Метод подстановки в системе уравнений 7 класс объяснение

Решение системы линейных уравнений методом подстановки

Алгоритм решения системы линейных уравнений методом подстановки

  1. Из любого уравнения системы выразить одну переменную через другую.
  2. Подставить во второе уравнение системы вместо переменной выражение, полученное на первом шаге.
  3. Решить второе уравнение относительно выраженной переменной.
  4. Подставить найденное значение переменной в выражение, полученное на первом шаге.
  5. Найти значение второй переменой.
  6. Записать ответ в виде упорядоченной пары найденных значений переменных.

Из второго уравнения выражаем y:

Подставляем выражение для y в первое уравнение:

Шаг 3 Решаем первое уравнение:

Подставляем значение x в выражение для y:

В последовательной записи:

$$ <\left\< \begin 3x+y = 5 \\ y-x = 1 \end \right.> \Rightarrow <\left\< \begin 3x+y = 5 \\ y = x+1 \end \right.> \Rightarrow <\left\< \begin 3x+(x+1) = 5 \\ y = x+1 \end \right.> \Rightarrow <\left\< \begin 4x = 5-1 \\ y = x+1 \end \right.> \Rightarrow $$ $$ \Rightarrow <\left\< \begin x = 1 \\ y = x+1 \end \right.> \Rightarrow <\left\< \begin x = 1 \\ y = 2\end \right.> $$

Примеры

Пример 1. Решите систему уравнений методом подстановки:

$ а) <\left\< \begin 5x-4y = 3 \\ 2x-3y = 4 \end \right.> \Rightarrow <\left\< \begin 5x-4y = 3 \\ x = \frac<3y+4> <2>= 1,5y+2 \end \right.> \Rightarrow <\left\< \begin 5(1,5y+2)-4y = 3 \\ x = 1,5y+2 \end \right.> \Rightarrow $

$ \Rightarrow <\left\< \begin 7,5y+10-4y = 3 \\ x=1,5y+2 \end \right.> \Rightarrow <\left\< \begin 3,5y = -7 \\ x = 1,5y+2 \end \right.> \Rightarrow <\left\< \begin y = -2 \\ x = 1,5y+2 \end \right.> \Rightarrow <\left\< \begin x = -1 \\ y = -2\end \right.> $

$ б) <\left\< \begin 4x-3y = 7 \\ 3x-4y = 0 \end \right.> \Rightarrow <\left\< \begin 4x-3y = 7 \\ y = \frac<3> <4>x \end \right.> \Rightarrow <\left\< \begin 4x-3\cdot \frac<3> <4>x = 7 \\ y = \frac<3> <4>x \end \right.> \Rightarrow <\left\< \begin (4- \frac<9><4>)x = 7 \\ y = \frac<3> <4>x \end \right.> \Rightarrow $

$\Rightarrow <\left\< \begin x = 7 \cdot \frac<4> <7>= 4 \\ y = \frac<3> <4>x = \frac<3> <4>\cdot 4 = 3 \end \right.> \Rightarrow <\left\< \beginx = 4 \\ y = 3 \end \right.> $

$ в) <\left\< \begin 5a-4b = 9 \\ 2a+3b = -1 \end \right.> \Rightarrow <\left\< \begin 5a-4b = 9 \\ a = \frac<-3b-1> <2>= -1,5b-0,5 \end \right.> \Rightarrow <\left\< \begin 5(-1,5b-0,5)-4b = 9 \\ a = -1,5b-0,5 \end \right.> \Rightarrow $

$ \Rightarrow <\left\< \begin -7,5b-2,5-4b = 9 \\ a = -1,5b-0,5 \end \right.> \Rightarrow <\left\< \begin-11,5b = 11,5 \\ a = -1,5b-0,5 \end \right.> \Rightarrow <\left\< \begin a = 1 \\ b = -1 \end \right.> $

$ г) <\left\< \begin 7a+4b = 5 \\ 3a+2b = 1 \end \right.> \Rightarrow <\left\< \begin 7a+4b = 5 \\ b = \frac<-3a+1> <2>= -1,5a+0,5 \end \right.> \Rightarrow <\left\< \begin 7a+4(-1,5a+0,5) = 5 \\ b = -1,5a+0,5 \end \right.> \Rightarrow $

$ \Rightarrow <\left\< \begin 7a-6a+2 = 5 \\ b = -1,5a+0,5 \end \right.> \Rightarrow <\left\< \begin a = 3 \\ b = -1,5\cdot3+0,5 = -4 \end \right.> $

Пример 2. Найдите решение системы уравнений:

$а) <\left\< \begin \frac<4>-y = 7 | \times 4 \\ 3x+ \frac <2>= 9 | \times 2\end \right.> \Rightarrow <\left\< \begin x-4y = 28 \\ 6x+y = 18 \end \right.> \Rightarrow <\left\< \begin x = 4y+28 = 4(y+7) \\ 6 \cdot 4(y+7)+y = 18 \end \right.> \Rightarrow $

$\Rightarrow <\left\< \begin x = 4(y+7) \\ 24y+168+y = 18 \end \right.> \Rightarrow <\left\< \begin x = 4(y+7) \\ 25y = -150 \end \right.> \Rightarrow <\left\< \beginx = 4(-6+7) = 4 \\ y = -6 \end \right.>$

$ в) <\left\< \begin 3(5x-y)+14 = 5(x+y) \\ 2(x-y)+9 = 3(x+2y)-16 \end \right.> \Rightarrow <\left\< \begin 15x-3y+14 = 5x+5y \\ 2x-2y+9 = 3x+6y-16 \end \right.> \Rightarrow $

$ \Rightarrow <\left\< \begin 10x-8y = -14 |:2 \\ x+8y = 25 \end \right.> \Rightarrow <\left\< \begin 5x-4y = -7 \\ x = -8y+25 \end \right.> \Rightarrow <\left\< \begin 5(-8y+25)-4y = -7 \\ x = -8y+25 \end \right.> \Rightarrow $

$ \Rightarrow <\left\< \begin -40y+125-4y = -7 \\ x = -8y+25 \end \right.> \Rightarrow <\left\< \begin -44y = -132 \\ x = -8y+25 \end \right.> \Rightarrow <\left\< \begin x = 1 \\ y = 3 \end \right.> $

$ г) <\left\< \begin 5-3(2x+7y) = x+y-52 \\ 4+3(7x+2y) = 23x \end \right.> \Rightarrow <\left\< \begin 5-6x-21y = x+y-52 \\ 4+21x+6y = 23x \end \right.> \Rightarrow <\left\< \begin 7x+22y = 57 \\ 2x-6y = 4 |:2 \end \right.>$

$$ \Rightarrow <\left\< \begin 7x+22y = 57 \\ x-3y = 2 \end \right.> \Rightarrow <\left\< \begin 7x+22y = 57 \\ x = 3y+2 \end \right.> \Rightarrow <\left\< \begin 7(3y+2)+22y = 57 \\ x = 3y+2 \end \right.> \Rightarrow $$

$$ \Rightarrow <\left\< \begin 21y+14+22y = 57 \\ x = 3y+2 \end \right.> \Rightarrow <\left\< \begin 43y = 43 \\ x = 3y+2 \end \right.> \Rightarrow <\left\< \begin x = 5 \\ y = 1 \end \right.>$$

Пример 3*. Найдите решение системы уравнений:

Перепишем систему и найдём решение для новых переменных:

$$ <\left\< \begin 3a+8b = 5 \\ 12b-a = 2 \end \right.> \Rightarrow <\left\< \begin 3(12b-2)+8b = 5 \\ a = 12b-2 \end \right.> \Rightarrow <\left\< \begin 36b-6+8b = 5 \\ a = 12b-2 \end \right.> \Rightarrow $$

Как репетитор по математике работает с методом подстановки в системах уравнений (7 класс)

И зучение математики в 7 классе принципиально отличается от всего того, что предлагалось ранее в 5 — 6 классах. И дело не только в названиях тем и разделении предмета на алгебру и геометрию. Помимо введения новых понятий и правил меняется характер работы с числами и выражениями. Многое из того, что репетитор по математике показывает в 7 классе является обобщением ранее пройденного, но поднимающее использование математики на принципиально новый уровень. Такое продвижение предполагает прочное усвоение вычислительной базы, которое к 7 классу должно быть достигнуто. Должно, но не обязано.

Значительные пробелы отстающих школьников, обращающихся к репетитору по математике в тот или иной период учебы в школе, ставят неразрешимые проблемы перед использованием традиционных методик объяснений, а именно методик прямого изложения материала. Креативный репетитор по математике находится в постоянном поиске новых форм и способов подачи объяснений конкретному ученику. И это очень непросто сделать.

Как репетитор по математике работает с трудными темами?

Трудность каждой конкретной темы — весьма относительное понятие. Все зависит от того, с какой стороны к ней подойти и насколько ученик способен воспринимать ту или иную форму объяснений репетитора. Многие сложные понятия упрощаются, если репетитору по математике удается подобрать какое-нибудь простое и лаконичное описание математического процесса, сравнить его с чем-то обыденным и понятным, связать новое с ранее изученным. Это непростая задача, но репетитору нужно стремиться к ее выполнению. В алгебре, при объяснении нового материала, бывает достаточно точно подобрать соответствующие примеры работы правила на числах. У многих учеников 7 класса все еще преобладает тип мышления «от общего к частному», поэтому, стремление репетитора по математике к абсолютной стрости и полноте объяснений (доказательств), к использованию общих форм, рассмотрению всех случаев или педантичной проверке равносильности в переходах может перечеркнуть все усилия по обеспечению понимания.

Важно добиться первоначального понимания, пусть ученику не открывается вся картина происходящего в алгоритме, а лишь приоткрывается некая завеса нового. В некоторых случаях уже одно такое продвижение можно ставить в заслугу репетитору по математике, ибо ребенок начинает хоть что-то решать самостоятельно. Это крайне важно, ибо результаты практической работы помогает осмыслить многие моменты, которые оказались непонятыми.

Иногда репетиторы по математике, особенно начинающие, путают два состояния ученика: не понял и не запомнил. Если ребенок говорит «я не понимаю», — это не всегда означает, что слова репетитора по математике остались не осмысленными. Часто бывает наоборот: заявляет, что все понятно, но на проверку оказывается, что он просто заучил те или иные ходы в решении. Репетитору важно уметь отличать эти два состояния и правильно их использовать.

Как правило, решение систем методом подстановки вызывает у детей 7 класса дикое отвращение и неприязнь. Почему? Процесс, который описывает репетитор по математике на первом уроке по данной теме, очень трудно увязывается с привычным занятием в алгебре 7 класса. Дети настолько привыкают к однострочным одношаговым решениям (какими являются преобразования многочленов). Поэтому, когда репетитор по математике исписывает равносильными системами целую страницу в тетради, ученик почти всегда заявляет: «я не понимаю». «Стоп! Давай разберемся», — говорю я ему. Что именно из этого ты не понял, а что просто не успел запомнить? Если репетитор по математике поставит вопрос именно таким ребром, он переводит деятельность ученика из созерцательной в оценочную. Нужно дать время на то, чтобы привыкнуть к записям и запомнить ходы. Это облегчит оценку того, что именно не понятно. Главное не торопить ученика и дать ему возможность высказаться. Пусть это будут невнятные фразы, лишенные логики. Мастерство репетитора заключается в том, чтобы выявить проблему даже по «обрывкам мыслей» ученика.

Конечно, я описываю ситуацию, в которой репетитор не провел с учеником соответствующую подготовительную работу. А она обязательно нужна.

Подготовительная работа репетитора

Нужны задания на проверку конкретных пар чисел для конкретной системы. В процессе выполнения простейших заданий репетитор обкатывает новую терминологию: пара чисел, удовлетворяющая системе, решение системы, проверка пары. Я еще употребляю фразы «вставка чисел», «вставка пары»
Важно убедить ученика в том, что совсем не обязательно искать пару чисел, которая при вставке в начальную систему даст два верных равенства. Мы же ищем саму пару.

Самому слабому ученику достаточно сказать, что при замене одной системы на другую не меняется самое главное — ее ответ, поэтому не важно, какую именно систему решать. Пара, подходящая для одной из них — подойдет и для другой. Это можно просто проверить на конкретных числах. Надо чувствовать ученика и не ввязываться в объяснения равносильности переходов в 7 классе, какими бы точными они не были. Если все-таки репетитор по математике хочет донести до сознания ученика логику алгоритма, это нужно делать после того, как ученик его запомнит.

Если ученик более-менее толковый, репетитор по математике применяет числовую методику проверки равносильности. Покажу ее работу на примере

Пусть задана система линейных уравнений:

Как ее решить — все вы отлично знаете. Но как объяснить это решение слабому учащемуся? Вот она — головная боль для преподавателя. Дети в 7 классе не воспринимают общие математические методы доказательства равносильности, под лупой которых, конечно же, вся логика преобразований оказывается на поверхности.

Какие методики могут быть задействованы в принципе? Обычно репетитор по математике проводит равносильные преобразования по классической схеме:

Однако нельзя оставлять такую форму без каких-либо объяснений.

Что чаще всего не понятно ученику?

Как правило к моменту изучения темы «метод подстановки», учащиеся 7 класса уже имеют выражать переменную y через переменную x. Будем считать, что репетитор по математике решил эту проблему в теме «графический способ решения систем уравнений». Тогда самый непонятный ход — вставка выражения 3-x во второе уравнение системы на место x.

Как репетитор может объяснить замену игрека на 3-x ?
Я покажу как можно работать со средним учеником по методике числовой проверки ( если ученик сильный — для него вполне подойдут строгие математические обоснования «в обе стороны»). Итак, рассмотрим равносильный переход между системами:

Надо убедить ученика в том, что одна и та же пара чисел (она предоставляется в готовом виде) превращает каждое равенство в верное. Репетитор говорит: «Давай проверим пару (2;1), то есть х=2; y=1. Вставим их на места букв в систему (1).Получим: Эти равенства верные, поэтому пара чисел (2;1) — решение системы (1). Но 1=3-2 и поэтому можно вместо единицы в нижнем уравнении написать в скобках (3-2). От этого при подсчете не изменится результат». Далее репетитор по математике меняет 1 на разность 3 — 2
и спрашивает ученика: «Какая запись получится, если мы задумаем эту же пару (2;1) вставить во вторую систему? Будут ли ее равенства верными? Конечно, ведь мы только что их проверили (в этот момент репетитор по математике показывает на записанную систему №3). Вставка пары (2;1) приводит нас к повторению той же самой записи, к копии уже проверенного равенства. Поэтому пара (2;1) будет еще и решением системы №2. Значит у них одинаковые ответы (понимаю, что вывод не выдерживает никакой критики с точки зрения строгой математики и проверка проведена в одну сторону, но дети проглотят такой маневр репетитора). Поэтому вместо того, чтобы решать первую систему, мы можем решать вторую и через нее искать эту пару (если она неизвестна).

Остальные равносильные преобразования репетитору по математике не составит труда объяснить. В них нет ничего нового. Обычное решение уравнения с одной переменной. Понятно, что икс должен быть корнем уравнения (2). Ученики в 7 классе обычно понимают, что его надо найти.

Замечу, что ответ нужно записывать не в виде x=2; y=1, а в виде пары (2;1). Это будет способствовать скорейшему формированию у ученика представления об ответе, как о некоторой точке координатной плоскости.

Репетитор по математике 7 класс — Колпаков А.Н. Москва, Строгино.

Системы линейных уравнений (7 класс)

Если несколько линейных уравнений с одними теми же неизвестными рассматривают совместно, то говорят, что это система линейных уравнений с несколькими неизвестными.

Решить систему с двумя неизвестными – это значит найти все пары значений переменных, которые удовлетворяют каждому из заданных уравнений. Каждая такая пара называется решением системы.

Пример:
Пара значений \(x=3\);\(y=-1\) является решением первой системы, потому что при подстановке этих тройки и минус единицы в вместо \(x\) и \(y\), оба уравнения превратятся в верные равенства \(\begin3-2\cdot (-1)=5 \\3 \cdot 3+2 \cdot (-1)=7 \end\)

А вот \(x=1\); \(y=-2\) — не является решением первой системы, потому что после подстановки второе уравнение «не сходится» \(\begin1-2\cdot(-2)=5 \\3\cdot1+2\cdot(-2)≠7 \end\)

Отметим, что такие пары часто записывают короче: вместо «\(x=3\); \(y=-1\)» пишут так: \((3;-1)\).

Как решить систему линейных уравнений?

Есть три основных способа решения систем линейных уравнений:

Возьмите любое из уравнений системы и выразите из него любую переменную.

Полученное выражение подставьте вместо этой переменной в другое линейное уравнение системы.

Ответ запишите парой чисел \((x_0;y_0)\)

Замечание к шагу 1: нет никакой разницы какую переменную и из какого уравнения выражать. Обычно более удобно выражать ту переменную, перед которой нет коэффициента или, говоря точнее, коэффициент которой равен единице (в примере выше это был икс в первом уравнении).

Почему так? Потому что во всех остальных случаях у нас при выражении переменной получилась бы дробное выражение . Попробуем, например, выразить икс из второго уравнения системы:

И сейчас нам нужно будет эту дробь подставлять в первое уравнение и решать то, что получиться. До верного ответа мы бы всё равно дошли, но идти было бы неудобнее

Способ алгебраического сложения.

    Равносильно преобразовывая каждое уравнение в отдельности, запишите систему в виде:\(\begina_1 x+b_1 y=c_1\\a_2 x+b_2 y=c_2\end\).

    Теперь нужно сделать так, чтоб коэффициенты при одном из неизвестных стали одинаковы (например, (\(3\) и \(3\)) или противоположны по значению (например, \(5\) и \(-5\)). В нашем примере уравняем коэффициенты при игреках. Для этого первое уравнение домножим на \(2\), а второе — на \(3\).

    \(\begin2x+3y=13 |\cdot 2\\ 5x+2y=5 |\cdot 3\end\)\(\Leftrightarrow\)\(\begin4x+6y=26\\15x+6y=15\end\)\(\Leftrightarrow\)

    Сложите (или вычтите) почленно обе части уравнения так, чтобы получилось уравнение с одним неизвестным.

    Найдите неизвестное из полученного уравнения.

    Подставьте найденное значение неизвестного в любое из исходных уравнений и найдите второе неизвестное.

    Ответ запишите парой чисел \((x_0;y_0)\).

    Замечание к шагу 3: В каком случае уравнения складывают, а в каком вычитают? Ответ прост – делайте так, чтоб пропала переменная: если «уравненные» коэффициенты имеют один и тот же знак – вычитайте, а если разные – складывайте.

    Пример. Решите систему уравнений: \(\begin12x-7y=2\\5y=4x-6\end\)

    Приводим систему к виду \(\begina_1 x+b_1 y=c_1\\a_2 x+b_2 y=c_2\end\) преобразовывая второе уравнение.

    «Уравняем» коэффициенты при иксах. Для этого домножим второе уравнение на \(3\).

    Знаки при иксах разные, поэтому чтоб иксы пропали, уравнения надо сложить.

    Делим уравнение на \(8\), чтобы найти \(y\).

    Игрек нашли. Теперь найдем \(x\), подставив вместо игрека \(-2\) в любое из уравнений системы.

    Икс тоже найден. Пишем ответ.

    Приведите каждое уравнение к виду линейной функции \(y=kx+b\).

    Постройте графики этих функций. Как? Можете прочитать здесь .

  1. Найдите координаты \((x;y)\) точки пересечения графиков и запишите их в ответ в виде \((x_0;y_0 )\).
    Ответ: \((4;2)\)
  2. Матхак. Если сомневаетесь в правильности ответа (неважно каким способом вы решали), проверьте подстановкой значений \(x_0\) и \(y_0\) в каждое уравнение. Если оба уравнения превратятся в верные равенства, то ответ правильный.
    Пример: решая систему \(\begin3x-8=2y\\x+y=6\end\), мы получили ответ \((4;2)\). Проверим его, подставив вместо икса \(4\), а вместо игрека \(2\).

    Оба уравнения сошлись, решение системы найдено верно.

    Пример. Решите систему уравнений: \(\begin3(5x+3y)-6=2x+11\\4x-15=11-2(4x-y)\end\)

    Перенесем все выражения с буквами в одну сторону, а числа в другую.

    Во втором уравнении каждое слагаемое — четное, поэтому упрощаем уравнение, деля его на \(2\).

    Эту систему линейных уравнений можно решить любым из способов, но мне кажется, что способ подстановки здесь удобнее всего. Выразим y из второго уравнения.

    Подставим \(6x-13\) вместо \(y\) в первое уравнение.

    Первое уравнение превратилась в обычное линейное . Решаем его.

    Сначала раскроем скобки.

    Перенесем \(117\) вправо и приведем подобные слагаемые.

    Поделим обе части первого уравнения на \(67\).

    Ура, мы нашли \(x\)! Подставим его значение во второе уравнение и найдем \(y\).


    источники:

    http://ankolpakov.ru/kak-repetitor-po-matematike-rabotaet-s-metodom-podstanovki-v-sistemax-uravnenij-7-klass/

    http://cos-cos.ru/math/123/