трудными, и большинство решающих с ними, по их мнению, справляются. В то же время, многим не засчитываются эти решения из-за грубых ошибок.

Почему же так происходит?

Дело в том, что у многих, окончивших среднюю школу, имеется огромный разрыв между приобретёнными техническими, вычислительными навыками и сознательным пониманием тех теоретических и логических основ, без которых правильно решать уравнения невозможно.

Упростить уравнение с помощью безошибочно проведённых выкладок может большинство, но заметить, как и почему эти выкладки приводят к приобретению или потере решения может далеко не каждый, а очень многие об этом даже и не задумываются.

Или взять вопрос о проверке. Одни считают, что это прихоть учителей, которой нужно волей или неволей подчиняться. Другие проверяют всё подряд. Такие мнения основаны на непонимании того, что такое проверка и какое значение она должна занимать в решении.

Короче говоря, всякий должен владеть тем теоретическим минимумом, который необходим для решения уравнений.

Остановимся на этом минимуме! [1]

1. Прежде всего, что такое ОДЗ – область допустимых значений уравнения?

Областью допустимых значений (ОДЗ) уравнения называется множество значений неизвестного, при котором имеют смысл (определены) его левая и правая части.

Уравнение 1:

ОДЗ ,

ОДЗ .

При решении уравнения ОДЗ изменилась. Но это ли привело к появлению посторонних корней, мы узнаем позже.

Уравнение 2:

ОДЗ

ОДЗ

При решении уравнения ОДЗ изменилась. Но это ли привело к появлению посторонних корней, мы узнаем позже.

Прежде ответим на следующие вопросы.

2. Какое уравнение является следствием другого?.

Ответ: Если все корни первого уравнения, являются корнями второго уравнения, то второе уравнение называется следствием первого.

3. Какие уравнения являются равносильными?

Ответ: Уравнения, имеющие одно и то же множество корней, называются равносильными.

4. Какие преобразования приводят к нарушению равносильности?

Ответ: Посторонние корни могут получиться:

  1. при умножении обеих частей уравнения на выражение, содержащее неизвестные,
  2. при возведении в чётную степень,
  3. использование различных логарифмических формул, в частности заменяя на , мы расширяем ОДЗ уравнения,
  4. при взаимном уничтожении подобных членов, может произойти снятие ограничений, при которых уничтожаемые слагаемые должны иметь смысл, и тем самым может произойти расширение ОДЗ.

Все эти преобразования приводят к образованию новых корней, которые можно отбросить с помощью проверки или следить, чтобы равносильность не нарушалась.

Также равносильность может нарушиться в другую сторону, т.е. может произойти потеря корней, что потом восстановить будет невозможно. Это может быть в следующих случаях:

  1. при делении обеих частей уравнения на выражение, содержащее неизвестное,
  2. обратная замена логарифма произведения на сумму логарифмов приводит к сужению ОДЗ, и поэтому недопустимо, при переходе к новому основанию логарифма,
  3. введение универсальной тригонометрической подстановки.
  4. Какие преобразования приводят к уравнению следствию?

Ответ: Все преобразования, которые ведут к расширению области корней, или оставляют её неизменной, приводят к уравнению следствию.

6. Одинаков ли будет ответ на эти два вопроса (4 и 5)?

Ответ: как видим ответы разные.

Равносильны ли уравнения? Объясните, какое преобразование было выполнено при переходе от первого уравнения ко второму и может ли оно привести к нарушению равносильности?

  1. и ; (Да)
  2. и ; (Да)
  3. и ; (Нет)
  4. и ; (Да)
  5. и . (Нет)

Значит при переходе ко второму уравнению в случаях а), б), г) нужна оговорка (они равносильны в своей ОДЗ), а в случаях в) и д) нужно наложить условие (в случае «в»: , в случае «д»: ).

При каком условии равносильны уравнения:

  1. и Ответ: при .
  2. и Ответ: при .

Вернёмся к уравнениям:

Уравнение 1:

(I)

(II)

— посторонний корень.

Ответ: .

Вопрос: За счёт чего появился посторонний корень?

Ответ: Т.к. уравнение является уравнением следствием не только для уравнения , но и для постороннего уравнения . Таким образом при возведении в квадрат корни не теряются, но посторонние корни появиться могут.

Уравнения (I) и (II) неравносильны, но они равносильны на области .

Заменим уравнение (I) на равносильную систему:

Рассмотрим Уравнение 2:

(III)

(IV)

— посторонний корень,

Ответ: .

Вопрос: За счёт чего появился посторонний корень?

Ответ: За счёт расширения ОДЗ.

Уравнения (III) и (IV) неравносильны, но они неравносильны в ОДЗ первого уравнения, то есть заменим (III) на равносильную систему:

Рассмотрим следующие уравнения:

Уравнение 3: [3]

Уравнение 4: [3]

Уравнение 5: [3]

Все эти уравнения имеют вид .

В ОДЗ обе части неотрицательны, и возведение в квадрат даёт равносильное уравнение . Поэтому

[2]

При таком способе решения достаточно проверить неотрицательность одной из функций – можно выбрать более простую.

Применяя данный способ, решим каждое из этих уравнений.

Уравнение 3:

Ответ:

Уравнение 4:

Ответ:

Уравнение 5:

.

Ответ: корней нет.

Перейдём к логарифмическим уравнениям:

В тетрадях своих учащихся, я встретилась со следующими решениями логарифмических уравнений. Ребята были уверены, что решили всё правильно. Получив тетрадь разочаровывались, увидев оценку ниже, чем рассчитывали. Вам предстоит найти эти ошибки:

Пример 1:

(I)

(II)

Ответ: .

Пример 2:

(I)

(II)

Т.к. , то корней нет

Ответ: корней нет.

Ошибки состоят в следующем: в процессе решения в обоих случаях уравнение (I) заменено на уравнение (II), не являющееся его следствием. В этом случае имеется корень уравнения (I), не являющийся корнем уравнения (II). Поэтому произошла потеря корня. В примере 1 , В примере 2 .

В примере 1 корень был потерян при переходе к другому основанию логарифма. Перейдя к основанию, тем самым было исключено из ОДЗ число , которое является корнем исходного уравнения.

В примере 2, убрав показатель 4, нужно было перейти к равносильному уравнению вида

.

Подведём итог:

Таким образом, в процессе решения, каждое уравнение заменяется на какое-то новое, а у нового уравнения естественно могут быть новые корни. Проследить за изменением корней, не допустить потери и отбросить лишние корни – это и есть задача правильного решения уравнений.

Нестандартные приёмы при решении уравнений.

Кроме того, хочется сказать, что не всегда уравнения решают по алгоритму. Хотя внешний вид уравнений стандартен, но требует нестандартного подхода.

Уравнение 1: .

Решение «в лоб» даёт уравнение четвёртой степени, которое решить практически невозможно. Используем для решения метод оценки:

, , поэтому сумма.

Делаем вывод: корней нет.

Уравнение 2:

Решение: Данное уравнение можно решить стандартным способом, что приводит к «большим» числам в квадратном уравнении.

Однако, его можно решить проще: один корень легко находится подбором, это . Левая часть уравнения — сумма возрастающих функций есть функция возрастающая, т.е. монотонная на своей области определения, каждое своё значение принимающая при одном значении аргумента. Т.е. и значение 5 она принимает один раз при .

Ответ: .

Уравнение 3:

Решение: заметим, что сумма коэффициентов в каждом подкоренном выражении равна 0. Значит корень уравнения .

Возможно предположить, что ОДЗ состоит только из этого числа. Найдя ОДЗ, убеждаемся, что так оно и есть. Значит корень уравнения один .

Ответ: .

Уравнение 4:

Решение: т.к. левая часть является суммой двух неотрицательных слагаемых, то от уравнения перейдём к равносильной системе:

Ответ: .

Уравнение 5: [1]

Это уравнение можно переписать в виде

.

Итак, степени равны, основания равны. Чтобы не потерять корней, посмотрим, может ли основание быть равным 0 или 1. Так как выражение не имеет смысла, то число 0 не входит в ОДЗ, а потому не является корнем уравнения. Напротив, , очевидно, является корнем. Будем теперь искать корни, отличные от 0 и 1. Тогда, применяя указанное правило, получим , откуда находим второй корень уравнения .

Ответ: , .

Конечно, невозможно указать все методы решения «нестандартных» задач. Здесь приходится применять и графики, и самые различные свойства функций, и неравенства, и – последнее по счету, но первое по важности – логику.

Вывод: Сегодня на уроке мы постарались охватить тот минимум теоретических знаний, который необходим для решения уравнений. Знание этого минимума позволяет нам решать уравнения не допуская ошибок.

Список литературы:

  1. Г.В. Дорофеев, М.К. Потапов, Н.Х. Розов «Пособие по математике для поступающих в вузы». Издательство «Наука» 1970.
  2. С.И. Колесникова «Математика. Решение сложных задач единого государственного экзамена». Издательство «Айрис-пресс» 2006.
  3. Г.В. Дорофеев, Г.К. Муравин, Е.А. Седова «Сборник заданий для проведения письменного экзамена по математике (курс А) и алгебре и началам анализа (курс Б) за курс средней школы. 11 класс». Издательство «Дрофа» 2006.

Равносильные переходы в иррациональных уравнениях

Здесь вы найдете алгоритмы равносильных переходов в иррациональных уравнениях.

Напомним, что два уравнения называются равносильными (эквивалентными) , если множество всех корней первого уравнения совпадает с множеством всех корней второго уравнения.

Подробный разбор примеров смотрите здесь.

или, что тоже самое + показать

или, что тоже самое + показать

Чтобы не потерять страничку, вы можете сохранить ее у себя:


источники:

http://urok.1sept.ru/articles/569331

http://egemaximum.ru/ravnosilnye-perexody-v-irracionalnyx-uravneniyax/