Метод умножения и деления решение системы уравнений

Системы уравнений

Система уравнений — это группа уравнений, в которых одни и те же неизвестные обозначают одни те же числа. Чтобы показать, что уравнения рассматриваются как система, слева от них ставится фигурная скобка:

x — 4y = 2
3x — 2y = 16

Решить систему уравнений — это значит, найти общие решения для всех уравнений системы или убедиться, что решения нет.

Чтобы решить систему уравнений, нужно исключить одно неизвестное, то есть из двух уравнений с двумя неизвестными составить одно уравнение с одним неизвестным. Исключить одно из неизвестных можно тремя способами: подстановкой, сравнением, сложением или вычитанием.

Способ подстановки

Чтобы решить систему уравнений способом подстановки, нужно в одном из уравнений выразить одно неизвестное через другое и результат подставить в другое уравнение, которое после этого будет содержать только одно неизвестное. Затем находим значение этого неизвестного и подставляем его в первое уравнение, после этого находим значение второго неизвестного.

Рассмотрим решение системы уравнений:

x — 4y = 2
3x — 2y = 16

Сначала найдём, чему равен x в первом уравнении. Для этого перенесём все члены уравнения, не содержащие неизвестное x, в правую часть:

Так как x, на основании определения системы уравнений, имеет такое же значение и во втором уравнении, то подставляем его значение во второе уравнение и получаем уравнение с одним неизвестным:

3x— 2y = 16;
3( 2 + 4y )— 2y = 16.

Решаем полученное уравнение, чтобы найти, чему равен y. Как решать уравнения с одним неизвестным, вы можете посмотреть в соответствующей теме.

3(2 + 4y) — 2y = 16;
6 + 12y — 2y = 16;
6 + 10y = 16;
10y = 16 — 6;
10y = 10;
y = 10 : 10;
y = 1.

Мы определили что y = 1. Теперь, для нахождения численного значения x, подставим значение y в преобразованное первое уравнение, где мы ранее нашли, какому выражению равен x:

x = 2 + 4y = 2 + 4 · 1 = 2 + 4 = 6.

Способ сравнения

Способ сравнения — это частный случай подстановки. Чтобы решить систему уравнений способом сравнения, нужно в обоих уравнениях найти, какому выражению будет равно одно и то же неизвестное и приравнять полученные выражения друг к другу. Получившееся в результате уравнение позволяет узнать значение одного неизвестного. С помощью этого значения затем вычисляется значение второго неизвестного.

Например, для решение системы:

x — 4y = 2
3x — 2y = 16

найдём в обоих уравнениях, чему равен y (можно сделать и наоборот — найти, чему равен x):

x — 4y = 23x — 2y = 16
-4y = 2 — x-2y = 16 — 3x
y = (2 — x) : — 4y = (16 — 3x) : -2

Составляем из полученных выражений уравнение:

2 — x=16 — 3x
-4-2

Решаем уравнение, чтобы узнать значение x:

2 — x· (-4) =16 — 3x· (-4)
-4-2
2 — x = 32 — 6x
x + 6x = 32 — 2
5x = 30
x = 30 : 5
x = 6

Теперь подставляем значение x в первое или второе уравнение системы и находим значение y:

x — 4y = 23x — 2y = 16
6 — 4y = 23 · 6 — 2y = 16
-4y = 2 — 6-2y = 16 — 18
-4y = -4-2y = -2
y = 1y = 1

Способ сложения или вычитания

Чтобы решить систему уравнений способом сложения, нужно составить из двух уравнений одно, сложив левые и правые части, при этом одно из неизвестных должно быть исключено из полученного уравнения. Неизвестное можно исключить, уравняв при нём коэффициенты в обоих уравнениях.

x — 4y = 2
3x — 2y = 16

Уравняем коэффициенты при неизвестном y, умножив все члены второго уравнения на -2:

x — 4y = 2
-6x + 4y = -32

Теперь сложим по частям оба уравнения, чтобы получить уравнение с одним неизвестным:

+x — 4y = 2
-6x + 4y = -32
-5x = -30

Находим значение x (x = 6). Теперь, подставив значение x в любое уравнение системы, найдём y = 1.

Если уравнять коэффициенты у x, то, для исключения этого неизвестного, нужно было бы вычесть одно уравнение из другого.

Уравняем коэффициенты при неизвестном x, умножив все члены первого уравнения на 3:

(x — 4y) · 3 = 2 · 3

3x — 12y = 6
3x — 2y = 16

Теперь вычтем по частям второе уравнение из первого, чтобы получить уравнение с одним неизвестным:

3x — 12y = 6
3x — 2y = 16
-10y = -10

Находим значение y (y = 1). Теперь, подставив значение y в любое уравнение системы, найдём x = 6:

3x — 2y = 16
3x — 2 · 1 = 16
3x — 2 = 16
3x = 16 + 2
3x = 18
x = 18 : 3
x = 6

Для решения системы уравнений, рассмотренной выше, был использован способ сложения, который основан на следующем свойстве:

Любое уравнение системы можно заменить на уравнение, получаемое путём сложения (или вычитания) уравнений, входящих в систему. При этом получается система уравнений, имеющая те же решения, что и исходная.

Системы уравнений

Система уравнений — это условие, состоящее в одновременном выполнении нескольких уравнений относительно нескольких (или одной) переменных. Формальная запись общего вида может выглядеть так: Фигурная скобка означает, что решение. должно удовлетворять каждому уравнению.

Содержание:

Системы двух уравнений с двумя переменными. Равносильные системы

Пусть даны два уравнения с двумя переменными: f(x; у) = 0 и g(x; у) = 0. Если ставится задача найти все общие решения двух уравнений с двумя переменными, то говорят, что надо решить систему уравнений. Пару значений переменных, обращающую в верное равенство каждое уравнение системы, называют решением системы уравнений. Решить систему — значит найти все ее решения или доказать, что их нет.

Уравнения, образующие систему, объединяются фигурной скобкой. Например, запись

означает, что уравнения образуют систему.

Две системы уравнений называют равносильными, если эти системы имеют одни и те же решения. Если, в частности, обе системы не имеют решений, то они также считаются равносильными. При решении системы уравнений обычно заменяют данную систему другой, более простой или по каким-либо причинам более «удобной», но равносильной первоначальной. Возможность такой замены обусловлена следующими двумя теоремами.

Теорема 5.

Если одно уравнение системы двух уравнений с двумя переменными оставить без изменения, а другое уравнение системы заменить уравнением, ему равносильным, то полученная система будет равносильна заданной.

Следствие:

Если каждое уравнение системы заменить равносильным уравнением, то получится система, равносильная данной.

Так, равносильными будут следующие системы:

Теорема 6.

Если одно уравнение системы двух уравнений с двумя переменными оставить без изменения, а другое уравнение заменить суммой или разностью обоих уравнений системы, то полученная система будет равносильна заданной.

равносильны: мы заменили уравнение х — Зу = 10 суммой двух уравнений заданной системы, а уравнение Зх — 2у = 2 оставили неизменным.

Решение систем двух уравнений с двумя переменными методом подстановки

Метод подстановки заключается в следующем.

1) Одно из уравнений системы преобразуют к виду, в котором у выражен через х (или х через у).

2) Полученное выражение подставляют вместо у (или вместо х) во второе уравнение. В результате получается уравнение с одной переменной.

3) Находят корни этого уравнения.

4) Воспользовавшись выражением у через х (или х через у), находят соответствующие значения у (или х).

Пример:

Решить систему уравнений

Решение:

Из первого уравнения находим х = Зу + 10. Подставим выражение Зу + 10 вместо х во второе уравнение системы. Получим откуда находим Соответствующие значения х найдем из уравнения х = 3у + 10. Если у = 0, то х = 10; если у = -4, то х = -2. Итак, система имеет два решения: (-2; -4) и (10; 0).

Решение систем двух уравнений с двумя переменными методом сложения

Метод сложения основан на теоремах 5 и 6 (см. п. 163). Суть его поясним на примерах.

Пример 1.

Решить систему уравнений

(1)

Решение:

Умножив обе части второго уравнения системы на 3, получим систему

(2)

равносильную данной по теореме 5.

Сложим уравнения полученной системы. По теореме 6, система

(3)

равносильна системе (2). Система (3), в свою очередь, преобразуется к виду

Из уравнения 11х = 55 находим х = 5. Подставив это значение в уравнение 2х + Зу = 7, находим У = -1.

Итак, (5; -1) — решение системы (3), а значит, и решение равносильной ей системы (1).

Пример 2.

Решить систему уравнений

Решение:

Если обе части первого уравнения системы умножить на 2 и вычесть полученное уравнение из второго уравнения системы, то взаимно уничтожатся члены, содержащие переменные во второй степени:

Мы приходим к более простой системе

которую нетрудно решить методом подстановки. Имеем у = х — 1; значит,

Если х = 0, то у = х — 1 = 0 — 1 = -1; если х = 1,5, то у = х — 1 = 1,5 — 1 = 0,5

Ответ: (0; -1) и (1,5; 0,5).

Решение систем двух уравнений с двумя переменными методом введения новых переменных

Метод введения новых переменных применяется при решении систем двух уравнений с двумя переменными одним из следующих способов: 1) вводится одна новая переменная только для одного уравнения системы; 2) вводятся две новые переменные сразу для обоих уравнений.

Пример 1.

Решение:

Положим , тогда и первое уравнение системы примет вид . Решим полученное уравнение относительно новой переменной z:

Таким образом, либо , т.е. , либо

Итак, первое уравнение заданной системы распалось на два уравнения: В соответствии с этим нам предстоит теперь решить совокупность двух систем:

Из первой системы находим х = 2, у = 3, из второй х = 3, у = 2.

Ответ: (2; 3); (3; 2).

Пример 2.

Решить систему уравнений

Решение:

Положим

Тогда и система примет вид

Полученную систему можно решить методом подстановки. Выразив из второго уравнения через , получим . Подставим этот результат в первое уравнение системы (1):

Соответственно находим Итак, нашли два решения системы (1):

Возвращаясь к исходным переменным, получим совокупность двух систем

каждую из которых нетрудно решить методом подстановки (выразив, например, у через х из первого уравнения). Первая система не имеет действительных решений, а вторая имеет два решения: (3; 4) и (4; 3). Они и будут решениями исходной системы.

Графическое решение систем двух уравнений с двумя переменными

Для того чтобы графически решить систему двух уравнений с двумя переменными, нужно в одной системе координат построить графики уравнений и найти координаты точек пересечения этих графиков.

Пример 1.

Решить графически систему линейных уравнений

Решение:

Построим прямую — график уравнения Зх + 2у = 5 — по двум точкам, например (1; 1) и (3; -2) (рис. 1.111).

Построим прямую — график уравнения 2х — у = 8 — по точкам (0; -8) и (4; 0) (рис. 1.111).

Полученные прямые не параллельны, их пересечением служит точка М(3; -2). Значит, (3; -2) — решение заданной системы.

Пример 2.

Решить графически систему уравнений

Решение:

Графиком уравнения является окружность с центром в начале координат и радиусом, равным 5 (см. «Геометрия», п. 107). Графиком уравнения ху = 12 является гипербола (см. п. 82). Построив графики в одной системе координат (рис. 1.112), найдем координаты точек А, В, С, D пересечения окружности и гиперболы: А(4; 3), Б(3; 4), С(-4; -3), D (-3; -4). Значит, решения заданной системы таковы:

Исследование системы двух линейных уравнений с двумя переменными

Пусть даны два линейных уравнения с двумя переменными и все коэффициенты при переменных отличны от нуля:

Графиком каждого из этих линейных уравнений является прямая (см. п. 162). Если , то прямые пересекаются в одной точке; если , то прямые совпадают; если то прямые параллельны и не совпадают.

Отсюда следует, что система двух линейных уравнений с двумя переменными

имеет единственное решение, если ,

имеет бесконечно много решений, если ,

не имеет решении, если

имеет одно решение, так как . Система

не имеет решений, поскольку Система

имеет бесконечно много решений, поскольку

Решение систем двух уравнений с двумя переменными методами умножения и деления

Методы умножения и деления при решении систем уравнений основаны на следующем утверждении.

Теорема 7.

Если обе части уравнения ни при каких значениях (х; у) одновременно не обращаются в нуль, то системы

Пример 1.

Решить систему уравнений

Решение:

Рассмотрим первое уравнение. Левая его часть обращается в 0 при у = 0. Если у = 0, то правая часть обращается в 0 при х = 0. Но при х = 0 левая часть не имеет смысла. Значит, нет таких пар (х; у), при которых обе части первого уравнения системы одновременно обращаются в 0. Поэтому можно заменить первое уравнение произведением обоих уравнений системы, оставив второе уравнение системы без изменений.

Преобразовав первое уравнение этой системы, получим

8 = (х + у) — (х — у), т.е. у = 4.

Подставив найденное значение у во второе уравнение системы, получим

(1)

Решим это иррациональное уравнение (см. п. 150):

Второе значение не удовлетворяет уравнению (1), т. е. является посторонним корнем. Значит, система имеет одно решение

Пример 2.

Решить систему уравнений

Решение:

Ни при каких значениях (х; у) обе части второго уравнения системы не обращаются в нуль одновременно. Значит, можно применить метод деления, перейдя от заданной системы к системе

Из второго уравнения этой системы находим

Подставим найденное выражение у через х в первое уравнение системы. Получим и далее — Из уравнения находим, что если х = 5, то у = 3. Итак, (5; 3) — решение системы.

Системы показательных и логарифмических уравнений

Решение систем показательных и логарифмических уравнений не содержит каких-либо принципиально новых моментов. Используются обычные приемы решения логарифмических и показательных уравнений (см. пп. 151, 152) и обычные приемы решения систем уравнений (см. пп. 164—166, 169).

Пример:

Решить систему уравнений

Решение:

Рассмотрим первое уравнение системы. Воспользуемся тем, что

(см. п. 121). Тогда уравнение можно записать в виде и далее (см. п. 120), откуда Теперь рассмотрим второе уравнение системы:

Задача свелась к решению следующей системы уравнений:

Подставим 15у + 4 вместо в первое уравнение:

(15у + 4)у = 256,

Если у = 4, то откуда находим Если то

т.е. — это уравнение не имеет действительных корней.

Итак, мы нашли две пары значений переменных:

Так как заданная система содержит выражения то должны выполняться условия х > 0, у > 0. Поэтому пара исходной системе не

Ответ: (8; 4).

Системы тригонометрических уравнений с двумя переменными

При решении систем тригонометрических уравнений используются обычные приемы решения систем уравнений и формулы тригонометрии.

Пример:

Решить систему уравнений

Решение:

Положим Тогда получим систему Из первого уравнения этой системы находим Подставив выражение вместо во второе уравнение системы, получим

Если

Если то

Итак, мы получили две пары решений

Так как то нам остается решить две системы уравнений:

Из уравнения sin х = 1 находим

Из уравнения находим

Значит, решения системы имеют вид

Из уравнения находим

Из уравнения cos у = 1 находим

Значит, решения системы имеют вид

Замечание:

При решении систем тригонометрических уравнений следует использовать различные обозначения для параметра в записи решений первого и второго уравнений системы. Иными словами, если в первом уравнении системы при записи решения в качестве параметра использована буква k, то для второго уравнения эту букву уже использовать нельзя — в рассмотренном примере для этой цели использовалась буква .

Системы трех уравнений с тремя переменными

Рассмотрим систему трех уравнений с тремя переменными

Решением такой системы называют всякую тройку чисел, удовлетворяющую каждому уравнению системы.

Для систем трех уравнений с тремя переменными применяются методы решения, аналогичные тем, что используются для систем двух уравнений с двумя переменными.

Пример:

Решить систему уравнений

Решение:

Применим метод подстановки. Выразим из первого уравнения х через у и z и подставим результат во второе и третье уравнения системы.

Последние два уравнения полученной системы в свою очередь образуют систему двух уравнений с двумя переменными. Решим эту систему методом подстановки.

Из уравнения находим . Из уравнения у = z — 3 получаем соответственно а из уравнения х = 2 — у — z находим

Итак, получили два решения исходной системы: (3; -2; 1) и (-1; 0; 3).

Решение задач с помощью составления систем уравнений

3адача 1.

Два пешехода идут навстречу друг другу из двух пунктов, расстояние между которыми равно 30 км. Если первый выйдет на 2 ч раньше второго, то встреча произойдет через 2,5 ч после выхода второго. Если же второй пешеход выйдет на 2 ч раньше первого, то встреча произойдет через 3 ч после выхода первого. С какой скоростью идет каждый пешеход?

Решение:

Пусть х км/ч — скорость первого пешехода, а у км/ч — скорость второго пешехода. Если первый выйдет на 2 ч раньше второго, то, согласно условию, он будет идти до встречи 4,5 ч, тогда как второй — 2,5 ч. За 4,5 ч первый пройдет путь 4,5л: км, а за 2,5 ч второй пройдет путь 2,5у км. Их встреча означает, что суммарно они прошли путь 30 км, т. е.

4,5х + 2,5у = 30 — первое уравнение.

Если второй выйдет на 2 ч раньше первого, то, согласно условию, он будет идти до встречи 5 ч, тогда как первый — 3 ч. Рассуждая, как и выше, придем ко второму уравнению:

В итоге получаем систему уравнений

откуда находим х = 5, у = 3.

Ответ: первый пешеход идет со скоростью 5 км/ч, а второй — 3 км/ч.

Задача 2.

У старшего брата было вдвое больше денег, чем у младшего. Они положили свои деньги на год на счета в разные банки, причем младший брат нашел банк, который дает на 5% годовых больше, чем банк старшего брата. Сняв свои деньги со счетов через год, старший брат получил 4600 руб., а младший — 2400 руб. Сколько денег было бы у братьев в сумме, если бы они с самого начала поменяли свои банки?

Решение:

Пусть х руб. — сумма денег, которую положил в банк младший брат, тогда 2х руб. — сумма денег, которую положил в банк старший брат.

Пусть, далее, банк старшего брата дает у% годовых, тогда банк младшего брата дает (у + 5)% годовых.

Значит, через год на счету старшего брата будет руб., а на счету младшего брата будет руб.

В итоге приходим к системе уравнений

Решив эту систему, получим х = 2000, у = 15.

Осталось получить ответ на вопрос задачи: сколько денег было бы у братьев в сумме, если бы они с самого начала поменяли свои банки? В этом случае младший брат положил бы свои 2000 руб. в банк под 15% годовых, а старший — 4000 руб. в банк под 20% годовых. Младший брат в конце года получил бы 2300 руб., а старший — 4800 руб. Всего у них стало бы 7100 руб.

Ответ: 7100 руб.

Эта лекция взята со страницы полного курса лекций по изучению предмета «Математика»:

Смотрите также дополнительные лекции по предмету «Математика»:

Реферат по математике на тему: «Основные методы решения систем нелинейных уравнений с двумя переменными»

РЕФЕРАТ ПО МАТЕМАТИКЕ.

«ОСНОВНЫЕ МЕТОДЫ РЕШЕНИЯ СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ С ДВУМЯ ПЕРЕМЕННЫМИ».

УЧЕНИК 9 КЛАССА «Б»

ГОУ ГОИНАЗИИ № 000

КЛАССНЫЙ РУКОВОДИТЕЛЬ 9 «Б» КЛАССА

БАТАЛОВА ВЕРА ИВАНОВНА.

ГОД РЕАЛИЗАЦИИ ИССЛЕДОВАНИЯ:

2) ГЛАВА 1: ОПРЕДЕЛЕНИЯ. ЧТО ЗАНЧИТ СИСТЕМА УРАВНЕНИЙ И ЕЁ РЕШЕНИЕ?

3) ГЛАВА 2: РАЗБОР МЕТОДОВ РЕШЕНИЯ СИСТЕМЫ НЕЛИНЕЙНЫХ УРАВНЕИЙ.

6) СПИСОК ЛИТЕРАТУРЫ.

Тема моего реферата «Решение систем уравнений с двумя переменными». Эта тема играет важную роль в курсе математики. Издавна применялось исключение неизвестных из линейных уравнений. В XVII — XVIII в. в. приемы исключения разрабатывали:

Пьер де Ферма( 17 августа 1января 1665, прожил 63 года) — французский математик, один из создателей аналитической геометрии, математического анализа, теории вероятностей и теории чисел. По профессии юрист, с 1631 года — советник парламента в Тулузе;

Исаак Ньютон( 25 декабря 1января 16марта 1марта 1727), прожил 84 года) — английский физик, математик и астроном, один из создателей классической физики;

Готфрид Вильгельм фон Лейбниц( 1 июля 1ноября 1716, прожил 70 лет) — немецкий философ, математик, юрист, дипломат;

Леонард Эйлерапреля 1сентября 1783, прожил 76 лет) — швейцарский, немецкий и российский математик, внёсший значительный вклад в развитие математики, а также механики, физики, астрономии и ряда прикладных наук;

Этьенн Безу( 31 марта 1сентября 1783, прожил 53 года) — французский математик, член Парижской академии наук (1758);

Жозеф Луи Лагранж(25 января 1апреля 1813, прожил 77 лет) — французский математик, астроном и механик итальянского происхождения. Наряду с Эйлером — лучший математик XVIII века.

Кроме этого данная тема имеет прикладной характер, т. к. многие задачи по физике, экономике и химии решаются с помощью систем нелинейных уравнений.

Системы линейных уравнений изучаются уже в 7-м классе, а в 8-м – на курсах геометрии решаются системы нелинейных уравнений. Однако уже в 9-м классе задачи по алгебре, физике, экономике и химии приводят к более сложным нелинейным системам, решение которых надо знать.

Эту тему я выбрал для того, чтобы изучить основные методы решения систем нелинейных уравнений. Реализировать мою цель я буду с помощью поставленных мною задач:

1) Изучить вопросы равносильности систем уравнений.

2) Изучить методы замены переменной и сложение.

3) Познакомиться с симметричными системами уравнений.

4) Разобрать метод почленного умножения и деления систем уравнений.

5) Познакомиться с решением однородных систем уравнений.

В результате изучения этой темы я составлю решебник систем нелинейных уравнений. Я надеюсь что, мой решебник сможет помочь учащимся 8-9 классов лучше подготовиться к выпускным экзаменам. А основные методы решения систем с параметром я буду изучать в 10-м классе.

2) ГЛАВА 1: ОПРЕДЕЛЕНИЯ. ЧТО ЗАНЧИТ СИСТЕМА УРАВНЕНИЙ И ЕЁ РЕШЕНИЕ?

В данной части моего реферата, я хотел бы рассказать вам, что же такое линейные функции с двумя переменными и их системы.

Для начало надо выяснить, что такое линейное уравнение.

Уравнение вида ax=b, где a и b – числа, а x – переменная, называется линейным уравнением с одной переменной. Если a ≠ 0, то уравнение имеет один корень:

Если a = 0, то в случае, когда b ≠ 0, уравнение не имеет корней; в случае, когда b = 0, корнем уравнения является любое число: , , «Сборник задач по алгебре 8-9» М.:»Просвещение», 1994 стрпункт).

Графиком линейного уравнения с двумя переменными, в котором a ≠ 0 или b ≠ 0, является прямая. Если a = 0 и b = 0, то в случае с = 0 графиком является вся координатная плоскость, а в случае c ≠ 0 уравнение не имеет решений.

На рисунке № 1 изображён график линейной функции. В данном случае a заменена на k, но по сути это одно и тоже. K – угловой коэффициент, от которого зависит угол наклона графика функции. На рисунке видно, что k – положительное число, следовательно угол а – острый. Если бы угловой коэффициент k был отрицательным числом, то а был бы тупым углом, как это показано на рисунке №2.

Возможен и третий случай, если k = 0, то y = b( см. рисунок № 3).

Решением системы уравнений с двумя переменными называется пара значений переменных, подставив которые в любую из данных уравнений системы, получим верное числовое равенство.

Решить систему уравнений значит найти эту пару значений переменных. Для примера возьмём простую систему уравнений, заодно посмотрим. Как же записывается система уравнений:

В ней уже сразу надо значение переменной x. Значит, подставив во второе уравнение это значение, можно найти значение переменной y, заодно рассмотрим решение системы уравнений с помощью метода подстановки:

Ответ: решением данной системы является пара чисел (5; 7): x = 5; y = 7, именно так расшифровывается запись в скобках.

Система двух линейных уравнений с двумя переменными может иметь единственное решение, бесконечно много решений и не иметь решений, что геометрически интерпретируется соответственно как пересечение, совпадение и параллельность прямых, являющихся графиками уравнений системы: там же. стр. 6 (пункт 9).

Теперь поговорим о равносильности систем уравнений.

Две системы называются равносильными, если множества их решений совпадают. Если обе системы не имеют решений, то они также считаются равносильными.

Решая системы уравнений, обычно заменяют данную систему другой, равносильной исходной, которую решать проще. При этом можно использовать следующие утверждения о равносильности систем уравнений:

1) если одно из уравнений системы заменить на равносильное уравнение, то получим систему. Равносильную исходной;

2) если одно из уравнений систем заменить суммой каких-либо двух уравнений данной системы, то получим систему, равносильную исходной;

3) если одно из уравнений системы выражает зависимость какой-либо переменной, например x, через другие переменные, то, заменив в каждом уравнении системы переменную x на её выражение через другие переменные, то получим систему, равносильную исходной: там же. стр. 107-108 (пункт 2, абзац 3-4).

3) ГЛАВА 2: РАЗБОР МЕТОДОВ РЕШЕНИЯ СИСТЕМЫ НЕЛИНЕЙНЫХ УРАВНЕИЙ.

Основная цель при решении систем линейных уравнений — решить эту систему, то есть найти все ее решения или доказать, что решений нет. Для решения системы уравнений с двумя переменными используются:

1) графический способ;

2) способ замены переменной и алгебраического сложения и вычитания;

3) способ почленного умножения и деления;

4) способ подстановки.

Все эти способы используются во всех предметах, где необходимы знания математики: алгебра, физика, химия, геометрия.

Рассмотрим способ № 1: Известно, что графиком линейного уравнения является прямая. Вопрос о числе решений системы двух линейных уравнений сводиться к определению числа общих точек прямых, являющимися графиками уравнений системы. Рассмотрим три случая расположения прямой.

Случай 1: Прямые, которые являются графиком функции, входящих в данную систему, пересекаются.

Решим эту систему:

Уравнениями у=-1,1х+12 и у=-6х+18 задаются линейные функции. Угловые коэффициенты прямых этих функций различны. Следовательно, эти прямые пересекаются, и система имеет единственное решение. Прировняв правые части уравнений, найдем точку пересечения. Данная система имеет единственное решение: пара чисел равная (1,2; 10,7).

Случай 2: Прямые, являющиеся графиками уравнений системы, параллельны.

Решим систему уравнений:

Прямые, являющиеся графиками линейных функций у=-0,4х+0,15 и у=-0,4х+3,2, параллельны, так как их угловые коэффициенты одинаковы, а точки пересечения с осью у различны. Отсюда следует, что данная система уравнений не имеет решений.

Случай 3: Прямые, являющиеся графиками уравнений системы, совпадают.

Очевидно, что графики уравнений совпадают. Это означает, что любая пара чисел (х; у), в которой х — произвольное число, а у = — 2,5х — 9, является решением системы. Система имеет бесконечно много решений.

Во время решения систем нелинейных уравнений данным способом вызывает у учащихся трудности по ряду причин:

1) не умение, выражать одну переменную через другую;

2) не правильное построение системы координат (различный единичный отрезок на осях ординат и абсцисс).

Рассмотрим способ № 2( замена переменной): Легче всего это сделать решив задачу, что мы сейчас и сделаем:

Условие задачи: Ученик задумал два числа. Первое число на 5 больше второго. Если от удвоенного первого числа вычесть утроенное второе число, то получится 25. Какие числа задумал ученик?

Решение: Пусть х — первое число, у — второе число. По условию задачи составим систему уравнений.

В первом уравнении выразим х через у: х=у+5.

Подставив во второе уравнение вместо переменной х выражение х = у + 7, получим систему

Очевидно, что получившееся второе уравнение является уравнением с одной переменной.

Подставив в первое уравнение системы вместо переменной у ее значение, равное 6, получим:

Ответ: ученик задумал числа равные -6 и -11, т. е. пара чисел (-6; -11) является решением данной системы.

Во время решения систем нелинейных уравнений данным способом вызывает у учащихся трудности по ряду причин:

1) не умение, выражать одну переменную через другую;

2) не умение, подставить уже полученную переменную (забывают или не видят).

Рассмотрим способ № 2( алгебраическое сложение): Как и в методе подстановки, мы переходим от данной системы к другой, равносильной ей системе, в которой одно из уравнений содержит только одну переменную.

Решим систему уравнений:

В уравнениях этой системы коэффициенты при у являются противоположными числами ( +3y и -3y). Сложив почленно левые и правые части уравнений, получим уравнение с одной переменной:

Заменим одно из данных нам уравнений системы, например первое, уравнением 2x = 18. Получим систему:

Полученная система равносильна данной системе. Решим полученную систему:

Из уравнения 2х=18 находим, что х=9. Подставив это значение х в уравнение 4х-3у=12, получим уравнение с переменной у.

Решим это уравнение:

Пара чисел (11; — 9) — решение полученной системы, а значит, и данной нам системы.

Воспользовавшись тем, что в уравнениях данной нам системы коэффициенты при у являются противоположными числами, мы свели ее решение к решению равносильной системы, в которой одно из уравнений содержит только одну переменную.

Геометрически равносильность систем означает, что графики уравнений 4x + 3y = 12 и -2x — — 3у=38 пересекаются.

Во время решения систем нелинейных уравнений данным способом вызывает у учащихся трудности только по одной причине:

1) не умение, подставить уже полученную переменную (забывают или не видят).

Рассмотрим способ № 3: Если при решении систем уравнений учащийся не может ни заменить переменную, ни алгебраически сложить, то можно прибегнуть к этому способу. Разберём на примере.

Решим систему уравнений:

Домножим верхнее уравнение на 3. Получим:

Очевидно, что и в первом и во втором уравнениях есть 3y, только с разными занками. Дальше решаем так же, как и прошлой системе ( см. 3 разбор).

В конце получаем, что пара чисел (4,2; -4,8) является решением данной нам системы.

Во время решения систем нелинейных уравнений данным способом вызывает у учащихся трудности только по ряду причине:

1) не видят, что и на сколько надо домножить;

2) не умение, подставить уже полученную переменную (забывают или не видят).

Рассмотрим способ подстановки: Этот метод или способ решения систем уравнений используется чаще всех. Грубо говоря, этот способ мы разобрали во всех остальных, т. к. заменяя одну систему на равносильную ей, мы находим одну переменную, а затем подставляем её значение в одно из уравнений данной нам системы. А следовательно, возникающие проблемы при решении систем уравнений этим способом такие же, как и у всех остальных методов:

1) не умения, выражать одну переменную через другую;

2) не умение, подставить уже полученную переменную;

Итак, из всего выше сказанного можно сделать вывод:

во время решения систем нелинейных уравнений у учащихся возникают проблемы по ряду двум причинам:

1) не умения, выражать одну переменную через другую;

2) не умение, подставить уже полученную переменную;

3) не видят, что и на сколько надо домножить.

В этой части реферата написан решебник на мою тему с целью помочь читающим попрактиковаться в решении систем уравнений с двумя переменными. Для каждого метода будет представлено по примера и решение одного из них, в качестве примера как их решать тем или иным методом.

1) Метод замены переменной и алгебраического сложения и вычитания:

Для начала метод алгебраического сложения.

Можно заметить, что в двум уравнениях присутствует одна и та же переменная: 3y, только с разными знаками. Следовательно, их можно алгебраически сложить и мы получим равносильную систему:

Итак, мы нашли значение первой переменной: x = 1. теперь подставляем это значение в любую из уравнений, чтобы найти значение второй переменной:

Метод алгебраического вычитания почти такой же как и метод алгебраического сложения, только вместо того, чтоб складывать уравнения, мы вычитаем одно из другого.

Теперь разберём последовательность решения методом замены переменной:

Вначале я перенёс одну переменную из уравнения 1 вправо и получил: x = 1 –y. Затем, я подтсавил полученное значение во второе уравнение и нашёл значение переменной y: y = 0. после этого. Я подставил это значение во второе уравнение и получил значение переменной x: x = 1.

Теперь потренируйтесь самостоятельно.

Пример №3 (метод алгебраического сложения):

У вас должен получиться ответ: (2; -0,(3) ).

Пример №4 (метод замены переменной):

2) Метод почленного умножения и деления:

Домножим первое уравнение на два и получим:

Теперь вычтем из первого уравнения второе (включаем в решение метод алгебраического вычитания). Затем решаем всё как и в прошлых примерах: находим значение одной переменной, затем второй и пишем ответ.

Метод почленного деления очень похож, но вместо умножения каждого члена уравнения на какое-либо число мы на него их делим.

Пример №2 (метод почленного деления):

Пример №3 (метод почленного умножения):

У вас должен получиться ответ: (3 -4) и (-3; 4).

Для начала перенесём переменную x в правую сторону, чтобы получить уравнение функции:

Теперь начертим графики полученных функций:

Теперь найдём их пересечение:

Теперь потренируйтесь сами.

У вас должен получиться ответ: (-2; -1) и (-1; 0).

Итак, я рассмотрел все методы решения систем уравнений с двумя переменными и составил решебник, который поможет тем, кто читает мой реферат, лучше усвоит каждый метод и попрактиковаться в решении систем уравнений с двумя переменными. Я надеюсь, что мой реферат был понятен каждому и помог разобраться во всём. Я надёюсь, что в 10-ом классе я изучу системы уравнений с тремя переменными и с методы их решения. Возможно, я напишу реферат именно на эту тему, чтобы поделиться моими знаниями с другими людьми.

6) СПИСОК ЛИТЕРАТУРЫ.

1. , , «АЛГЕБРА. Учебник для 9 класса с углублённым изучением математики» Москва 2006 год, 5-е издание — М.:Мнемозина, 439 страниц, иллюстрации.

2. , , «Сборник задач по алгебре 8-9 классы» Москва «Просвещение» 1994 год, 271 страница.


источники:

http://natalibrilenova.ru/sistemyi-uravnenij/

http://pandia.ru/text/78/389/48456.php