Метод сетки для решения дифференциальных уравнений

Численные методы решения краевых задач

Постановка задачи и основные положения

Рассмотрим двухточечные краевые задачи, часто встречающиеся в приложениях, например, при решении задач вариационного исчисления, оптимального управления, механики жидкости и газа и др. Пусть дано обыкновенное дифференциальное уравнение

и краевые условия

где [math]F \bigl(x,y,y’,\ldots,y^<(n)>\bigr);

j=\overline[/math] — функции указанных аргументов, заданные в некоторой области их изменения; [math]L[/math] и [math](n-L)[/math] — число условий на левом и правом концах отрезка [math][a,b][/math] соответственно. Общее количество условий равно порядку дифференциального уравнения. Требуется найти функцию [math]y=y(x)[/math] , которая на отрезке [math][a,b][/math] удовлетворяет уравнению (7.1), а на концах отрезка — краевым условиям (7.2).

Если уравнения (7.1),(7.2) линейны относительно искомой функции и ее производных, то краевая задача называется линейной.

Для простоты ограничимся частным случаем линейной краевой задачи для дифференциального уравнения второго порядка [math](n=2)[/math] , которая наиболее часто ставится в вычислительной практике и записывается в виде

(\Omega \equiv [a,b]),[/math]

где [math]p(x),\, q(x),\, f(x)\in C_2[a,b][/math] — заданные функции, а [math]\alpha_0,\,\alpha_1,\, \beta_0,\, \beta_1,\,A,\,B[/math] — заданные числа, 0,

j=0;1[/math] . Требуется найти функцию [math]y(x)[/math] , удовлетворяющую уравнению (7.3) и краевым условиям (7.4). Краевые условия при [math]\alpha_\ne0,

j=0;1[/math] , задают линейную связь между значениями искомого решения и его производной на концах отрезка [math][a,b][/math] .

В простейшем случае, когда [math]\beta_0=0,

\beta_1=0[/math] , краевые условия задают на концах отрезка [math][a,b][/math] только значения функции [math]y(a),\,y(b)[/math] . Такие функциональные условия называют краевыми условиями первого рода. В этом случае краевая задача называется первой краевой задачей.

В случае, когда [math]\alpha_0=0,

\alpha_1=0[/math] , т.е. на концах отрезка заданы только значения производных, краевые условия являются дифференциальными. Такие краевые условия называют условиями второго рода или «мягкими». Последнее название обусловлено тем, что они определяют на концах отрезка [math][a,b][/math] всего лишь наклоны интегральных кривых, а не значения функции [math]y(x)[/math] . В этом случае задача (7.3),(7.4) называется второй краевой задачей.

В общем случае, когда [math]\alpha_0[/math] и (или) [math]\alpha_1;

\beta_0[/math] и (или) [math]\beta_1[/math] не равны нулю, краевые условия носят функционально-дифференциальный характер и называются условиями третьего рода. Тогда задача (7.3),(7.4) называется третьей краевой задачей.

Например, условия [math]y(a)=A,

y(b)=B[/math] являются условиями первого рода. Геометрически это означает, что при решении первой краевой задачи требуется найти интегральную кривую уравнения (7.3), проходящую через данные точки [math](a,A),\, (b,B)[/math] (рис. 7.1,а). Условия [math]y'(a)=A,\, y'(b)=B[/math] являются условиями второго рода. Геометрически вторая краевая задача сводится к отысканию интегральной кривой уравнения, пересекающей прямые [math]x=a,

x=b[/math] под заданными углами [math]\alpha,\,\beta[/math] , где [math]\operatorname\alpha=A,

\operatorname\beta=B[/math] (рис. 7.1,6). Условия [math]y'(a)=A,

y(b)=B[/math] являются частным случаем краевых условий третьего рода, так как [math]\alpha_0=0,

\beta_1=0[/math] . Геометрически данная краевая задача сводится к отысканию интегральной кривой уравнения, проходящей через точку [math](b,B)[/math] и пересекающей прямую [math]x=a[/math] под данным углом [math]\alpha[/math] , где [math]\operatorname\alpha= A[/math] (рис. 7.1,в).

В общем случае краевая задача может:

а) иметь единственное решение;

б) не иметь решений;

в) иметь несколько или бесконечно много решений.

Утверждение 7.1 (о существовании и единственности решения краевой задачи (7.3),(7.4)). Для того чтобы существовало единственное решение краевой задачи (7.3),(7.4), необходимо и достаточно, чтобы однородная краевая задача

имела только тривиальное решение [math]y(x)\equiv0[/math] .

Пример 7.1. Найти аналитическое решение следующих краевых задач:

0 \leqslant x \leqslant \frac<\pi><2>,

y\! \left(\frac<\pi><2>\right)-y’\! \left(\frac<\pi><2>\right)=2[/math] (третья краевая задача);

0 \leqslant x \leqslant 1,

y(1)=0[/math] (первая краевая задача).

Воспользуемся известной методикой отыскания общих решений дифференциальных уравнений. Подставив в них заданные краевые условия, получим аналитические решения данных краевых задач.

1. Найдем общее решение однородного уравнения [math]y»+y=0[/math] , одинакового для обеих рассматриваемых задач. Так как характеристическое уравнение [math]\lambda^2+1=0[/math] имеет комплексные сопряженные корни [math]\lambda_<1,2>=\pm i= \alpha\pm \beta i[/math] [math](\alpha=0,

\beta=1)[/math] , то общее решение будет

2. Частные решения неоднородных уравнений находятся методом подбора. Подставляя [math]y_<\text>(x)=C[/math] в уравнение [math]y»+y=1[/math] , а [math]y_<\text>(x)=Dx[/math] в уравнение [math]y»+y=-x[/math] , получаем [math]C=1,

D=-1[/math] . Поэтому [math]y_<\text>(x)=1[/math] в случае «а», [math]y_<\text>(x)=-x[/math] в случае «б».

3. Найдем общее решение неоднородного уравнения как сумму общего решения однородного уравнения и частного решения неоднородного уравнения:

а) [math]y(x)=C_1\cos x+C_2\sin x+1[/math] ; б) [math]y(x)=C_1\cos x+C_2\sin x-x[/math] .

4. Определим значения произвольных постоянных из краевых условий третьего рода (случай «а») и первого рода (случай «б»):

а) найдем [math]y'(x)=-C_1\sin x+C_2\cos x[/math] . Тогда

Отсюда [math]C_1=1[/math] и [math]y(x)=1+\cos x[/math] — решение краевой задачи «а»;

б) общее решение [math]y(x)=C_1\cos x+C_2\sin x-x[/math] и, следовательно, [math]y(0)=C_1=0,

y(1)=C_1\cos1+ C_2\sin1-1=0[/math] , отсюда [math]C_2= \frac<1><\sin1>[/math] и [math]y(x)=\frac<\sin x><\sin1>-x[/math] — решение краевой задачи «б». Таким образом, решение краевой задачи представляет собой такое частное решение, которое удовлетворяет краевым условиям.

Рассмотренный метод нахождения аналитического решения краевых задач применим для ограниченного класса задач. Поэтому в вычислительной практике используются численные и приближенно-аналитические методы, позволяющие найти приближенное решение краевых задач, точные аналитические решения которых не могут быть найдены.

Метод сеток

Рассмотрим линейную краевую задачу с краевыми условиями первого рода (первую краевую задачу):

где [math]p(x),q(x),f(x)\in C_2[a,b][/math] — заданные функции; [math]A,\,B[/math] — заданные числа.

Очевидно, любой отрезок [math][a,b][/math] , на котором ищется решение краевой задачи, можно привести к отрезку [math][0;1][/math] с помощью линейного преобразования [math]\widetilde= \frac[/math] . Действительно, тогда новая переменная [math]\widetilde\in [0;1][/math] . В результате без ограничения общности краевая задача (7.5) может быть решена сначала на отрезке [math][0;1][/math] , а затем это решение с помощью преобразования [math]x=a+(b-a)\cdot \widetilde[/math] может быть записано на отрезке [math][a,b][/math] . То же относится и к исследованию свойств полученного решения.

Утверждение 7.2 (о единственности решения краевой задачи (7.5)). Если функции [math]p(x),q(x),f(x)[/math] принадлежат классу [math]C_2[a,b],

q(x) \geqslant 0[/math] на [math][0;1][/math] , то краевая задача (7.5) имеет единственное решение [math]y(x)\in C_4[0;1][/math] .

Для решения задачи (7.5) применим метод сеток, получаемый путем аппроксимации первой и второй производных. Введем равномерную сетку (где [math]n[/math] — число отрезков разбиения)

Функции [math]p(x),q(x),f(x)[/math] заменяются их проекциями на сетку [math]\Omega_n[/math] , то есть [math]p(x)\to p(x_)=p_i,[/math] [math]q(x)\to q(x_)=q_i,[/math] [math]f(x)\to f(x_)= f_i,[/math] . Вместо точного решения [math]y(x)[/math] отыскивается некоторое приближение [math]\widehat_= \widehat(x_)\approx y(x_),

i=\overline<0,n>[/math] . Первая и вторая производные аппроксимируются на трехточечном шаблоне [math](x_,x_,x_)[/math] по формулам второго порядка (5.10),(5.14):

Краевые условия для этой задачи аппроксимируются точно, т.е. [math]y(a)[/math] и [math]y(b)[/math] заменяются на [math]\widehat_<0>[/math] и [math]\widehat_[/math] . После замены от дифференциальной задачи (7.5) переходим к разностной схеме:

представляющей собой систему алгебраических уравнений трехдиагонального вида:

\delta_=f_[/math] . Здесь система (7.6) записана для внутренних узлов сетки [math]\Omega_n[/math] . Она является трехдиагональной системой линейных алгебраических уравнений и решается методом прогонки.

1. Изложенный метод сеток допускает обобщение. Например, его можно применять для решения нелинейной краевой задачи:

где [math]F(x,y)[/math] — нелинейная по [math]y[/math] функция (в общем случае, который здесь не рассматривается, функция [math]F[/math] зависит также и от [math]y'[/math] ).

Рассуждая аналогично рассмотренному выше способу, перейдем к разностной задаче:

В силу нелинейности правой части полученная алгебраическая система является нелинейной и для ее решения нельзя использовать метод прогонки в том виде, в каком он изложен для линейной задачи. Поэтому для ее решения используем метод простых итераций, с помощью которого при фиксированном [math]k[/math] (номер итерации) система алгебраических уравнений (7.8) превращается в линейную, так как величины, входящие в правую часть системы, известны из предыдущей итерации. Действительно, для k-й итерации получается система (которая решается на каждой итерации методом прогонки)

Можно показать, что итерации сходятся при выполнении условия [math]q=\frac<1><8>(x_n-x_0)^2M_1 [math]M_1=\max_<[a,b]>\left|\frac<\partial F><\partial y>\right|[/math] с линейной скоростью.

2. Краевые условия второго и третьего рода в задаче, аналогичной (7.5), могут быть аппроксимированы несколькими способами.

Первый способ. Использование аппроксимационных формул (5.4) первого порядка

В силу первого порядка этих аппроксимаций метод сеток в этом случае также будет иметь первый порядок аппроксимации.

Второй способ. Применение формулы Тейлора и ее преобразование с использованием дифференциального уравнения. Таким способом может быть достигнут второй порядок аппроксимации.

Третий способ. Применение левосторонней (5.8) и правосторонней (5.9) формул, аппроксимирующих производные со вторым порядком:

3. Порядок аппроксимации схемы определяется минимальным порядком аппроксимации дифференциального уравнения и краевых условий.

Алгоритм применения метода сеток

1. Задать сетку [math]\Omega_n[/math] на отрезке [math][a,b][/math] или сформировать ее из условий достижения требуемой точности.

2. Используя аппроксимационные формулы (5.10),(5.14) и один из трех способов аппроксимации краевых условий (в случае, если они второго или третьего рода), перейти от исходной дифференциальной задачи к системе алгебраических уравнений (разностной схеме), неизвестными в которой являются величины, «близкие» к решению краевой задачи в узлах сетки.

3. Найти решение разностной задачи путем решения трехдиагональной системы уравнений и таким образом определить приближенное решение краевой задачи.

Пример 7.2. Найти приближенное решение краевой задачи [math]y»+y=1,

0 \leqslant x \leqslant \frac<\pi><2>,[/math] [math]y'(0)=0,[/math] [math]y\! \left(\frac<\pi><2>\right)-y’\! \left(\frac<\pi><2>\right)=2[/math] при [math]n=3[/math] , используя первый способ аппроксимации краевых условий. Записать разностные схемы для второго и третьего способов при произвольном [math]n[/math] .

В поставленной задаче

Для решения задачи воспользуемся методикой.

1. Так как [math]n=3[/math] , то сетка имеет вид [math]\Omega_3=\[/math] , где [math]x_=ih,

y\! \left(\frac<\pi><6>\right)=y_1,[/math] [math]y\! \left(\frac<\pi><3>\right)=y_2,[/math] [math]y\! \left(\frac<\pi><2>\right)=y_3[/math] . Будем искать приближенные значения [math]\widehat_0,\widehat_1, \widehat_2, \widehat_3[/math] . Проекции функций [math]p(x), q(x), f(x)[/math] на сетку имеют вид [math]p_=0,

2. Составим разностную схему. Согласно (7.6), для внутренних узлов сетки получаем

i=1;2[/math] или [math]\widehat_-(2-h^2)\widehat_+ \widehat_=h^2,

Применим первый способ аппроксимации краевых условий. По формуле (5.4) с учетом условия [math]y'(0)=0[/math] на левом конце имеем

На правом конце [math]y\! \left(\frac<\pi><2>\right)=y_3,

y’\! \left(\frac<\pi><2>\right)=y’_3[/math] , и по второй из формул (7.9) [math]\widehat\,’_<3>= \frac<\widehat_<3>-\widehat_<2>>[/math] . Тогда краевое условие [math]y\! \left(\frac<\pi><2>\right)-y’\! \left(\frac<\pi><2>\right)=2[/math] аппроксимируется выражением

В результате получаем разностную схему первого порядка аппроксимации (трехдиагональную систему линейных алгебраических уравнений)

Сравнивая первое уравнение этой системы с рекуррентным соотношением [math]\widehat_= P_\cdot \widehat_+ Q_[/math] метода прогонки, характеризующим обратный ход, получаем [math]P_0=1,

После этого вычисляются все последующие прогоночные коэффициенты по формулам:

Здесь [math]\alpha_,\beta_,\gamma_[/math] соответствуют коэффициентам левой части полученной алгебраической системы, а [math]\delta_[/math] — правой части.

Далее выполняется обратный ход: [math]\widehat_<3>=Q_3,

\widehat_<2>= P_2\widehat_<3>+ Q_2,

\widehat_<1>= P_1\widehat_<2>+ Q_1[/math] .

Результаты решения краевой задачи приведены в табл. 7.1, в которой последний столбец соответствует точному решению [math]y(x)=1+\cos x[/math] , найденному в примере 7.1.

7.1>>\\\hline i& \alpha_& \beta_& \gamma_& \delta_& P_& Q_& \widehat_& y(x) \\\hline 0& 0&-1,\!0000&-1& 0,\!00000& 1,\!00000& 0& 1,\!8648& 2,\!0000\\\hline 1& 1& 1,\!72584& 1& 0,\!27415& 1,\!37771&-0,\!37770& 1,\!8648& 1,\!8666\\\hline 2& 1& 1,\!72584& 1& 0,\!27415& 2,\!87240&-1,\!87242& 1,\!6277& 1,\!5000\\\hline 3& 1& 0,\!47640&-& 1,\!04200&-& 1,\!21853& 1,\!21853& 1,\!0000\\\hline \end[/math]

В силу того, что краевые условия аппроксимированы с первым порядком относительно [math]h[/math] , в данном случае получена разностная схема первого порядка, так как порядок аппроксимации схемы определяется минимальным порядком аппроксимации дифференциального уравнения и краевых условий.

Воспользуемся вторым способом аппроксимации краевых условий для построения разностной схемы второго порядка аппроксимации. Разложим [math]y(x)[/math] в точке [math]x=x_1[/math] относительно точки [math]x_0[/math] по формуле Тейлора:

Выразим из этого соотношения [math]y'(x_0)[/math] и подставим в него вместо [math]y»(x_0)[/math] выражение [math]y»(x_0)=1-y(x_0)=1-y_0[/math] , определяемое исходным дифференциальным уравнением:

Как показывает это соотношение, дифференциальное условие на левой границе аппроксимируется на двухточечном шаблоне [math](x_0,x_1)[/math] со вторым порядком аппроксимации двухточечным алгебраическим уравнением:

Аналогично получается двухточечное алгебраическое уравнение при / [math]i=n-1[/math] и [math]i=n[/math] . Разложение [math]y(x)[/math] в точке [math]x=x_[/math] относительно точки [math]x_n[/math] по формуле Тейлора имеет вид

Выражая отсюда [math]y'(x_n)[/math] с учетом связи [math]y»(x_n)=1-y(x_n)=1-y_n[/math] , следующей из исходного дифференциального уравнения, получаем

Подставим это выражение в граничное условие:

Таким образом, система линейных алгебраических уравнений в окончательном виде записывается следующим образом:

Эта трехдиагональная система, отличающаяся от полученной первым способом только первым и последним уравнениями, решается численно методом прогонки.

Применим третий способ аппроксимации краевых условий для построения разностной схемы второго порядка. Так, для крайней левой точки используется левосторонняя формула (5.8):

Тогда получается трехточечное алгебраическое уравнение:

Аппроксимация производной [math]y’\! \left(\frac<\pi><2>\right)[/math] в крайней правой точке по правосторонней формуле [math]\widehat\,’_= \frac<1> <2h>\bigl(\widehat_-4\widehat_+ 3\widehat_\bigr)[/math] приводит к трехточечному алгебраическому уравнению:

Тогда в этом случае получается следующая система линейных алгебраических уравнений:

Здесь [math]\widehat_<2>[/math] в первом уравнении и [math]\widehat_[/math] в последнем нарушают ее трехдиагональный характер. В этом случае система приводится к трехдиагональному виду путем исключения [math]\widehat_<2>[/math] и [math]\widehat_[/math] из первых двух и последних двух уравнений системы и после этого решается методом прогонки.

Методы минимизации невязки

Описываемые здесь методы относятся к приближенно-аналитическим и могут применяться при решении достаточно широкого класса задач. На основе одного из приближенно-аналитических методов (метода Галеркина) строится метод конечных элементов, излагаемый в разд. 7.5.

Рассмотрим линейную краевую задачу (7.3),(7.4). Ее решение будем искать в виде

где [math]\varphi_0(x), \varphi_1(x), \ldots, \varphi_m(x)[/math] — элементы заданной системы функций; [math]a_1,\ldots,a_m[/math] — неопределенные коэффициенты. Заданная система функций называется базисной, и ее элементы должны удовлетворять условиям:

а) [math]\varphi_(x)\in C_2[a,b],

б) при любом конечном [math]m[/math] функции [math]\varphi_1(x), \ldots, \varphi_m(x)[/math] линейно независимы на отрезке [math][a,b][/math] ;

в) [math]\varphi_0(x)[/math] удовлетворяет краевым условиям (7.4)

г) [math]\varphi_1(x), \ldots, \varphi_m(x)[/math] удовлетворяют условиям

называется невязкой . Она равна разности левой и правой частей уравнения (7.3), образующейся при подстановке [math]\widehat_(x)[/math] вместо [math]y(x)[/math] в дифференциальное уравнение, и характеризует степень отклонения функции [math]\widehat_(x)[/math] от точного решения краевой задачи. Если при некоторых значениях коэффициентов [math]a_1,\ldots,a_m[/math] невязка тождественно равна нулю на отрезке [math][a,b][/math] , а именно

то функция [math]\widehat_(x)[/math] совпадает с точным решением краевой задачи (7.3),(7.4), так как удовлетворяются и уравнение, и краевые условия.

Однако при решении краевых задач, как правило, не удается получить невязку тождественно равной нулю. Поэтому ставится задача: вычислить коэффициенты [math]a_1,\ldots,a_m[/math] таким образом, чтобы невязка в каком-либо смысле стала меньшей. Полученные в результате коэффициенты определяют приближенное решение (7.11).

Выражение для невязки [math]\varepsilon(x; a_1,\ldots, a_m)[/math] с учетом (7.11) удобно записывать в следующей эквивалентной форме:

где [math]L\widehat_\equiv \widehat\,»_(x)+ p(x)\widehat\,’_(x)-q(x) \widehat_(x),

L[/math] — линейный оператор задачи (7.3),(7.4) (выполняются равенства [math]L(y+z)= Ly+Lz,[/math] [math]L(Cy)=C\cdot Ly[/math] для любых [math]y,\,z[/math] и постоянной [math]C[/math] ).

Рассмотрим различные методы, минимизирующие невязку .

А. Метод коллокации. На интервале [math](a,b)[/math] задаются т точек [math]x_1,\ldots, x_n[/math] (точек коллокации) и требуется, чтобы в каждой из них невязка (7.14) обращалась в нуль:

С учетом (7.16) эта система принимает вид

Если полученная система [math]m[/math] линейных уравнений совместна, то из нее определяются коэффициенты [math]a_1,\ldots, a_m[/math] , которые затем подставляются в (7.11).

Б. Метод наименьших квадратов (непрерывный вариант). Неизвестные коэффициенты [math]a_1,\ldots, a_m[/math] должны обеспечивать минимум интеграла от квадрата невязки:

Для решения задачи применяются необходимые условия безусловного экстремум:

Подставляя (7.16) в (7.19), получаем систему [math]m[/math] линейных алгебраических уравнений для нахождения коэффициентов [math]a_1,\ldots, a_m\colon[/math]

В. Метод наименьших квадратов (дискретный вариант). Неизвестные коэффициенты [math]a_1,\ldots,a_m[/math] должны обеспечивать минимум суммы квадратов значений невязки в заданном наборе точек [math]x_1,\ldots,x_n;

n \geqslant m[/math] , то есть [math]x_\in (a,b),

Для решения задачи применяются необходимые условия безусловного экстремума

Отсюда следует система [math]m[/math] линейных уравнений для нахождения коэффициентов [math]a_1,\ldots,a_m[/math] , которая по форме записи совпадает с (7.20), но скалярное произведение определяется по формуле [math]\textstyle<(f,g)= \sum\limits_^ f(x_)g(x_)>[/math] .

Замечание. При [math]n=m[/math] результаты, полученные точечным методом наименьших квадратов и методом коллокации, совпадают. В этом случае точки [math]x_1,\ldots, x_n[/math] являются точками коллокации.

Г. Метод моментов (взвешенных невязок). Неизвестные коэффициенты ах. ат находятся из условия равенства нулю /и моментов невязки:

j=\overline<1,m>[/math] — функции, удовлетворяющие условиям:

б) функции [math]\psi_(x)[/math] являются элементами системы степеней [math]x[/math] или системы тригонометрических функций.

j=\overline<1,m>[/math] называются весовыми, а условие (7.22) является условием ортогональности невязки к весовым функциям.

Д. Метод Галсркина. Он является частным случаем метода моментов, когда в качестве весовых функций используются базисные. Коэффициенты [math]a_1,\ldots,a_m[/math] находятся из условия ортогональности функций базисной системы [math]\varphi_1(x),\ldots, \varphi_(x)[/math] к невязке:

Отсюда следует система [math]m[/math] линейных уравнений для нахождения коэффициентов:

Известно, что при достаточно большом [math]m[/math] условие (7.23) обеспечивает малость невязки в среднем.

Алгоритм применения методов минимизации невязки

1. В выражении (7.11) выбрать систему базисных функций, задать число [math]m[/math] в зависимости от требуемой точности.

2. Найти коэффициенты [math]a_1,\ldots,a_m[/math] путем решения одной из систем алгебраических уравнений (7.18),(7.20),(7.24) в зависимости от выбранного метода.

3. Выписать приближенное решение краевой задачи по формуле (7.11).

Пример 7.3. Найти приближенное решение краевой задачи [math]y»+y=-x,

0 \leqslant x \leqslant 1,[/math] [math]y(0)=0,

y(1)=0[/math] методом коллокации, интегральным методом наименьших квадратов, методом Галеркина

В поставленной задаче

Точное решение найдено в примере 7.1.

Воспользуемся сначала методом коллокации.

1. Зададим [math]m=2[/math] и будем искать решение в виде

где [math]\varphi_0(x)\equiv0[/math] (эта функция удовлетворяет каждому из краевых условий, т.е. [math]\varphi_0(0)=0,

\varphi_0(1)=0[/math] ), функции [math]\varphi_1(x)= x(1-x),

\varphi_2(x)= x^2(1-x)[/math] . Функции [math]\varphi_1(x),\, \varphi_2(x)[/math] линейно независимые, дважды непрерывно дифференцируемые и удовлетворяют условию (7.13). Действительно,

Таким образом, решение краевой задачи ищется в форме

2. Так как [math]m=2[/math] и [math]\varphi_0(x)\equiv 0[/math] , то система (7.18) имеет вид

Выберем узлы коллокации: [math]x_1=1\!\!\not<\phantom<|>>\,4,

Таким образом, имеем линейную систему относительно [math]a_1[/math] и [math]a_2\colon[/math]

3. Приближенное решение задачи: [math]\widehat_2(x)= \frac<217>(42+40x)[/math] .

Решим теперь задачу методом наименьших квадратов (см. непрерывный вариант).

1. Решение краевой задачи ищется в форме [math]\widehat_2(x)= a_1\cdot x(1-x)+ a_2\cdot x^2(1-x)[/math] .

2. Так как [math]f(x)=-x,

\varphi_0(x)\equiv 0[/math] , то система (7.20) имеет вид

Итак, имеем линейную систему относительно [math]a_1[/math] и [math]a_2\colon[/math]

Приближенное решение задачи: [math]\widehat_2(x)=0,\!1875419x(1-x)+ 0,\!1694707x^2(1-x).[/math] .

Решим задачу методом Галеркина.

1. Пусть сначала [math]m=1[/math] . Решение ищется в форме [math]\widehat_1(x)= a_1\cdot x(1-x)[/math] .

2. Тогда система (7.24) преобразуется к виду

Так как [math]\varphi_1(x)= x(1-x),

L\varphi_1(x)= \varphi»_1(x)+ \varphi_1(x)=-2+x(1-x)[/math] , получаем

После вычисления интегралов имеем уравнение [math]-\frac<3><10>\,a_1=-\frac<1><12>[/math] , откуда [math]a_1=\frac<5><18>[/math] .

3. Приближенное решение краевой задачи: [math]\widehat_1(x)=\frac<5><18>\,x(1-x)[/math] . Пусть теперь [math]m=2[/math] .

1. Решение краевой задачи ищется в форме [math]\widehat_2(x)=a_1\cdot x(1-x)+ a_2\cdot x^2(1-x)[/math] .

2. Тогда система (7.24) имеет вид

Вычисляя интегралы, находим

3. Приближенное решение краевой задачи: [math]\widehat_2(x)= x(1-x)\! \left(\frac<71><369>+ \frac<7><41>\,x\right)[/math] .

Сопоставим полученные решения с точным (табл. 7.2).

7.2>>\\\hline x& y_<\text>& y_<\text>& y_<\text>& \text \\\hline 0,\!25& 0,\!045& 0,\!04311& 0,\!0440& 0,\!044014 \\\hline 0,\!50& 0,\!071& 0,\!06807& 0,\!0698& 0,\!069747 \\\hline 0,\!75& 0,\!062& 0,\!05899& 0,\!0600& 0,\!060050 \\\hline \end[/math]

Очевидно, метод Галеркина дал более точный результат.

Пример 7.4. Найти приближенное решение краевой задачи [math]y»+2xy’-2y=2x^2,

0 \leqslant x \leqslant 1,[/math] [math]y'(0)=-2,

y(1)+y'(1)=0[/math] методом Галеркина.

В поставленной задаче

1. Зададим [math]m=2[/math] и подберем функции [math]\varphi_0(x),\, \varphi_1(x),\, \varphi_2(x)[/math] , используя систему [math]1,x,x^2,\ldots[/math] . Функция [math]\varphi_0(x)[/math] должна удовлетворять условиям (7.12):

Пусть [math]\varphi_0(x)=b+cx[/math] , где [math]b,\,c[/math] — неопределенные коэффициенты. Тогда

Отсюда [math]b=4[/math] и [math]\varphi_0(x)=4-2x[/math] .

Функции [math]\varphi_1(x),\, \varphi_2(x)[/math] должны удовлетворять условиям (7.13):

Первое условие выполняется для функций вида [math]\varphi_= x^+b_[/math] . Значения [math]b_[/math] находятся из второго условия [math]1+b_+j+1=0[/math] , откуда [math]b_=-j-2[/math] . Тогда получаем [math]\varphi_1(x)=x^2-3,

Таким образом, решение краевой задачи ищется в форме

2. Тогда система (7.24) имеет вид

3. Приближенное решение краевой задачи [math]\widehat_2(x)= x^2-2x+1[/math] .

Методы сведения краевой задачи к задаче Коши

Метод стрельбы. Суть этого метода заключается в сведении решения краевой задачи к многократному решению задачи Коши. Принцип построения метода стрельбы рассмотрим на примере нелинейной краевой задачи:

где [math]f(x,y,y’)[/math] — нелинейная функция, обусловливающая нелинейность дифференциального уравнения (7.25).

При введении новой переменой [math]z=y'[/math] уравнение (7.25) записывается в нормальной форме Коши, а краевые условия видоизменяются:

где [math]\eta=y'(a)=\operatorname\alpha[/math] — параметр, равный тангенсу угла наклона интегральной кривой в точке [math]x=a[/math] . Угол [math]\alpha[/math] (параметр [math]\eta[/math] ) в процессе многократного решения краевой задачи должен принять такое значение, чтобы интегральная кривая «попала в цель», т.е. в точку [math](b,B)[/math] (рис.7.2 ,а). В общем случае полученное при некотором значении [math]\eta[/math] решение [math]y(x,\eta)[/math] не будет удовлетворять условию [math]y(b,\eta)=B[/math] на правом конце отрезка.

Следовательно, требуется найти такое значение параметра [math]\eta[/math] , чтобы оно было корнем нелинейного уравнения [math]\Phi(\eta)= y(b,n)-B=0[/math] . Для решения этого уравнения, как правило, используются методы половинного деления или секущих. В случае использования метода половинного деления сначала делают «пробные» выстрелы при выбранных наугад или в соответствии с некоторым алгоритмом значениях [math]\eta[/math] до тех пор, пока среди значений [math]\Phi(\eta)[/math] не окажется двух противоположных по знаку. Им соответствует начальный интервал неопределенности, который далее последовательно сокращается путем деления пополам. При применении метода секущих используется формула

где [math]\eta^<(0)>,\,\eta^<(1)>[/math] — начальные значения параметра, [math]k[/math] — номер итерации. Итерации прекращаются при выполнении условия окончания [math]\bigl|\Phi(\eta^<(k)>)\bigr| \leqslant \varepsilon[/math] или [math]\bigl|\eta^<(k+1)>-\eta^<(k)>\bigr| \leqslant \varepsilon[/math] с некоторым положительным [math]\varepsilon[/math] , характеризующим точность решения задачи.

Замечание. Точность решения краевой задачи зависит не только от точности определения параметра [math]\eta[/math] , но также и от точности решения соответствующей задачи Коши. Поэтому одновременно с уточнением параметра [math]\eta[/math] рекомендуется уменьшать шаг при решении задачи Коши, либо выбирать более точный метод.

Рассмотрим применение метода стрельбы для решения линейной краевой задачи (7.3),(7.4):

Метод сетки для решения дифференциальных уравнений

3. ЧИСЛЕННОЕ РЕШЕНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

С ЧАСТНЫМИ ПРОИЗВОДНЫМИ

3.2. Понятие о методе конечных разностей

Для численного решения дифференциального уравнения с частными производными обычно применяют метод конечных разностей или метод сеток. Он позволяет свести решение дифференциального уравнения к решению системы алгебраических уравнений.

Метод сеток состоит в следующем:

1) область непрерывного изменения аргументов заменяют областью их дискретного изменения;

2) непрерывные производные заменяют разностными отношениями;

3) для краевых и начальных условий записывают разностный аналог.

Таким образом, сетка представляет собой множество точек. Отдельные точки называются узлами сетки. Функция, определяемая в узлах сетки, называется сеточной функцией.

Рассмотрим примеры сеток.

1. Равномерная сетка на отрезке [а, в ].

Разобьем отрезок на n равных частей и получим систему точек x 0 , x 1 , x 2 ,…, x n такую что:

Непрерывная функция y ( x ) заменяется сеточной функцией y h ( x i ), определяемой в узлах сетки и зависимой от шага h как от параметра.

2. Равномерная сетка на плоскости.

Разобьем отрезок [0, x max ] на n равных частей и получим систему точек x 0 , x 1 ,…, x n , где h 1 = x max / n .Отрезок [0, y max ] разделим на m равных частей точками y 0 , y 1 ,…, y m с шагом h 2 = ymax / m . Через точки x i проведем линии, параллельные оси x . Искомая функция U ( x , y ) заменяется сеточной функцией и зависят от параметров h 1 и h 2 .

3.2.1. Конечные разности.

-правая разностная производная,

— левая разностная производная;

— центральная разностная производная.

Левая и правая конечные разности аппроксимируют производную с первым порядком точности, а центральная разностная производная – со вторым порядком точности.

Конечно – разностная производная второго порядка имеет вид:

При замене частных производных разностными отношениями применяется аналогичный подход:

Теоретические основы метода сеток для решения задачи Коши

Содержание

. Задачи для обыкновенных дифференциальных уравнений

Теоретические основы метода сеток для решения задачи Коши

Основная теорема метода сеток

. Виды конечно-разностных схем

Явная схема 1-го порядка (Эйлера)

Неявная схема 1-го порядка

Неявная схема 2-го порядка

Схема предиктор-корректор (Рунге-Кутта) 2-го порядка

Многошаговые схемы Адамса

Введение

Задачи для обыкновенных дифференциальных уравнений

Обыкновенными дифференциальными уравнениями можно описать поведение системы взаимодействующих частиц во внешних полях, процессы в электрических цепях, закономерности химической кинетики и многие другие явления. Поэтому решение обыкновенных дифференциальных уравнений занимает одно из важнейших мест среди прикладных задач физики, электроники, химии и техники.

Конкретная прикладная задача может приводить к дифференциальному уравнению любого порядка или к системе таких уравнений. Известно, что произвольную систему дифференциальных уравнений любого порядка можно привести к некоторой эквивалентной системе уравнений первого порядка. Среди таких систем выделим класс систем, разрешенных относительно производной неизвестных функций

(1)

Обычно требуется найти решение системы для значений x из заданного интервала .

Известно, что система (1) имеет бесконечное множество решений, семейство которых в общем случае зависит от m произвольных параметров и может быть записано в виде . Для определения значений этих параметров, т.е. для выделения одного нужного решения, надо наложить дополнительно m условий на функции . В зависимости от способа постановки дополнительных условий можно выделить два основных типа задач, наиболее часто встречающихся на практике:

краевая (граничная) задача, когда часть условий задается на границе a (при x = a), остальные условия — на границе b (при x = b). Обычно это значения искомых функций и их производных на границах;

задача Коши (задача с начальными условиями), когда все условия заданы в начале отрезка в виде

. (2)

При изложении методов решения задачи Коши воспользуемся компактной записью задачи (1), (2) в векторной форме.

. (3)

Требуется найти для a £ x £ b.

Квадратурные формулы

Формулы для вычисления интеграла получают следующим образом. Область интегрирования [a, b] разбивают на малые отрезки , в общем случае разной длины. Значение интеграла по всей области равно сумме интегралов на отрезках . Выбирают на каждом отрезке [xi, xi+1] 1-5 узлов и строят для каждого отрезка интерполяционный многочлен соответствующего порядка. Вычисляют интеграл от этого многочлена на отрезке. В результате получают выражение интеграла (формулу численного интегрирования) через значения подынтегральной функции в выбранной системе точек. Такие выражения называют квадратурными формулами.

Метод сеток

Теоретические основы метода сеток для решения задачи Коши

дифференциальный уравнение формула схема

Основная идея метода такова. В области определения дифференциальной задачи выбирается конечное множество точек (узлов), называемое сеткой. Функции и производные в каждом узле приближенно заменяются (аппроксимируются) некоторыми линейными комбинациями значений соответствующих функций, входящих в уравнения и краевые условия, в узлах сетки. В результате этих замен нелинейная дифференциальная задача ЕК сводится к системе нелинейных алгебраических уравнений относительно приближенных значений искомых функций в узлах. Такую систему принято называть разностной задачей, или разностной схемой. Несмотря на нелинейность и большое, как правило, число неизвестных, разностная задача более предпочтительна для решения, чем исходная дифференциальная, так как допускает применение вычислительной техники. Найденное на ЭВМ решение разностной задачи (разностное решение) принимается за приближенное решение исходной задачи в узлах сетки. Оно имеет вид числовой таблицы, размер которой пропорционален количеству узлов.

Таким образом, процедура численного решения задач ЕК состоит из трех основных этапов.

1) Сначала на выбранной сетке производится аппроксимация дифференциальных уравнений и краевых условий, в результате которой строится разностная схема — дискретный аналог исходной задачи.

2) Затем выбирается метод решения полученной нелинейной разностной задачи и конструирование вычислительного алгоритма завершается.

3) Заключительный этап — программная реализация этого алгоритма на ЭВМ.

Суть метода сеток

1) в области интегрирования выбирается упорядоченная система точек называемая сеткой. Точки называют узлами, а — шагом сетки. Если , сетка называется равномерной. Для упрощения в дальнейшем будим считать сетку равномерной;

) решение ищется в виде таблицы значений в узлах выбранной сетки для чего дифференциальное уравнение заменяется системой алгебраических уравнений, связывающих между собой значения искомой функции в соседних узлах. Такая система называется конечно-разностной схемой.

Имеется несколько распространенных способов получения конечно-разностных схем. Приведем здесь один из самых универсальных — интегро-интерполяционный метод.

Согласно этому способу для получения конечно-разностной схемы проинтегрируем уравнение (3) на каждом интервале для k=0, . n-1 и разделим на длину этого интервала:

. (4)

Интеграл в правой части (4) аппроксимируем одной из квадратурных формул (см. подразд. 4.3), после чего получаем систему уравнений относительно приближенных неизвестных значений искомой функции, которые в отличие от точных обозначим

. (5)

Здесь xj — точки внутри интервала, используемые для получения квадратурной формулы (см. подразд. 4.3).

Структура конечно-разностной схемы для задачи Коши (5) такова, что она устанавливает закон рекуррентной последовательности для искомого решения . Поэтому используя начальное условие задачи (2) и задавая , затем по рекуррентным формулам последовательно находят все

Погрешность аппроксимации

При построении разностной схемы важно знать, насколько хорошо она аппроксимирует исходную дифференциальную задачу.

При замене дифференциальной задачи разностной допускается ошибка — погрешность аппроксимации. Она характеризуется величиной невязок/

При замене интеграла приближенной квадратурной формулой вносится погрешность аппроксимации дифференциального уравнения разностным. Она характеризуется величиной невязки, если в конечно-разностном уравнении (5) подставить вместо значение точного решения :

.

Воспользовавшись соотношением (4), получаем простое выражение для вычисления :

, (6)

которая зависит от шага сетки.

Говорят, что разностная схема (5) аппроксимирует исходную дифференциальную задачу с порядком p, если при . Из (6) следует, что порядок аппроксимации на 1 меньше, чем порядок погрешности используемой квадратурной формулы на интервале [xk, xk+1].

Чем больший порядок аппроксимации p , тем выше точность решения:

.

Для обеспечения близости решений разностной и дифференциальной задач необходимо, чтобы при стремлении шагов сетки к нулю разностная задача в пределе совпадала с дифференциальной. Если это требование выполняется, то говорят, что разностная схема аппроксимирует дифференциальную задачу.

Устойчивость

Другой источник ошибок, вносимых в численное решение, связан с погрешностью округления, возникающей непосредственно при решении разностной задачи на ЭВМ. Ошибки округления неизбежны, так как любая вычислительная машина может оперировать лишь с конечным числом значащих цифр. Хотя в момент возникновения они невелики, однако при расчете больших рекуррентных формул, какими являются алгоритмы метода сеток, первоначальная величина этих ошибок может вырасти настолько, что полностью исказит смысл окончательного результата. Если это происходит, то говорят, что численный метод (алгоритм) неустойчив. При достаточно длительном счете неустойчивость метода приводит к авосту — переполнению арифметического устройства машины. Если же в процессе счета ошибки округления затухают или хотя бы не возрастают, такой вычислительный алгоритм называют устойчивым. Для решения практических задач используются только устойчивые алгоритмы.

Более строго устойчивость трактуется как свойство непрерывной зависимости решения разностной задачи от входных данных, согласно которому всякое малое изменение входных данных (например, вследствие округления) приводит к малому изменению решения. Под входными данными обычно понимают правые части разностных уравнений, граничных и начальных условий.


источники:

http://dit.isuct.ru/IVT/sitanov/Literatura/M347/Pages/Glava3_2.htm

http://megalektsii.ru/s13833t13.html