Метод понижения порядка тригонометрического уравнения

Методы решения тригонометрических уравнений

Разделы: Математика

Урок комплексного применения знаний.

    Рассмотреть различные методы решения тригонометрических уравнений.
  1. Развитие творческих способностей учеников путем решения уравнений.
  2. Побуждение учеников к самоконтролю, взаимоконтролю, самоанализу своей учебной деятельности.

Оборудование: экран, проектор, справочный материал.

Основным методом решения тригонометрических уравнений является сведения их простейшим. При этом применяются обычные способы, например, разложения на множители, а также приемы, используемые только для решения тригонометрических уравнений. Этих приемов довольно много, например, различные тригонометрические подстановки, преобразования углов, преобразования тригонометрических функций. Беспорядочное применение каких-либо тригонометрических преобразований обычно не упрощает уравнение, а катастрофически его усложняет. Чтобы выработать в общих чертах план решения уравнения, наметить путь сведения уравнения к простейшему, нужно в первую очередь проанализировать углы – аргументы тригонометрических функций, входящих в уравнение.

Сегодня мы поговорим о методах решения тригонометрических уравнений. Правильно выбранный метод часто позволяет существенно упростить решение, поэтому все изученные нами методы всегда нужно держать в зоне своего внимания, чтобы решать тригонометрические уравнения наиболее подходящим методом.

II. (С помощью проектора повторяем методы решения уравнений.)

1. Метод приведения тригонометрического уравнения к алгебраическому.

Необходимо выразить все тригонометрические функции через одну, с одним и тем же аргументом. Это можно сделать с помощью основного тригонометрического тождества и его следствий. Получим уравнение с одной тригонометрической функцией. Приняв ее за новую неизвестную, получим алгебраическое уравнение. Находим его корни и возвращаемся к старой неизвестной, решая простейшие тригонометрические уравнения.

2. Метод разложения на множители.

Для изменения углов часто бывают полезны формулы приведения, суммы и разности аргументов, а также формулы преобразования суммы (разности) тригонометрических функций в произведение и наоборот.

sin x + sin 3x = sin 2x + sin4x

3. Метод введения дополнительного угла.

4. Метод использования универсальной подстановки.

Уравнения вида F(sinx, cosx, tgx ) = 0 сводятся к алгебраическому при помощи универсальной тригонометрической подстановки

Выразив синус, косинус и тангенс через тангенс половинного угла. Этот прием может привести к уравнению высокого порядка. Решение которого затруднительно.

5. Метод понижения степени.

III. Самостоятельная работа (программированный контроль).

1-й вариант2-й вариант
1) 2cos 2 x + 2sin x = 2,5
2) sin2x = -cos2x
3) (cosx – sinx) 2 = cos2x
1) 2sin 2 x + 5cosx + 1 = 0
2) sin2x – sin3x = 0
3) sin2x = 2 sin 2 x

Коды ответов:1-й вариант: 524, 2-й вариант: 361.

Основные методы решения тригонометрических уравнений

п.1. Разложение на множители

Алгоритм простого разложения на множители

Шаг 1. Представить уравнение в виде произведения \(f_1(x)\cdot f_2(x)\cdot . \cdot f_n(x)=0\) где \(f_i(x)\) — некоторые функции (тригонометрические и не только) от \(x\).
Шаг 2. Решить совокупность уравнений: \( \left[ \begin f_1(x)=0\\ f_2(x)=0\\ . \\ f_n(x)=0\\ \end \right. \)
Шаг 3. Найти объединение полученных решений. Записать ответ.

Например:
Решим уравнение \(2cosx cos2x=cosx\) \begin 2cosx cos2x-cosx=0\\ cosx(2cos2x-1)=0\\ \left[ \begin cosx=0\\ 2cos2x-1=0 \end \right. \Rightarrow \left[ \begin x=\frac\pi2+\pi k\\ cos2x=\frac12 \end \right. \Rightarrow \left[ \begin x=\frac\pi2+\pi k\\ 2x=\pm\frac\pi3+2\pi k \end \right. \Rightarrow \left[ \begin x=\frac\pi2+\pi k\\ x=\pm\frac\pi6+\pi k \end \right. \end

Мы видим, что полученные семейства образуют множество из 6 базовых точек на числовой окружности через каждые \(60^<\circ>=\frac\pi3\)
Поэтому: \begin \left[ \begin x=\frac\pi2+\pi k\\ x=\pm\frac\pi6+\pi k \end \right. \Leftrightarrow x=\frac\pi6+\frac<\pi k> <3>\end

Возможно, у вас не сразу получится объединять решения, которые частично пересекаются или дополняют друг друга.
Тогда записывайте ответ в виде полученных семейств.
В рассмотренном примере, это пара \(\frac\pi2+\pi k,\ \ \pm\frac\pi6+\pi k\), равнозначная c \(\frac\pi6+\frac<\pi k><3>\).
Вот только научиться работать с числовой окружностью нужно обязательно, т.к. чем сложнее пример или задача, тем больше вероятность, что этот навык пригодится.

Алгоритм разложения на множители со знаменателем

Шаг 1. Представить уравнение в виде произведения $$ \frac=0 $$ где \(f_i(x),\ g_i(x)\) — некоторые функции (тригонометрические и не только) от \(x\).
Шаг 2. Решить смешанную систему уравнений: \( \begin \left[ \begin f_1(x)=0\\ f_2(x)=0\\ . \\ f_n(x)=0\\ \end \right.\\ g_1(x)\ne 0\\ g_2(x)\ne 0\\ . \\ g_m(x)\ne 0\\ \end \)
Шаг 3. Найти объединение полученных решений для числителя. Исключить все решения, полученные для знаменателя. Записать ответ.

Например:
Решим уравнение \(ctgx-tgx=\frac<\frac12 sin2x>\)
Левая часть уравнения: $$ ctgx-tgx=\frac-\frac=\frac=\frac<(cosx-sinx)(cosx+sinx)> <\frac12sin2x>$$ Подставляем, переносим правую часть влево: $$ \frac<(cosx-sinx)(cosx+sinx)><\frac12sin2x>-\frac<\frac12sin2x>=0 $$ Выносим общий множитель, умножаем на \(1/2\) слева и справа, получаем: $$ \frac<(cosx-sinx)(cosx+sinx-1)>=0 $$ В этом уравнении учтено ОДЗ для \(ctgx\) и \(tgx\). Поэтому отдельно его не записываем.
Полученное уравнение равносильно системе: \begin \begin \left[ \begin cosx-sinx=0\\ cosx+sinx=1 \end \right.\\ sin2x\ne 0 \end \end Решаем первое уравнение как однородное 1-й степени (см. этот параграф ниже): \begin cosx-sinx=0\ \ |: cosx\\ 1-tgx=0\Rightarrow tgx=1\Rightarrow x=\frac\pi4+\pi k \end Решаем второе уравнение введением вспомогательного угла (см. этот параграф ниже): \begin cosx-sinx=1\ \ | \times \frac<\sqrt<2>><2>\\ \frac<\sqrt<2>><2>cosx+\frac<\sqrt<2>><2>sinx=\frac<\sqrt<2>><2>\\ cos\left(\frac\pi4\right)cosx+sin\left(\frac\pi4\right)sinx=\frac<\sqrt<2>><2>\\ cos\left(\frac\pi4-x\right)=cos\left(x-\frac\pi4\right)=cos\left(x-\frac\pi4\right)=\frac<\sqrt<2>> <2>\Rightarrow x-\frac\pi4=\pm\frac\pi4+2\pi k\Rightarrow \left[ \begin x=2\pi k\\ x=\frac\pi2+2\pi k \end \right. \end Решаем исключающее уравнение для знаменателя: $$ sin2x\ne 0\Rightarrow 2x\ne \pi k\Rightarrow x\ne\frac<\pi k> <2>$$

Записываем полученную систему, отмечаем базовые решения на числовой окружности, исключаем нули знаменателя. Получаем: \begin \begin \left[ \begin x=\frac\pi4+\pi k\\ x=2\pi k\\ x=\frac\pi2+2\pi k\Leftrightarrow x=\frac\pi4+\pi k \end \right.\\ x\ne\frac<\pi k> <2>\end \end

За счет требования \(x\ne\frac<\pi k><2>\) исключаются семейства \(x=\frac\pi2+2pi k\) и \(x=2\pi k\).
Остается только \(x=\frac\pi4+\pi k\).
Ответ: \(\frac\pi4+\pi k\)

п.2. Приведение к квадратному уравнению

Шаг 1. С помощью базовых тригонометрических отношений и других преобразований представить уравнение в виде $$ af^2(x)+bf(x)+c=0 $$ где \(f(x)\) — тригонометрическая функция.
Шаг 2. Сделать замену переменных: \(t=f(x)\). Решить полученное квадратное уравнение: \begin at^2+bt+c=0\\ D=b^2-4ac,\ \ t_<1,2>=\frac<-b\pm\sqrt> <2a>\end Шаг 3. Если \(f(x)\) — синус или косинус, проверить условие \(-1\leq t_<1,2>\leq 1\). Отбросить лишние корни.
Шаг 4. Вернуться к исходной переменной и решить совокупность простейших тригонометрических уравнений \( \left[ \begin f(x)=t_1\\ f(x)=t_2 \end \right. \) или одно оставшееся уравнение.
Шаг 5. Найти объединение полученных решений. Записать ответ.

Например:
Решим уравнение \(3sin^2x+10cosx-6=0\)
Заменим \(sin^2x=1-cos^2x\). Получаем: \begin 3(1-cos^2x)+10cosx-6=0\\ -3cos^2x+10cosx-3=0\\ 3cos^2x-10cosx+3=0\\ \text<Замена:>\ t=cosx,\ \ -1\leq t\leq 1\\ 3t^2-10t+3=0\\ D=(-10)^2-4\cdot 3\cdot 3=64\\ t=\frac<10\pm 8><6>= \left[ \begin \frac13\\ 3\gt 1 — \text <не подходит>\end \right. \end Решаем \(cosx=\frac13\Rightarrow x=\pm arccos\frac13+2\pi k\)
Ответ: \(\pm arccos\frac13+2\pi k\)

п.3. Приведению к однородному уравнению

Алгоритм решения однородного тригонометрического уравнения 1-й степени

Например:
Решим уравнение \(sinx+cosx=0\)
Делим на \(cosx\). Получаем: \(tgx+1=0\Rightarrow tgx=-1\Rightarrow x=-\frac\pi4+\pi k\)
Ответ: \(-\frac\pi4+\pi k\)

Алгоритм решения однородного тригонометрического уравнения 2-й степени

Шаг 1. Разделить левую и правую части уравнения на \(cos^2x\) \begin \frac=\frac<0>\\ Atg^2x+Btgx+C=0 \end Шаг 2. Сделать замену переменных: \(t=tgx\). Решить полученное квадратное уравнение: \begin at^2+bt+c=0\\ D=b^2-4ac,\ \ t_<1,2>=\frac<-b\pm\sqrt> <2a>\end Шаг 3. Решить совокупность простейших тригонометрических уравнений \( \left[ \begin tgx=t_1\\ tgx=t_2 \end \right. \)
Шаг 4. Найти объединение полученных решений. Записать ответ.

Например:
Решим уравнение \(6sin^2x-sinxcosx-cos^2x=3\)
Приведем уравнение к однородному (чтобы избавиться от тройки справа, умножим её на тригонометрическую единицу): \begin 6sin^2x-sinxcosx-cos^2x=3(sin^2x+cos^2x)\\ 3sin^2x-sinxcosx-4cos^2x=0\ |:\ cos^2x\\ 3tg^2x-tgx-4=0\\ \text<Зaмена:>\ t=tgx\\ 3t^2-t-4=0\\ D=(-1)^2-4\cdot 3\cdot(-4)=49\\ t=\frac<1\pm 7><6>= \left[ \begin -1\\ \frac43 \end \right. \end Решаем совокупность: \( \left[ \begin tgx=-1\\ tgx=\frac43 \end \right. \Rightarrow \left[ \begin x=-\frac\pi4+\pi k\\ x=arctg\frac43+\pi k \end \right. \)
Ответ: \(-\frac\pi4+\pi k,\ \ arctg\frac43+\pi k\)

Обобщим понятие однородного тригонометрического уравнения на любую натуральную степень:

Алгоритм решения однородного тригонометрического уравнения n-й степени

Шаг 1. Разделить левую и правую части уравнения на \(cos^n x\)
Шаг 2. Сделать замену переменных: \(t=tgx\). Решить полученное алгебраическое уравнение: \begin a_0t^n+a_1t^+. +a_n=0 \end Найти корни \(t_1, t_2. t_k,\ k\leq n\)
Шаг 3. Решить совокупность простейших тригонометрических уравнений \( \left[ \begin tgx=t_1\\ tgx=t_2\\ . \\ tgx=t_k \end \right. \)
Шаг 4. Найти объединение полученных решений. Записать ответ.

Например:
Решим уравнение \(2sin^3x=cosx\)
Умножим правую часть на тригонометрическую единицу и получим однородное уравнение 3-й степени: \begin 2sin^3x=cosx(sin^2x+cos^2x)\\ 2sin^3x-sin^2xcosx-cos^3x=0\ |:\ cos^3x\\ 2tg^x-tg^2x-1=0\\ \end Замена \(t=tgx\) дает кубическое уравнение: \(2t^3-t^2-1=0\)
Раскладываем на множители: \begin 2t^3-t^2-1=t^3-t^2+t^3-1=t^2(t-1)+(t-1)(t^2+t+1)=\\ =(t-1)(2t^2+t+1) \end Вторая скобка на множители не раскладывается, т.к. \(D=1-4\cdot 2=-7 \lt 0\).
Получаем: \(2t^3-t^2-1=0\Leftrightarrow t-1=0\)
Возвращаемся к исходной переменной:
\(tgx=1\Rightarrow x=\frac\pi4+\pi k\)
Ответ: \(\frac\pi4+\pi k\)

п.4. Введение вспомогательного угла

Например:
Решим уравнение \(\sqrt<3>sin3x-cos3x=1\)
Делим уравнение на \( p=\sqrt<3+1>=2: \) \begin \sqrt<3>sin3x-cos3x=1 |:\ 2\\ \frac<\sqrt<3>><2>sin3x-\frac12cos3x=\frac12\\ sin\left(\frac\pi3\right)sin3x-cos\left(\frac\pi3\right)cos3x=\frac12\\ cos\left(\frac\pi3\right)cos3x-sin\left(\frac\pi3\right)sin3x=-\frac12\\ cos\left(3x+\frac\pi3\right)=-\frac12\Rightarrow 3x+\frac\pi3=\pm\frac<2\pi><3>+2\pi k\Rightarrow 3x= \left[ \begin -\pi+2\pi k\\ \frac\pi3+2\pi k \end \right. \Rightarrow x= \left[ \begin -\frac\pi3+\frac<2\pi k><3>\\ \frac\pi9+\frac<2\pi k> <3>\end \right. \end
Ответ: \(-\frac\pi3+\frac<2\pi k><3>,\ \ \frac\pi9+\frac<2\pi k><3>\)

п.5. Преобразование суммы тригонометрических функций в произведение

При решении уравнений вида \begin Asinax+Bsinbx+. +Ccoscx+Dcosdx+. =0 \end используются формулы, выведенные в §17 данного справочника.
Затем проводится разложение на множители, и находится решение (см. начало этого параграфа).

Например:
Решим уравнение \(cos3x+sin2x-sin4x=0\)
Заметим, что: $$ sin2x-sin4x=2sin\frac<2x-4x><2>cos\frac<2x+4x>=2sin(-x)cos3x=-2sinxcos3x $$ Подставляем: \begin cos3x-2sinxcos3x=0\\ cos3x(1-2sinx)=0\\ \left[ \begin cos3x=0\\ 1-2sinx=0 \end \right. \Rightarrow \left[ \begin 3x=\frac\pi2+\pi k\\ sinx=\frac12 \end \right. \Rightarrow \left[ \begin x=\frac\pi6+\frac<\pi k><3>\\ x=(-1)^k\frac\pi6+\pi k= \left[ \begin x=\frac\pi6+2\pi k\\ \frac<5\pi><6>+2\pi k \end \right. \end \right. \end Чтобы было понятней, распишем полученные множества в градусах: \begin \left[ \begin x=\frac\pi6+\frac<\pi k><3>=30^<\circ>+60^<\circ>k\\ x=\frac\pi6+2\pi k=30^<\circ>+360^<\circ>k\Leftrightarrow x=30^<\circ>+60^<\circ>k=\frac\pi6+\frac<\pi k><3>\\ x=\frac<5\pi><6>+2\pi k=150^<\circ>+360^<\circ>k \end \right. \end

Получаем, что семейства решений \(\frac\pi6+2\pi k\) и \(\frac<5\pi><6>+2\pi k\) уже содержатся во множестве \(\frac\pi6+\frac<\pi k><3>\).

п.6. Преобразование произведения тригонометрических функций в сумму

При решении уравнений вида \begin sinax\cdot cosbx=sincx\cdot cosdx,\ \ sinax\cdot sinbx=sincx\cdot cosdx\ \ \text <и т.п.>\end используются формулы, выведенные в §18 данного справочника.

Например:
Решим уравнение \(sin5xcos3x=sin6xcos2x\)
Заметим, что: \begin sin5xcos3x=\frac<2>=\frac<2>\\ sin6xcos2x=\frac<2>=\frac <2>\end Подставляем: \begin \frac<2>=\frac<2>\ |\times 2\\ sin8x-sin2x=sin8x-sin4x\\ sin4x-sin2x=0\\ 2sin2xcos2x-sin2x=0\\ sin2x(2cos2x-1)=0\\ \left[ \begin sin2x=0\\ 2cos2x-1=0 \end \right. \Rightarrow \left[ \begin 2x=\pi k\\ cos2x=\frac12 \end \right. \Rightarrow \left[ \begin x=\frac<\pi k><2>\\ 2x=\pm\frac\pi3+2\pi k \end \right. \Rightarrow \left[ \begin x=\frac<\pi k><2>\\ x=\pm\frac\pi6+\pi k \end \right. \end

Семейства решений не пересекаются.

Примечание: учитывая ответ предыдущего примера, это же множество решений можно записать в виде: \( \left[ \begin x=\frac<\pi k><2>\\ x=\pm\frac\pi6+\pi k \end \right. \Leftrightarrow \left[ \begin x=\frac\pi6+\frac<\pi k><3>\\ x=\pi k \end \right. \)

п.7. Понижение степени

При решении уравнений вида \begin sin^2ax+sin^2bx+. +cos^2cx+cos^2dx+. =A \end используются формулы понижения степени: \begin sin^2x=\frac<1-cos2x><2>,\ \ cos^2x=\frac<1+cos2x> <2>\end (см. формулы половинного аргумента, §15 данного справочника).

Например:
Решим уравнение \(sin^2x+sin^22x=1\)
Расписываем квадраты синусов через формулу понижения степени: \begin \frac<1-cos2x><2>+\frac<1-cos4x><2>=1\\ cos2x+cos4x=0\\ 2cos\frac<2x+4x><2>cos\frac<2x-4x><2>=0\\ cos3xcosx=0\\ \left[ \begin cos3x=0\\ cosx=0 \end \right. \Rightarrow \left[ \begin 3x=\frac\pi2+\pi k\\ x=\frac\pi2+\pi k \end \right. \Rightarrow \left[ \begin x=\frac\pi6+\frac<\pi k><3>\\ x=\frac\pi2+\pi k \end \right. \end

\(x=\frac\pi2+\pi k\) является подмножеством \(x=\frac\pi6+\frac<\pi k><3>\)
Поэтому \begin \left[ \begin x=\frac\pi6+\frac<\pi k><3>\\ x=\frac\pi2+\pi k \end \right. \Leftrightarrow x=\frac\pi6+\frac<\pi k> <3>\end

п.8. Замена переменных

При решении уравнений вида \(f(sinx\pm cosx,\ sinxcosx)=0\) используется замена \begin t=cosx\pm sinx \end

Например:
Решим уравнение \(sinx+cosx=1+sinxcosx\)
Замена: \(t=sinx+cosx\)
Тогда \(t^2=sin^2x+2sinxcosx+cos^2x=1+2sinxcosx\Rightarrow sinxcosx=\frac<2>\)
Подставляем: \begin t=1+\frac<2>\Rightarrow 2(t-1)=t^2-1\Rightarrow t^2-2t+1=0\Rightarrow (t-1)^2=0\Rightarrow t=1\\ sinx+cosx=1\ |\ \times \frac<\sqrt<2>><2>\\ \frac<\sqrt<2>><2>sinx+\frac<\sqrt<2>><2>cosx=\frac<\sqrt<2>><2>\\ sin\frac\pi4 sinx+cos\frac\pi4 cosx=\frac<\sqrt<2>><2>\\ cos\left(x-\frac\pi4\right)=\frac<\sqrt<2>><2>\Rightarrow x-\frac\pi4=\pm\frac\pi4 + 2\pi k\Rightarrow \Rightarrow \left[ \begin x=2\pi k\\ x=\frac\pi2+2\pi k \end \right. \end Ответ: \(2\pi k,\ \ \frac\pi2+2\pi k\)

п.9. Использование ограничений области значений функций

Уравнения вида \begin \underbrace_> \end может иметь решение только, если каждое из слагаемых равно 1.
Поэтому решаем систему: \( \begin sinax=1\\ sinbx=1\\ . \\ cosdx=1\\ . \end \)
Находим пересечение (!) полученных семейств решений и записываем ответ.

Аналогично, уравнение вида \begin \underbrace_> \end может иметь решение только, если каждое из слагаемых равно -1.

Например:
Решим уравнение \(sinx+cos4x=2\)
Для этого нужно решить систему: \begin \begin sinx=1\\ cos4x=1 \end \Rightarrow \begin x=\frac\pi2+2\pi k\\ 4x=2\pi k \end \Rightarrow \begin x=\frac\pi2+2\pi k\\ x=\frac<\pi k> <2>\end \end

Пересечением двух семейств решений будет только \(\frac\pi2+2\pi k\).
Поэтому \begin \begin x=\frac\pi2+2\pi k\\ x=\frac<\pi k> <2>\end \Leftrightarrow x=\frac\pi2+2\pi k \end

п.10. Примеры

Пример 1. Используя различные методы, решите уравнения:
a) \(4sin\left(\frac\pi2\right)+5sin^2x=4\)
Приводим уравнение к квадратному:
\(5sin^x+4cosx-4=0\)
\(5(1-cos^2x)+4cosx-4=0\)
\(-5cos^2x+4cosx+1=0\)
\(5cos^2x-4cosx-1=0\)
Замена: \(t=cosx,\ \ -1\leq t\leq 1\) \begin 5t^2-4t-1=0\Rightarrow (5t+1)(t-1)=0\Rightarrow \left[ \begin t_1=-\frac15\\ t_2=1 \end \right. \end Оба корня подходят. Возвращаемся к исходной переменной: \begin \left[ \begin cosx=-\frac15\\ cosx=1 \end \right. \Rightarrow \left[ \begin x=\pm arccos\left(-\frac15\right)+2\pi k\\ x=2\pi k \end \right. \end Ответ: \(\pm arccos\left(-\frac15\right)+2\pi k,\ \ 2\pi k\)

б) \(6sinxcosx=5cos2x\)
\(6sinxcosx=3\cdot 2sinxcosx=3sin2x\)
Приводим уравнение к однородному 1-й степени:
\(3sin2x=5cos2x\ |\ :\ cos2x\)
\(3tg2x=5\Rightarrow tg2x=\frac53\Rightarrow 2x=arctg\frac53+\pi k\Rightarrow x=\frac12 arctg\frac53+\frac<\pi k><2>\)
Ответ: \(\frac12 arctg\frac53+\frac<\pi k><2>\)

в) \(9cos^2x-5sin2x=-sin^2x\)
\(5sin2x=5\cdot 2sinxcosx=10sinxcosx\)
Приводим уравнение к однородному 2-й степени:
\(sin^2x-10sinxcosx+9cos^2x=0\ |:\ cos^2x\)
\(tg^2x-10tgx+9=0\)
Замена: \(t=tgx\) \begin t^2-10+9=0\Rightarrow (t-1)(t-9)=0\Rightarrow \left[ \begin t_1=1\\ t_2=9 \end \right. \end Оба корня подходят. Возвращаемся к исходной переменной: \begin \left[ \begin tgx=1\\ tgx=9 \end \right. \Rightarrow \left[ \begin x=\frac\pi4+\pi k\\ x=arctg9+\pi k \end \right. \end Ответ: \(\frac\pi4+\pi k,\ \ arctg9+\pi k\)

г) \(cos3x-1=cos6x\)
Косинус двойного угла: \(cos6x=2cos^2 3x-1\)
Подставляем и раскладываем на множители:
\(cos3x-1=2cos^2 3x-1\)
\(cos3x-2cos^2 3x=0\)
\(cos3x(1-2cos3x)=0\) \begin \left[ \begin cos3x=0\\ 1-2cos3x=0 \end \right. \Rightarrow \left[ \begin 3x=\frac\pi2+\pi k\\ cos3x=\frac12 \end \right. \Rightarrow \left[ \begin x=\frac\pi6+\frac<\pi k><3>\\ 3x=\pm\frac\pi3+2\pi k \end \right. \Rightarrow \left[ \begin x=\frac\pi6+\frac<\pi k><3>\\ x=\pm\frac\pi9+\frac<2\pi k> <3>\end \right. \end Чтобы проверить пересечения, распишем семейства решений через градусы: \begin \left[ \begin x=\frac\pi6+\frac<\pi k><3>=30^<\circ>+60^<\circ>k=<. -90^<\circ>,-30^<\circ>,30^<\circ>,90^<\circ>,150^<\circ>. >\\ x=\pm\frac\pi9+\frac<2\pi k><3>= \left[ \begin -20^<\circ>+120^<\circ>k=<. -140^<\circ>,-20^<\circ>,100^<\circ>. >\\ 20^<\circ>+120^<\circ>k=<. -100^<\circ>,20^<\circ>,140^<\circ>. > \end \right. \end \right. \end Семейства не пересекаются.
Ответ: \(\frac\pi6+\frac<\pi k><3>,\ \ \pm\frac\pi9+\frac<2\pi k><3>\)

д) \(\sqrt<3>sin2x-cos2x=-\sqrt<3>\)
Разделим на \(p=\sqrt<3+1>\) и введем дополнительный угол:
\(\frac<\sqrt<3>><2>sin2x-\frac12 cos2x=-\frac<\sqrt<3>><2>\)
\(\frac12cos2x-\frac<\sqrt<3>><2>sin2x=\frac<\sqrt<3>><2>\)
\(cos\left(2x-\frac\pi3\right)=\frac<\sqrt<3>><2>\)
\(2x-\frac\pi3=\pm\frac\pi6+2\pi k\)
\(2x=\frac\pi3\pm\frac\pi6+2\pi k= \left[ \begin -\frac<\pi><6>+2\pi k\\ \frac\pi2+2\pi k \end \right. \)
\( \left[ \begin x=-\frac<\pi><12>+\pi k\\ x=\frac\pi4+\pi k \end \right. \) Семейства решений не пересекаются.
Ответ: \(-\frac<\pi><12>+\pi k,\ \ \frac\pi4+\pi k\)

е) \(cos^2x+cos^2 2x=cos^2 3x+cos^2 4x\)
Формула понижения степени: \(cos^2x=\frac<1+cos2x><2>\)
Подставляем: \begin \frac<1+cos2x><2>+\frac<1+cos4x><2>=\frac<1+cos6x><2>+\frac<1+cos8x><2>\\ cos2x+cos4x=cos6x+cos8x\\ 2cos\frac<2x+4x><2>cos\frac<2x-4x><2>=2cos\frac<6x+8x><2>cos\frac<6x-8x><2>\ |:\ 2\\ cos3xcosx=cos7xcosx=0\\ cos3xcosx-cos7xcosx=0\\ cosx(cos3x-cos7x)=0\\ cosx\left(-2sin\frac<3x+7x><2>sin\frac<3x-7x><2>\right)=0\\ -2cosxsin5xsin(-2x)=0\\ 2cosxsin5xsin2x=0\\ cosxsin5xsin2x=0\\ \left[ \begin cosx=0\\ sin5x=0\\ sin2x=0 \end \right. \Rightarrow \left[ \begin x=\frac\pi2+\pi k\\ 5x=\pi k\\ 2x=\pi k \end \right. \Rightarrow \left[ \begin x=\frac\pi2+\pi k\\ x=\frac<\pi k><5>\\ x=\frac<\pi k> <2>\end \right. \end Семейство решений \(x=\frac\pi2+\pi k\) (базовые точки 90°, 270° на числовой окружности) является подмножеством для \(x=\frac<\pi k><2>\) (базовые точки 0°, 90°, 180°, 270°). Поэтому: \begin \left[ \begin x=\frac\pi2+\pi k\\ x=\frac<\pi k><5>\\ x=\frac<\pi k> <2>\end \right. \Rightarrow \left[ \begin x=\frac<\pi k><5>\\ x=\frac<\pi k> <2>\end \right. \end Ответ: \(\frac<\pi k><5>,\ \ \frac<\pi k><2>\)

Пример 2*. Решите уравнения:
a) \begin \frac<4>-\frac<18>+\frac=0 \end ОДЗ: \(tgx\ne \pm 3\)
1) Если \(cosx\ne 0\), то последнее слагаемое \(\frac=\frac<\frac><\frac>=\frac\)
Получаем: \begin \frac<4>-\frac<18>+\frac=0\\ \frac<4(tgx-3)-18+tgx(tgx+3)><(tgx+3)(tgx-3)>=0\\ \frac<(tgx+3)(tgx-3)>=0\\ \end Замена: \(t=tgx\) \begin \frac<(t+3)(t-3)>\Rightarrow \begin t^2+7t-30=0\\ t\ne\pm3 \end \Rightarrow \begin (t+10)(t-3)=0\\ t\ne\pm3 \end \Rightarrow \begin \left[ \begin t=-10\\ t=3 \end \right.\\ t\ne\pm3 \end \Rightarrow\\ t=-10 \end Получаем: \begin tgx=-10\\ x=arctg(-10)+\pi k=-arctg10+\pi k \end
2) Проверим, является ли \(cosx=0\) решением.
При \(cosx=0,\ x=\frac\pi2+\pi k,\ tgx\rightarrow\infty\). Первое слагаемое \(\frac<4>\rightarrow\frac<4><\infty>\rightarrow 0\)
Второе слагаемое \(\frac<18>\rightarrow\frac<18><\infty>\rightarrow 0\)
Третье слагаемое \(\frac\rightarrow\frac<1><1-0>=1\ne 0\)
Сумма слагаемых в пределе \(tgx\rightarrow\infty\) равна \(0+0+1=1\ne 0\)
\(cosx=0\) решением не является.
Ответ: \(-arctg10+\pi k\)

б) \(\frac<3>+1=7\frac<|cosx|>\)
ОДЗ: \(cosx\ne 0,\ x\ne\frac\pi2+\pi k\) \begin |cosx|= \begin cosx,\ -\frac\pi2+2\pi k\leq x\lt \frac\pi2+2\pi k\\ -cosx,\ \frac\pi2+2\pi k\leq x\lt \frac<3\pi2><2>+2\pi k \end \end 1) Решаем для положительного косинуса (1-я и 4-я четверти) \begin \frac<3>+1=7\frac\\ 3(1+tg^2x)+1-7tgx=0\\ 3tg^2-7tgx+4=0\\ (3tgx-4)(tgx-1)=0\\ \left[ \begin tgx=\frac43\\ tgx=1 \end \right. \Rightarrow \left[ \begin x=arctg\frac43+\pi k\\ x=\frac\pi4+\pi k \end \right. \end

Полученное решение даёт 4 базовых точки на числовой окружности: \(\frac\pi4,\ arctg\frac43,\ \frac<5\pi><4>\) и \(\pi+arctg\frac43\), которые находятся в 1-й и 3-й четвертях.
Выбираем только точки в 1-й четверти:
\(\frac\pi4\) и \(arctg\frac43\).
Это означает, что в записи решения период будет не \(\pi k\), а \(2\pi k\). \begin \left[ \begin x=arctg\frac43+2\pi k\\ x=\frac\pi4+2\pi k \end \right. \end

2) Решаем для отрицательного косинуса (2-я и 3-я четверти) \begin \frac<3>+1=-7\frac\\ 3(1+tg^2x)+1+7tgx=0\\ 3tg^2x+7tgx+4=0\\ (3tgx+4)(tgx+1)=0\\ \left[ \begin tgx=-\frac43\\ tgx=-1 \end \right. \Rightarrow \left[ \begin x=-arctg\frac43+\pi k\\ x=-\frac\pi4+\pi k \end \right. \end

Полученное решение даёт 4 базовых точки на числовой окружности: \(-\frac\pi4,\ -arctg\frac43,\ \frac<3\pi><4>\) и \(\pi-arctg\frac43\), которые находятся в 2-й и 4-й четвертях.
Выбираем только точки вo 2-й четверти:
\(\frac<3\pi><4>\) и \(\pi-arctg\frac43\).
Это означает, что в записи решения будут выбранные точки с периодом \(2\pi k\). \begin \left[ \begin x=\pi-arctg\frac43+2\pi k\\ x=\frac<3\pi><4>+2\pi k \end \right. \end

3) Объединяем полученные решения: \begin \left[ \begin x=arctg\frac43+2\pi k\\ x=\frac\pi4+2\pi k\\ x=\pi-arctg\frac43+2\pi k\\ x=\frac<3\pi><4>+2\pi k \end \right. \end

По аналогии с записью арксинуса можно объединить симметричные относительно оси синусов точки: \begin \left[ \begin x=arctg\frac43+2\pi k\\ x=\pi-arctg\frac43+2\pi k \end \right. \Leftrightarrow x=(-1)^k arctg\frac43+\pi k\\ \left[ \begin x=\frac\pi4+2\pi k\\ x=\frac<3\pi><4>+2\pi k \end \right. \Leftrightarrow x=(-1)^k \frac\pi4+\pi k\\ \end

Окончательно получаем: \( \left[ \begin x=(-1)^k arctg\frac43+\pi k\\ x=(-1)^k \frac\pi4+\pi k \end \right. \).
Ответ: \((-1)^k arctg\frac43+\pi k,\ \ (-1)^k \frac\pi4+\pi k\)

г) \(3sinx-4cosx=5\)
Способ 1. Вводим дополнительный угол:
\(p=\sqrt<3^2+4^2>=5\)
\(\frac35sinx-\frac45 cosx=1\)
\(sin\alpha=\frac35,\ cos\alpha=\frac45\)
\(sin\alpha sinx-cos\alpha cosx=1\)
\(cos\alpha cosx-sin\alpha sinx=-1\)
\(cos(x+\alpha)=-1\)
\(x+\alpha=\pi+2\pi k\)
\(x=-\alpha+\pi+2\pi k=-arcsin\frac35+\pi+2\pi k\)

Способ 2. Делаем универсальную подстановку: \begin sin\alpha=\frac<2tg\frac<\alpha><2>><1+tg^2\frac\alpha2>,\ \ cos\alpha=\frac<1-tg^2\frac\alpha2><1+tg^2\frac\alpha2>\\ 3\cdot \frac<2tg\frac<2>><1+tg^2\frac<2>>-4\cdot\frac<1-tg^2\frac<2>><1+tg^2\frac<2>>=5\\ \frac<6tg\frac<2>-4\left(1-tg^2\frac<2>\right)-5\left(1+tg^2\frac<2>\right)><1+tg^2\frac<2>>=0 \end \(1=tg^2\frac<2>\geq 1\), знаменатель никогда не превращается в 0, отбрасываем его и работаем с числителем: \begin -tg^2\frac<2>+6tg\frac<2>-9=0\Rightarrow tg^2\frac<2>-6tg\frac<2>+9=0\Rightarrow\left(tg\frac<2>-3\right)^2=0\Rightarrow tg\frac<2>=3\\ \frac<2>=arctg3+\pi k\Rightarrow x= 2arctg3+2\pi k \end

Докажем, что полученные ответы: $$ x=-arcsin\frac35+\pi+2\pi k\ \ \text<и>\ x=2arctg3+2\pi k $$ равнозначны, т.е. \(-arcsin\frac35+\pi=2arctg3\), и равны углы: $$ arcsin\frac35=\pi-2arctg3\ \ (*) $$ Пусть в правой части равенства (*) \(2arctg3=\varphi\). Тогда \(arctg3=\frac\varphi2\) и \(tg\frac\varphi2=3\).
А в левой части равенства (*) \(arcsin\frac35=\alpha\) и \(sin\alpha=\frac35\)
Угол \(0\lt arcsin\frac35\lt \frac\pi2\) расположен в 1-й четверти.
Угол \(\varphi=2arctg3\) расположен во 2-й четверти \((cos\varphi\lt 0,\ sin\varphi\gt 0)\). $$ cos\varphi=\frac<1-tg^2\frac\varphi2><1+tg^2\frac\varphi2>=\frac<1-3^2><1+3^2>=-\frac45,\ \ sin\varphi=\frac<2tg\frac\varphi2><1+tg^2\frac\varphi2>=\frac<2\cdot 3><1+3^2>=\frac35 $$ Получаем, что для угла \(\alpha:\ sin\alpha=\frac35,\ cos\alpha=\frac45\)
Для угла \(\varphi:\ sin\varphi=\frac35,\ cos\varphi=-\frac45\)
Откуда следует, что \(\alpha=\pi-\varphi\). Что и требовалось доказать.
Ответ: \(-arcsin\frac35+\pi+2\pi k\) или \(2arctg3+2\pi k\) (т.к. \(-arcsin\frac35+\pi=2arctg3)\)

Проект «Методы решения тригонометрических уравнений!

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

О бластное государственное автономное

дополнительного профессионального образования

«Белгородский институт развития образования»

Методы решения тригонометрических уравнений

Остапенко Татьяна Ивановна,

учитель математики и физики

МБОУ «Бехтеевская СОШ

Тригонометрические уравнения возникают при решении задач по планиметрии, стереометрии, астрономии, физики и в других областях. Еще древнегреческие математики, используя элементы тригонометрии для решения прямоугольных треугольников, фактически составляли и решали простейшие тригонометрические уравнения. Исторически учение о решении тригонометрических уравнений формировалось с развитием теории тригонометрических функций, а также черпало из алгебры общие методы их решения.

Цель работы: изучить методы решения тригонометрических уравнений, исследовать применение их к решению уравнений повышенной сложности и задач различного содержания.

Уравнение, содержащее неизвестную величину под знаком триго­нометрической функции, называется тригонометрическим.

Часть тригонометрических уравнений непосредственно решается сведением их к простейшему виду, иногда – с предварительным разложением левой части уравнения на множители, когда правая часть равна нулю. В некоторых случаях удается произвести замену неизвестных таким образом, что тригонометрическое уравнение преобразуется в «удобное» для решения алгебраическое уравнение.

Простейшие тригонометрические уравнения — это уравнения вида

sin x = a, cos x= a, tq x = a, ctq x = a

Каждое из таких уравнений решается по формулам, которые следует знать.

sinx = a, x = (-1) k arcsin a + πk, k Є Z,

arcsin a — угол, содержащийся в промежутке от — π/2 до π/2, синус которого равен a.

cosx= a, x= arccos a +2πk, k Є Z,

arccos a — угол, содержащийся в промежутке от 0 до π, косинус которого равен a .

tq x = a, x = arctq a + πk, k Є Z,

arctg a — угол, содержащийся в промежутке от — π/2 до π/2, тангенс которого равен a .

ctq x = a, x = arcctq a + πk, k Є Z,

arcctg a — угол, содержащийся в промежутке от 0 до π, котангенс которого равен a .

Поскольку каждому значению тригонометрической функции соответствует неограниченное множество углов, то тригонометрическое уравнение, если не сделано каких-либо оговорок, имеет бесчисленное множество решений.

Особо используются частные случаи элементарных тригонометрических уравнений, когда тригонометрические функции равны -1, 0, 1, в которых решение записывается без применения общих формул.

При решении тригонометрических уравнений важную роль играет период тригонометрических функций.

Рекомендации по решению тригонометрических уравнений

Если аргументы функций одинаковые, попробовать получить одинаковые функции, использовав формулы без изменения аргументов.

Если аргументы функций отличаются в два раза, попробовать получить одинаковые аргументы, использовав формулы двойного аргумента.

Если аргументы функций отличаются в четыре раза, попробовать их привести к промежуточному двойному аргументу.

Если есть функции одного аргумента, степени свыше первой, попробовать понизить степень, используя формулы понижения степени или формулы сокращенного умножения.

Если есть сумма одноименных функций первой степени с разными аргументами (вне случаев 2,3), попробовать преобразовать сумму в произведение для появления общего множителя.

Если есть сумма разноимённых функций первой степени с разными аргументами (вне случаев 2, 3), попробовать использовать формулы приведения, получить затем случай 5.

Если в уравнении есть произведение косинусов (синусов) различных аргументов, попробовать свести его к формуле синус двойного аргумента, умножив и разделив это выражение на синус (косинус) подходящего аргумента:

Если в уравнении есть числовое слагаемое (множитель), то его можно представить в виде значений функции угла. Например:

Методы решения тригонометрических уравнений.

При решении тригонометрических уравнений все задачи сводятся к тому, чтобы привести к такому виду, чтобы слева стояла элементарная тригонометрическая функция, а справа – число. После того, как это будет достигнуто, следует найти значение аргумента функции , используя одну из основных формул выражения аргумента через обратные тригонометрические функции.

Алгебраические уравнения относительно одной из тригонометри­ческих функций.

Необходимо произвести замену неизвестных таким образом, чтобы тригонометрическое уравнение преобразовалось в «удобное» для решения алгебраическое уравнение.

1)Решить уравнение 2 sin 2 + 3 sin —2 = 0.

Это уравнение является квадратным относительно sin .

Его корни: sin = , sin =—2. Второе из полученных простейших уравнений не имеет решений, так как Isin l 1, решения первого можно записать так:

+2 k ,π+ 2 k

Если в уравнении встречаются разные тригонометрические функции, то надо заменить их все на какую-нибудь одну, используя три­гонометрические тождества.

2) Решить уравнение 2 sin + cos = 2.

Если в этом уравнении заменим косинус на синус (по аналогии с предыдущими примерами) или наоборот, то по­лучим уравнение с радикалами. Чтобы избежать этого, ис­пользуем формулы, выражающие синус и косинус через тангенс половинного угла:

и .

Делая замену, получаем уравнение относительно: .

Квадратное уравнение имеет корни откуда

Это же уравнение можно решить другим способом, вводя вспомогательный угол:

Пусть. Тогда можно продолжить преобразование: . Получаем простей­шее уравнение т. е. , откуда , или

Ответ получился в другом виде, однако можно проверить, что решения на самом деле совпадают.

Понижение порядка уравнения.

Формулы удвоения позволяют квадраты синуса, косинуса и их произведения заме­нять линейными функциями от синуса и косинуса двойного угла. Такие замены делать выгодно, так как они понижают порядок уравнения.

1)Решить уравнение.

Можно заменить cos 2 на 2 cos 2 —1 и получить квадратное уравнение относительно cos , но проще заменитьна и получить линейное уравнение относительно.

2) Решить уравнение

Подставляя вместо, их выражения через, получаем:

,

2

Использование тригонометрических формул сложения и след­ствий из них.

Иногда в уравнениях встречаются тригонометрические функции кратных углов. В таких случаях нужно использовать формулы сложения.

1) Решить уравнение.

Сложим два крайних слагаемых:, откуда,. Тогда, .

2) Решить уравнение.

Преобразуем произведение синусов в сумму:,

откуда. Полученное уравнение можно ре­шить разными способами: 1) воспользоваться формулами сложения; 2) преобразовать в произведение. Удобнее воспользоваться условием равенства косинусов двух углов и:.

Получаем два уравнения:.

Здесь решения второй серии содержат в себе все решения первой серии. Учитывая это, ответ можно записать короче:.

Уравнение, в котором каждое слагаемое имеет одну и ту же степень, называется однородным. Его можно решить, выполнив деление на старшую степень синуса (или косинуса).

Так как, то постоянные слагаемые можно счи­тать членами второй степени.

Пример: .

Заменяя 4 на ,получаем:

Переход к половинному углу

Рассмотрим этот метод на примере:

Пример 6. Решить уравнение: 3 sin x – 5 cos x = 7.

6 sin ( x / 2 ) · cos ( x / 2 ) – 5 cos ² ( x / 2 ) + 5 sin ² ( x / 2 ) =

= 7 sin ² ( x / 2 ) + 7 cos ² ( x / 2 ) ,

2 sin ² ( x / 2 ) – 6 sin ( x / 2 ) · cos ( x / 2 ) + 12 cos ² ( x / 2 ) = 0 ,

t g ² ( x / 2 ) – 3 t g ( x / 2 ) + 6 = 0 ,

Введение вспомогательного угла

Рассмотрим уравнение вида:

a sin x + b cos x = c ,

где a, b, c – коэффициенты; x – неизвестное.

Теперь коэффициенты уравнения обладают свойствами синуса и косинуса, а именно: модуль (абсолютное значение ) каждого из них не больше 1, а сумма их квадратов равна 1. Тогда можно обозначить их соответственно как cos и sin ( здесь — так называемый вспомогательный угол ), и наше уравнение принимает вид:

Пример. Решить уравнение:

Приемы решения тригонометрических уравнений, требующих искусственных преобразований.

Умножение обеих частей уравнения на одну и ту же тригонометрическую функцию.

Пример. Решите уравнение

Решение. Раскроем скобк и и преобразуем про­изведение

в сумму:

Умножим обе части уравнения на. Заме­тим, что , не является решением данного уравнения. . Преобразуем левую часть уравнения:

; или тогда

или, т.е.

Исключим из найденных серий корни вида , :

а). Ясно, что — четное число, т.е. , а потому .

б). Tax как , то ,но тогда ,.

Ответ:

Прибавление к обеим частям уравнения одного и того же числа, одной и той же тригонометрической функции.

Пример. Решите уравнение.

Решение. Область определения уравнения задается неравенствами:

При6авим к обеим частям уравнения по единице. ;

Разделим обе части уравнения на и после преобразований получим.

Тогда или .

Из первой серии корней области определения принадлежит только , но это серия корней содержится в серии. Нетрудно убедиться, что входит в область определения. Например:что верно, поскольку левая часть — число четное, а правая — нечетное.

Ответ:.

Тождественные преобразования одной из частей уравнения.

Пример. Решите уравнение .

Решение. Преобразуем левую часть уравнения:

Откуда , тогда или

Легко видеть, что

Ответ:

Использование свойств пропорции.

Необходимо помнить, что применение равенств

и т. д. приводит к изменению области определения урав­нения. Так, у пропорции существует ограничение: , а у пропорции место другое ограничение:.

Пример. Решите уравнение

Решение. Применяя формулу тангенса разности, получим уравнение: . Используем свойство пропорции: ;

Область определения исходного уравнения:

В ходе решения произошло сужение области определения, добавились новые, ограничения: откуда

Проверим, удовлетворяют ли исходному уравне­нию значения

а) -верное равенство,

— решение исходного уравнения.

б) верное равенство.

в)-1 -1 — верное равенство, Ответ:

Решение тригонометрических уравнений методом экстремальных значений.

При решении некоторых тригонометрических уравнений бывает удобно использовать ограничен­ность функций, и. Покажем это на конкретных примерах.

Пример 1. Решите уравнение .

Решение. Так как , то ,, откуда и возможные корни данного уравнения Подставив эти значения в левую часть уравне­ния, получим а последнее равенство возможно только при .

Следовательно, — решение дан­ного уравнения.

Ответ:

Пример 2. Решите уравнение .

Решение. Легко видеть, что и . Следовательно, , но тогда , , откуда , — возможные корни данного

уравнения. Подстановка в данное урав­нение показывает, что эти числа действительно являются его корнями.

Ответ:.

Уравнения, содержащие модуль функции и корень четной степени

При отборе корней нет надобности решать неравенство, достаточно вынести корни на тригонометрический круг и выбрать нужные.

Ответ:

Решение: Учитывая ОДЗ функций, получим:

Ответ:

Уравнения повышенной сложности

2sin 3 x +2sin 2 x cos x – sin x cos 2 x – cos 3 x = 0 | : cos 3 x ≠ 0;

т.к. уравнение однородное тригонометрическое 3-ей степени

2 tg 3 x + 2 tg 2 x – tgx – 1 = 0;

Разложим левую часть на множители, сгруппировав члены, получим

(tg x + 1)(2tg 2 x – 1) = 0;

tgx = -1 х = — + n , n ͼ Z

tgx= ; х = arctg + k, k ͼ Z.

Ответ : — + n , n ͼ Z ; arctg + k, k ͼ Z.

( Сканави М.И. 8.081)

6sin 2 x + sin x cos x – cos 2 x = 2;

4sin 2 x + sin x cos x – 3 cos 2 x = 0; | : cos 2 x ≠ 0;

т. к. уравнение однородное тригонометрическое 2-ой степени

4tg 2 x + tg x – 3 = 0;

tgx = -1, х = — + n , n ͼ Z

tgx= ; х = arctg + k, k ͼ Z.

Ответ : — + n , n ͼ Z;

arctg + k, k ͼ Z.

( Сканави М.И. 8.076)

sin x – sin 2 x + sin 5 x + sin 8 x = 0;

сгруппировав первое с третьим, второе с четвертым слагаемые левой части и применив формулы суммы и разности синусов, получим

2sin 3x cos 2x + 2sin 3x cos 5x = 0;

вынесем в левой части общий множитель за скобки и применим формулу суммы косинусов

2sin 3x ∙ 2 cos cos = 0;

sin 3x = 0, x = , n ͼ Z

cos = 0, x = + , k ͼ Z

cos = 0; x = + , m ͼ Z.

Произведем отбор корней, воспользовавшись тригонометрической окружностью

Ответ: , n ͼ Z ;

+ , k ͼ Z \ < 7 m +3| m ͼ Z >.

( Сканави М.И. 8.076)

= 2;

воспользуемся формулой косинуса двойного угла

= 2;

sin = 1,

sin ≠ 0;

sin = 1;

х= + 4 , k ͼ Z .

Ответ: + 4 , k ͼ Z .

(Сканави М.И. 8.120)

+ =0

;понизим степень, воспользовавшись формулами косинуса двойного угла

1 +cos x +1 + cos 3x -1 +cos 4x -1 +cos 8x =0;

сгруппируем слагаемые и воспользуемся формулой суммы косинусов

2cos 2x cos x + 2cos 2x cos 6x =0;

2cos 2x 2cos 3,5x cos 2,5x=0;

произведение всюду определенных множителей равно нулю тогда и только тогда, когда хотя бы один из этих множителей равен нулю

cos 2x=0 2x= + , n ͼ Z

cos 3,5x=0 3,5x= + , m ͼ Z

cos 2,5x=0; 2,5x= + , k ͼ Z;

x= + , n ͼ Z

x= + , m ͼ Z

x= + , k ͼ Z .

Ответ: + , n ͼ Z ;

+ , m ͼ Z ;

+ , k ͼ Z .

Изучение тригонометрических уравнений позволяет учащимся овладеть конкретными математическими знаниями, необходимыми для применения в практической деятельности, для изучения смежных дисциплин, развития умственных способностей, умение извлекать учебную информацию на основе сопоставительного анализа графиков, самостоятельно выполнять различные творческие работы.

В данной работе рассмотрены основные методы решения тригонометрических уравнений, причем, как специфические, характерные только для тригонометрических уравнений, так и общие функциональные методы решения уравнений, применительно к тригонометрическим уравнениям.

Для успешного решения уравнений необходимо знать формулы корней простейших тригонометрических уравнений, значение тригонометрических функций для основных углов и значение обратных тригонометрических функций, универсальные правила решения уравнений. Рассмотрено решение элементарных тригонометрических уравнений, метод разложения на множители, методы сведения тригонометрических уравнений к алгебраическим. Указано, что при решении тригонометрических уравнений широко используются тождества, выражающие соотношение между тригонометрическими функциями одного и разных аргументов.

Приведенные методы не исчерпывают все многообразие способов решений тригонометрических уравнений. Однако рассмотренные типы уравнений встречаются наиболее часто и важно уметь распознавать в данном уравнении тот или иной тип.

Результаты данной работы могут быть использованы в качестве учебного материала при подготовке творческих работ, при составлении факультативных курсов для школьников, так же работа может применяться при подготовке учащихся к Единому государственному экзамену, вступительным экзаменам.

Алексеев А. Тригонометрические подстановки. // Квант. – 1995. — №2. –с. 40 – 42.

Выгодский М. Я. «Справочник по элементарной математике». М., «Наука», 1982 г.

Г. И. Глейзер История математики в школе. – М.: «Просвещение» 1983г.

Карасев В.А., Лёвшина Г.Д. «12 уроков по тригонометрии» — М.: Илекса, 2013.- 200 с.:ил.

Крамор В.С. Тригонометрические функции. – М.: Просвещение, 1979.

Сост. Гряда Н. Н. и др. Обобщающее повторение в системе подготовки к ЕГЭ по теме «Тригонометрические уравнения», Армавир, 2005г.

Цукарь А.Я. Упражнения практического характера по тригонометрии //Математика в школе. 1993-№3- с 12-15.

Шаталов В.Ф. Методические рекомендации для работы с опорными сигналами по тригонометрии. — М.: Новая школа, 1993.


источники:

http://reshator.com/sprav/algebra/10-11-klass/osnovnye-metody-resheniya-trigonometricheskih-uravnenij/

http://infourok.ru/proekt_metody_resheniya_trigonometricheskih_uravneniy-574453.htm