Метод последовательных приближений на примере решения уравнения

Метод итераций решения системы уравнений. Пример решения

Решение получаем с помощью калькулятора Решение СЛАУ методом итераций .

Достаточное условие сходимости метода простых итераций

Прежде чем применять метод итераций, необходимо переставить строки исходной системы таким образом, чтобы на диагонали стояли наибольшие по модулю коэффициенты матрицы. Если при этом условие все таки не выполняется, то иногда удается обеспечить сходимость метода с помощью следующего метода.
Пусть дана система Ax = b. Преобразуем ее к виду: x= Qx + c
где Q = E — D•A, c = D•b
Здесь D — некоторая матрица. Нам необходимо подобрать такую матрицу D, чтобы выполнялось условие |Q| 0 =β, тогда:
x 1 =b — a x 0
x 2 =b — a x 1
.
x k+1 =b — a x k
Для нашей задачи достаточное условие сходимости выполняется.

102-1
-2-6-1
1-312

Приведем к виду:
x1=0.5-(0.2x2-0.1x3)
x2=-4.07-(0.33x1+0.17x3)
x3=3-(0.0833x1-0.25x2)
Покажем вычисления на примере нескольких итераций.
N=1
x1=0.5 — 0 • 0.2 — 0 • (-0.1)=0.5
x2=-4.07 — 0 • 0.33 — 0 • 0.17=-4.07
x3=3 — 0 • 0.0833 — 0 • (-0.25)=3
N=2
x1=0.5 — (-4.07) • 0.2 — 3 • (-0.1)=1.61
x2=-4.07 — 0.5 • 0.33 — 3 • 0.17=-4.74
x3=3 — 0.5 • 0.0833 — (-4.07) • (-0.25)=1.94
N=3
x1=0.5 — (-4.74) • 0.2 — 1.94 • (-0.1)=1.64
x2=-4.07 — 1.61 • 0.33 — 1.94 • 0.17=-4.93
x3=3 — 1.61 • 0.0833 — (-4.74) • (-0.25)=1.68
Остальные расчеты сведем в таблицу.

Nx1x2x3e1e2e3
0000
10.5-4.0730.54.073
21.61-4.741.941.110.67-1.06
31.64-4.931.680.02740.19-0.26
41.65-4.91.630.013-0.0341-0.051
51.64-4.891.64-0.0119-0.004160.00744
61.64-4.891.64-8.8E-5-0.002730.00203
71.64-4.891.64-0.0003430.000310.000691

Ответ: x1=1.64, x2=-4.89, x3=1.64

Пример №2 . Решить систему уравнений Ax = b с точностью 0.05 методами: 1) простой итерации; 2) Зейделя. Указание. Для обеспечения выполнения достаточного условия сходимости воспользоваться перестановкой строк в исходной системе уравнений.

Метод последовательных приближений решения дифференциального уравнения

Пусть требуется найти решение дифференциального уравнения

Будем предполагать, что в некотором прямоугольнике для уравнения (1) выполнены условия а) и б) теоремы существования и единственности решения задачи (1)-(2).

Решение задачи (1)-(2) может быть найдено методом последовательных приближений , который состоит в следующем.

Строим последовательность функций, определяемых рекуррентными соотношениями

В качестве нулевого приближения можно взять любую функцию, непрерывную в окрестности точки , в частности — начальное значение Коши (2). Можно доказать, что при сделанных предположениях относительно уравнения (1) последовательные приближения сходятся к точному решению уравнения (1), удовлетворяющему условию (2), в некотором интервале , где

Оценка погрешности, получаемой при замене точного решения n-м приближением , даётся неравенством

где . Применяя метод последовательных приближений, следует остановиться на таком , для которого не превосходит допустимой погрешности.

Пример 1. Методом последовательных приближений найти решение уравнения , удовлетворяющее начальному условию .

Решение. Очевидно, что для данного уравнения на всей плоскости выполнены условия теоремы существования и единственности решения задачи Коши. Строим последовательность функций, определяемых соотношениями (3), приняв за нулевое приближение :

Ясно, что при . Непосредственной проверкой убеждаемся, что функция решает поставленную задачу Коши.

Пример 2. Методом последовательных приближений найти приближенное решение уравнения , удовлетворяющее начальному условию в прямоугольнике

Решение. Имеем , т. е. . За берем меньшее из чисел , т. е. . Последовательные приближения согласно (4) будут сходится в интервале . Составляем их

Абсолютная погрешность третьего приближения не превосходит величины

Замечание. Функция должна удовлетворять всем условиям теоремы существования и единственности решения задачи Коши.

Следующий пример показывает, что одной непрерывности функции недостаточно для сходимости последовательных приближений.

Пусть функция определена следующим образом:

На множестве , функция непрерывна и ограничена постоянной . Для начальной точки последовательные приближения при имеют вид:

Поэтому последовательность для каждого не имеет, предела, т. е. последовательные приближения не сходятся. Заметим также, что ни одна из сходящихся подпоследовательностей и не сходится к решению, поскольку

Если же последовательные приближения сходятся, то полученное решение может оказаться неединственным , как показывает следующий пример: .

Возьмем начальное условие ; тогда

Беря в качестве нулевого приближения функцию , будем иметь

так что все последовательные приближения равны нулю и поэтому они сходятся к функции, тождественно равной нулю. С другой стороны, функция представляет собой также решение этой задачи, существующее на полупрямой .

Метод последовательных приближений

Вы будете перенаправлены на Автор24

Одной из целей этого метода состоит в нахождении приближенных решений уравнений. Одним из таких методов является метод простой итерации.

Метод простой итерации

Метод простой итерации — один из самых простейших численных методов для решения уравнений.

Идея метода простой итерации.

Пусть нам необходимо решить уравнение $f\left(x\right)=0$.

Вначале для его решения приведем его к эквивалентному уравнению вида

Рассмотрим пример такого приведения:

Привести уравнение $-x^2=0$ к виду $x=\varphi (x)$.

Решение.

Здесь есть три способа такого преобразования:

После этого каким-либо образом выбирается начальное приближение $x_0$, вычисляется значение $\varphi (x_0)$ и находится уточненное значение $x_1=\varphi (x_0)$. Следующее уточненное значение будет находиться как $x_2=\varphi (x_1)$ и т.д. Каждый такой шаг называется шагом итерации.

Сформулируем и докажем следующую теорему:

Функция $\varphi (x)$ определена и дифференцируема на отрезке $[a,b]$ и $\varphi (x)\in [a,b]$. Тогда, если \textbar $<\varphi >‘\left(x\right)|

Процесс итерации $x_n=\varphi (x_)$ сходится независимо от начального положения $x_0$;

$<\mathop_ x_n\ >=X$ — единственный корень уравнения $x=\varphi (x)$ на отрезке $[a,b]$.

Доказательство.

\item Так как $X=\varphi (x)$ и $x_n=\varphi (x_)$, то

\[x_n-X=\varphi \left(x_\right)-\varphi \left(x\right)=\left(\varphi \left(x_\right)-\varphi \left(x\right)\right)\frac-x>-x>=\] \[=\frac<\varphi \left(x_\right)-\varphi \left(x\right)>-x>\cdot x_-x\]

По теореме о среднем, получаем

Пусть $M=max |<\varphi >‘\left(x\right)|$, тогда $|x_n-X|\le M|x_-x|$. Также$|x_-X|\le M|x_-x|$. Но тогда получим

\[\left|x_n-X\right|\le M\left|x_-x\right|\le M^2\left|x_-x\right|и\ т.д.\]

То есть получим, что

Следовательно, для того чтобы метод сходился нужно, чтобы $M=max |<\varphi >‘\left(x\right)|$ было меньше единицы, значит $\left|<\varphi >‘\left(x\right)\right|

Рассмотрим $x_n=\varphi (x_)$ и $x_=\varphi (x_n)$.

\[x_-x_n=\varphi \left(x_n\right)-\varphi (x_)\]

По теореме о среднем $x_-x_n=f’\left(x_n\right)(x_n-x_)$.

Так как $\left|<\varphi >‘\left(x\right)\right|\le q

Рассмотрим теперь $f\left(x\right)=x-\varphi \left(x\right)$, $f^<'\left(x\right)>=1-<\varphi >^<'\left(x\right)>\ge 1-q$. Значит, $\left|x_n-\varphi \left(x_n\right)\right|=\left|f\left(x_n\right)-f\left(X\right)\right|=\left|x_n-X\right|\left|f’\left(x_n\right)\right|\ge \left(1-q\right)|x_n-X|$. Следовательно, $|x_n-X|\le \frac<\left|x_n-\varphi \left(x_n\right)\right|><1-q>\le \frac<|x_-x_n|><1-q>$.

Из двух полученных неравенств, имеем

Пусть $|x_n-X|\le \varepsilon $, тогда $x_0,x_1,\dots ,x_n$ нужно вычислять до тех пор, пока не выполнится неравенство $|x_n-x_|\le \frac<\varepsilon (1-q)>$, тогда получим, что $X=x_n\pm \varepsilon $. Отсюда следует, что $X$ корень уравнения $x=\varphi (x)$, то есть $X=\varphi (X)$.

Предположим, что это уравнение имеет еще один корень $X’=\varphi \left(X’\right)$. Отсюда $X’-X=\varphi \left(X’\right)-\varphi \left(X\right)$, тогда $\left(X’-X\right)\left|1-<\varphi >‘\left(C\right)\right|=0$. Значит $X’=X$.

Готовые работы на аналогичную тему

Теорема доказана.

Из теоремы будет вытекать погрешность метода простой итерации. Она определяется следующей формулой:

Также из нее можно выделить критерий окончания метода простой итерации. Он говорит, что процесс итерации необходимо продолжать до выполнения следующего неравенства:

Рассмотрим теперь на примере использование метода простой итерации.

Решить уравнение $sinx-x^2=0$ с точностью до $\varepsilon =0,001$.

Решение.

Вначале приведем уравнение к виду $x=\varphi (x)$.

Очевидно, что корень уравнения находит на отрезке $\left[\frac<\pi ><6>,\frac<\pi ><3>\right]$.

Найдем $\varphi (x)$:

Она возрастает на отрезке $\left[\frac<\pi ><6>,\frac<\pi ><3>\right]$, следовательно принимает максимальное значение, при $x=\frac<\pi ><3>$. $\left|<\varphi >‘\left(x\right)\right|\le \left|<\varphi >‘\left(\frac<\pi ><3>\right)\right|\approx 0,312$.

Условие выполняется, $q \[|x_n-x_|\le \varepsilon \]

Это неравенство выполнится на 5 шаге.

Приведем таблицу промежуточных решений, взяв за $x_0$ единицу:

Ответ: приближенное значение с заданной точностью — $0,8765$.

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 08 04 2021


источники:

http://mathhelpplanet.com/static.php?p=metod-posledovatelnyh-priblizheniy

http://spravochnick.ru/matematika/pokazatelnaya_funkciya/metod_posledovatelnyh_priblizheniy/