Методика изучения систем уравнений и неравенства

Методика изучения неравенств

Федеральное агентство по образованию

Саратовский Государственный Университет им.Н.Г. Чернышевского

Кафедра математики и методов её преподавания

на тему: Методика изучения неравенств

Выполнила: студентка 4 курса 421 группы ММФ

Проверил: зав. каф. к. п. н. Кондаурова И.К.

Содержание

1. Методика изучения темы «Неравенства» в начальной школе. 5

2. Методика изучения неравенств в старших классах. 11

2.1 Содержание и роль линии уравнений и неравенств в современном школьном курсе математики. 11

2.2 Классификация преобразований неравенств и их систем.. 13

2.3 Общая последовательность изучения материала линии неравенств. 15

3. Методика изучения основных классов неравенств и их систем.. 19

Список использованных источников. 27

Введение

Тема «Неравенства» занимает важное место в курсе алгебры. Она богата по содержанию, по способам и приемам решения неравенств, по возможностям ее применения при изучении ряда других тем школьного курса алгебры. Это объясняется тем, что уравнения и неравенства широко используются в различных разделах математики, в решении важных прикладных задач.

Анализ диссертационных работ, посвященных методике изучения темы «Неравенства» в основной школе, показал, что в настоящий момент имеется ряд исследований, раскрывающих ее различные аспекты. Одним из первых было диссертационное исследование К.И. Нешкова, в котором сформулированы принципы отбора содержания и выделен необходимый объем материала по теме. При этом большая роль отводилась упражнениям.

Исследования: М.В. Паюл, И.М. Степуро посвящены вопросам взаимосвязи понятий неравенства, уравнения и функции; М.П. Комова, Г.Н. Солтан — доказательствам и решению неравенств на геометрическом материале; Е.Ф. Недошивкина — внутрипредметным связям при изучении уравнений и неравенств в курсе математики 4-8-х классов; Н.Б. Мельниковой, Д.Д. Рыбдаловой — прикладным аспектам изучения неравенств в средней школе.

Итак, можно констатировать тот факт, что отдельные вопросы методики обучения понятию неравенства и решению конкретных неравенств в школьном курсе математики освещены достаточно полно.

Несмотря на значительный положительный опыт в методике преподавания темы «Неравенства», как показывает анализ результатов тестов, контрольных, выпускных, вступительных экзаменационных работ, учащиеся средней школы недостаточно полно владеют основными знаниями и умениями по решению неравенств. В качестве аргумента приведем анализ результатов участия России в международных исследованиях TIMSS (6-ое место из 36 стран участников), который показал, что наибольшую озабоченность по курсу алгебры вызывает качество знаний и умений учащихся по теме «Неравенства».

1. Методика изучения темы «Неравенства» в начальной школе.

Работа над неравенствами ведется с I класса, органически сочетаясь с изучением арифметического материала. Программа по математике для I-III классов ставит задачу выполнять сравнение чисел, а также сравнение выражений с целью установления отношений «больше», «меньше», «равно»; научить записывать результаты сравнения с помощью знаков и читать полученные неравенства.

Числовые неравенства учащиеся получают в результате сравнения заданных чисел или арифметических выражений. Поэтому знаками соединяются не любые два числа, не любые два выражения, а лишь те, между которыми существуют указанные отношения. Если одно число больше (меньше) другого или одно выражение имеет значение больше (меньше), чем другое выражение, то, соединенные соответствующим знаком, они образуют неравенство. Таким образом, первоначально у младших школьников формируются понятия только о верных неравенствах.

Однако в процессе работы над уравнениями, выражениями и неравенствами с переменной учащиеся, подставляя различные значения переменной, накапливают наблюдения и убеждаются в том, что равенства и неравенства бывают как верные, так и неверные. Такой подход к раскрытию понятий определяет соответствующую методику работы над равенствами, неравенствами, уравнениями.

Ознакомление с неравенствами в начальных классах непосредственно связывается с изучением нумерации и арифметических действий.

Сравнение осуществляется сначала на основе сравнения множеств, которое выполняется, как известно, с помощью установления взаимно однозначного соответствия. Этому способу сравнения множеств учат детей в подготовительный период и в начале изучения нумерации чисел первого десятка. Попутно выполняется счет элементов множеств и сравнение полученных чисел (кружков 7, треугольников 5, кружков больше, чем треугольников, 7 больше, чем 5). В дальнейшем при сравнении чисел учащиеся опираются на их место в натуральном ряду: 9 меньше, чем 10, потому что при счете число 9 называют перед числом 10; 5 больше, чем 4, потому что при счете число 5 называют после числа 4.

Установленные отношения записываются с помощью знаков , учащиеся упражняются в чтении и записи неравенств.

Впоследствии при изучении нумерации чисел в пределах 100, 1000, а также нумерации многозначных чисел сравнение чисел осуществляется либо на основе сопоставления их по месту в натуральном ряду, либо на основе разложения чисел по десятичному составу и сравнения соответствующих разрядных чисел, начиная с высшего разряда (75>48, так как 7 десятков больше, чем 4 десятка; 75>73, так как десятков поровну, а единиц в первом числе больше, чем во втором).

Сравнение величин сначала выполняется с опорой на сравнение самих предметов по данному свойству, а потом осуществляется на основе сравнения числовых значений величин, для чего заданные величины выражаются в одинаковых единицах измерения. Сравнение величин вызывает трудности у учащихся, поэтому, чтобы научить этой операции, надо систематически в I-III классах предлагать разнообразные упражнения, например:

Подберите равную величину: 7 км 500 м = □ м, 3080 кг= □ т □ кг.

Подберите числовые значения величин так, чтобы запись верной: □ ч 16.

Подобные упражнения помогают детям усвоить не только понятия равных и неравных величин, но и отношения единиц измерения.

Переход к сравнению выражений осуществляется постепенно. Сначала в процессе изучения сложения и вычитания в пределах 10 дети длительное время упражняются в сравнении выражения и числа (числа и выражения). Первые неравенства вида 3+1>3, 3-1 3), значит, можно записать: 3+1>3 (три плюс один больше, чем три). Аналогичная работа ведется над неравенством 3-1 5 2 5 2 b, то b 3), а других меньше (3 5, х-4>12, 72: х 0, 6+4> □, 7+ □ 0 можно подставить число 1 (1>□), можно 2 (2>□), можно З (3>□) и т.д. После того как названо несколько чисел, полезно обобщить наблюдения (например, во втором неравенстве можно подставить любое число, которое меньше 10-от 0 до 9).

Рассматривая во II классе, например, неравенство х+3 b к неравенству f(a) >f(b), где f-возрастающая функция, или обратный переход.

3б) Переход от неравенства а 0, помещенная на рис.3. В результате определенной тренировки учащиеся привыкают пользоваться такой схемой, а затем ее мысленным образом.

3. Методика изучения основных классов неравенств и их систем

Эти классы можно разбить на две группы. Первая группа рациональные неравенства и системы. Наиболее важными классами соответствующие классы неравенств. Вторая группа — иррациональные и трансцендентные неравенства и системы. В состав этой группы входят иррациональные, показательные, логарифмические и тригонометрические неравенства.

Первая группа получает достаточное развертывание, вплоть до формирования прочных навыков решения, уже в курсе алгебры неполной средней школы. Вторая же группа в этом курсе только начинает изучаться, причем рассматриваются далеко не все классы, а окончательное изучение происходит в курсе алгебры и начал анализа. При изучении второй группы приходится опираться на общие понятия и методы, относящиеся к линии неравенств. Указанное различие, однако, не является единственным, которое противопоставляет эти две группы. Более существенным является учет особенностей, связанных с развертыванием материала каждой из этих групп. По сравнению с первой группой неравенства, входящие в состав второй, в процессе их изучения обнаруживают значительно более сложные связи с другими линиями курса математики — числовой, функциональной, тождественных преобразований и др.

Последовательность изучения различных классов неравенств и систем различна в разных учебниках. Однако количество возможных вариантов для последовательности их введения не слишком велико — классы находятся в определенной логической зависимости друг от друга, которая предписывает порядок их появления в курсе.

Наличие такого разнообразия подходов затрудняет методическое описание, поскольку принятие того или иного пути требует различных приемов изучения материала.

Отметим ряд особенностей в изучении неравенств:

1) Как правило, навыки решения неравенств, за исключением квадратных, формируются на более низком уровне, чем уравнений соответствующих классов. Эта особенность имеет объективную природу: теория неравенств сложнее теории уравнений. Отмеченное обстоятельство отчасти смягчается другими особенностями изучения неравенств, поэтому в целом можно считать, что содержательная сторона неравенств, возможности их приложений от этого не страдают.

2) Большинство приемов решения неравенств состоит в переходе от данного неравенства a>b к уравнению а=b и последующем переходе от найденных корней уравнения к множеству решений исходного неравенства. Пожалуй, такого перехода не производится лишь при рассмотрении линейных неравенств, где в нем нет необходимости из-за простоты процесса решения таких неравенств. Эту особенность необходимо постоянно подчеркивать, с тем? чтобы переход к уравнениям и обратный переход превратились в основной метод решения неравенств; в старших классах он формализуется в виде «метода интервалов».

3) В изучении неравенств большую роль играют наглядно-графические средства.

Указанные особенности могут быть использованы для обоснования расположения материала, относящегося к неравенствам, количества заданий, необходимых для усвоения программного минимума.

Приведем примеры. Первая особенность может быть истолкована так: при выполнении одного и того же числа упражнений техника решения неравенств какого-либо класcа будет ниже, чем уравнений соответствующего класса; следовательно, если имеется необходимость формирования прочных навыков решения неравенств, то для этого требуется большее число заданий. Вторая особенность объясняет то, что темы, относящиеся к неравенствам, расположены после тем, относящихся к соответствующим классам уравнений. В соответствии с третьей особенностью изучение неравенств зависит от качества изучения функциональной линии школьного курса (построение графиков и графическое исследование функций).

Перечисленные особенности показывают, что изучение предшествующего материала сильно влияет на изучение неравенств. Поэтому роль этапа синтеза в изучении неравенств особенно возрастает.

Проиллюстрируем указанные особенности на материале квадратных неравенств. Изучение этого раздела курса следует за изучением квадратного уравнения и квадратного трехчлена. К моменту его изучения учащиеся умеют строить графики квадратичной функции, причем на них отмечаются нули функции, если они существуют. Поэтому переход к рассмотрению квадратных неравенств можно осуществить как переход от неравенства ах²+bх+с>0 к построению и изучению графика функции у=ах²+bх+с. Поскольку возможны различные случаи расположения графика относительно оси абсцисс, лучше начать с рассмотрения конкретного задания, для которого соответствующий квадратный трехчлен имеет различные корни. На этом примере устанавливается соответствие между двумя задачами: «Решить неравенство ах²+bх+с>0»; «Найти значения аргумента, для которых значения функции у=ах²+bх+с положительны». Посредством этой связи производится переход к построению графика функции. Нули этой функции разбивают ось абсцисс на три промежутка, в каждом из которых она сохраняет знак, поэтому ответ считывается прямо с чертежа. Другие случаи решения квадратных неравенств (у квадратного трехчлена ах²+bх+с не больше одного корня) требуют дополнительного рассмотрения, но опираются на то же соответствие.

В процессе дальнейшего изучения устанавливается, что нет нужды в точно вычерченном графике квадратного трехчлена, достаточно наметить только положение корней, если они есть, и учесть на эскизе нужные особенности графика (направление ветвей параболы).

В школьном курсе математики ограничиваются изучением только неравенств основных классов; задания, которые требуют сведения к основным классам, встречаются сравнительно редко. Например, не изучаются биквадратные неравенства.

Из числа типов заданий, в которых проявляется прикладная роль неравенств в курсе алгебры, отметим нахождение области определения функции и исследование корней уравнений в зависимости от параметров.

Иррациональные и трансцендентные неравенства

Определения различных классов иррациональных и трансцендентных неравенств, которые приводятся в школьных учебниках, обычно имеют вид: «Неравенство называется иррациональным (показательным в т.д.), если оно содержит неизвестное под знаком корня (в показателе степени и т.д.)». Несмотря на формальную расплывчатость, определения такого типа достаточны для того, чтобы указать некоторую область, уравнения или неравенства из которой решаются способами, изучаемыми при прохождении соответствующей темы. В каждом из таких классов можно указать подклассы простейших уравнений или неравенств, к которым и сводится решение более сложных заданий.

Каждый простейший класс тесно связан с классом соответствующих функций; по существу, формулы решений и исследование простейших неравенств здесь опираются на свойства функций. В начале изучения каждого простейшего класса учащимся приходится преодолевать трудности, связанные с освоением специфической символики, в частности узнавать новые формы записи чисел и числовых областей, в которых должен быть получен ответ к заданию. При решении заданий часто используются наряду с известными специфические для соответствующего класса функций тождества. Значительно чаще, чем в предшествующей части курса, в решении неравенств используются неравносильные преобразования, широко используются подстановки. Поэтому весь этот материал требует достаточной логической грамотности учащихся.

Специфика трансцендентных неравенств. При рассмотрении различных классов трансцендентных неравенств необходимо уделять достаточное внимание формированию навыка применения тождеств для преобразования данных неравенств. Особенно ярко это проявляется в тригонометрии, поэтому при изучении тригонометрических неравенств большое значение приобретают задания и системы вопросов, связанные с распознаванием применимости того или иного тождества, возможности приведения уравнения или неравенства к определенному виду.

Здесь значительные трудности связаны с тем, что некоторые тождества, используемые в преобразованиях, приводят к изменению области определения. К числу таких тождеств относятся, например, такие:

Использование этих тождеств слева направо может привести к потере корней, а справа налево — к появлению посторонних корней. Рассмотрим примеры.

Здесь учет ограничений при использовании тождества для логарифма произведения выполнен при втором переходе, в результате чего неравенство преобразовалось в систему неравенств, из которых два последних позволяют сохранить исходную область определения неизменной.

В результате выполнения аналогичных заданий можно сделать вывод: если приходится пользоваться преобразованиями, расширяющими область определения, то для сохранения равносильности необходимо дополнительно ввести ограничения, сохраняющие исходную область определения неизменной.

Заключение

В данной курсовой работе мы рассмотрели методику преподавания темы «Неравенства» в начальных и старших классах средней школы.

Неравенство числовое — высказывание вида а b, где или b, то b а.

К обеим частям истинного (верного) числового неравенства можно прибавлять одно и то же число, в результате получим истинное неравенство. Умножая обе части истинного числового неравенства а bс.

Содержание линии неравенств развертывается на протяжении всего школьного курса математики. Учитывая важность и обширность материала этой линии, еще раз отметим целесообразность на заключительных этапах обучения предлагать достаточно разнообразные и сложные задания, рассчитанные на активизацию наиболее существенных компонентов этой линии, основных понятий и основных приемов решения, исследования и обоснования заданий.

Список использованных источников

1. Бантова М.А., Бельтюкова Г.В. Методика преподавания математики в начальных классах: Уч. пос. для уч-ся школ. отд-й пед. уч-щ / Под ред. М.А. Бантовой. -3-е изд., испр. — М.: Просвещение, 1984 г. — 335 с. — ил.

2. Бантова М.А. Методическое пособие к учебнику математики/М.А. Бантова, Т.В. Бельтюкова, С.В. Степанова. – М.: Просвещение, 2001 – 64 с.

3. Вавилов В.В., Мельников И.И. и др. «Задачи по математике. Уравнения и неравенства» М.: Изд. «Наука» 1987 г.

4. Давыдов В.В., С.Ф. Горбов и др. Обучение математике. – М.: Мирос, 1994. – 192 с.

5. Истомина Н.Б. Методика обучения математике в начальных классах. – М.: Академия, 2000. – 288 с.

6. Кипнис И.М. Задачи на составление уравнений и неравенств: Пос. для учит-й. — М.: Просвещение, 1980 г. -68 с.

7. Левитас Г.Г. Современный урок математики. Методика преподавания. ПТУ-М.: Высшая школа, 1989. -88 с. — ил.

8. Методика преподавания математики в средней школе: Общая методика: Уч. пос. для студ. пед. инст-в по спец.2104 «Математика» и 2105 «Физика»/ А. Блох, Е.С. Канин и др. Сост.Е.С. Черкасов, А.А. Столяр. — М.: Просвещение, 1985. -336 с.

9. Методика преподавания математики в средней школе: Частная методика: Уч. пос. для студ. пед. инст-в по физ-мат. спец-м/ А. Блох, В.А. Гусев, Г.В. Дорофеев и др. Сост.В.И. Мишин. — М.: Просвещение, 1987. -416 с.: ил.

10. Методика преподавания математики в средней школе. /В.А. Ованесян и др. – М: Просвещение, 1980. – 368 с.

11. Олехник С.Н., Потапов М.К., Пасиченко П.И. Нестандартные методы решения уравнений и неравенств. — М.: МГУ, 1991 г.

курсовая работа по методике обучения математике Юсупова ЮА 411 г. Методика обучения графическому способу решения уравнений, неравенств и их систем, в основной школе

НазваниеМетодика обучения графическому способу решения уравнений, неравенств и их систем, в основной школе
Дата06.07.2020
Размер0.63 Mb.
Формат файла
Имя файлакурсовая работа по методике обучения математике Юсупова ЮА 411 г.docx
ТипКурсовая
#133853
Подборка по базе: Медико-биологические основы обучения детей с ограниченными возмо, Диплом Особенности обучения рисованию транспорта в старшей групп, русский методика практич. 1.pdf, Национальный исследовательский институт дополнительного образова, ДОКЛАД Три проблемы трудового права и пути их решения.doc, Пр 1_ТАБЛИЦА Системы трудового обучения.doc, русский методика преп. тест2.pdf, задачи с решениями .docx, Обобщенная методика.pdf, Актуализируйте свои знания о сущности методов обучения.docx

Федеральное государственное бюджетное образовательное учереждение высшего образования

«ЮЖНО-УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ГУМАНИТАРНО- ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ»

(ФГБОУ ВО «ЮУрГГПУ»)
ФАКУЛЬТЕТ физико-математический

КАФЕДРА математики и методики обучения математике
КУРСОВАЯ РАБОТА
на тему: «Методика обучения графическому способу решения уравнений, неравенств и их систем, в основной школе»

студентка группы 411

Юсупова Юлия Андреевна

Мартынова Елена Владимировна

Дата сдачи: 2020 год

1. Графический способ решения систем линейных уравнений и уравнений более высоких степеней…………………………………………….5

3. Использование геометрических преобразований графиков функций при решении систем……………………………………………………………..16

4. Графический метод решения систем иррациональных и трансцендентных уравнений и неравенств…………………………………….33

Введение
Актуальность темы. Тема «Уравнения и неравенства» занимает важное место в курсе алгебры. Она богата по содержанию, по способам и приемам решения уравнений и неравенств, по возможностям ее применения при изучении ряда других тем школьного курса алгебры. Это объясняется тем, что уравнения и неравенства широко используются в различных разделах математики, в решении важных прикладных задач.

Анализ диссертационных работ, посвященных методике изучения темы «уравнения и неравенства» в основной школе, показал, что в настоящий момент имеется ряд исследований, раскрывающих ее различные аспекты. Одним из первых было диссертационное исследование К.И. Нешкова, в котором сформулированы принципы отбора содержания и выделен необходимый объем материала по теме. При этом большая роль отводилась упражнениям.

Исследования: М.В. Паюл, И.М. Степуро посвящены вопросам взаимосвязи понятий неравенства, уравнения и функции; М.П. Комова, Г.Н. Солтан — доказательствам и решению неравенств на геометрическом материале; Е.Ф. Недошивкина — внутрипредметным связям при изучении уравнений и неравенств в курсе математики 4-8-х классов; Н.Б. Мельниковой, Д.Д. Рыбдаловой — прикладным аспектам изучения неравенств в средней школе.

Итак, можно констатировать тот факт, что отдельные вопросы методики обучения понятий уравнения и неравенства и решению конкретных уравнений и неравенств в школьном курсе математики освещены достаточно полно.

Несмотря на значительный положительный опыт в методике преподавания темы «уравнения и неравенства», как показывает анализ результатов тестов, контрольных, выпускных, вступительных экзаменационных работ, учащиеся средней школы недостаточно полно владеют основными знаниями и умениями по их решению. В качестве аргумента приведем анализ результатов участия России в международных исследованиях TIMSS (6-ое место из 36 стран участников), который показал, что наибольшую озабоченность по курсу алгебры вызывает качество знаний и умений учащихся по теме «уравнения и неравенства».

Объект исследования: процесс формирования умений решать уравнений и неравенств с параметрами в школьном курсе метематике основной школы.

Предмет исследования: уравнения и неравенства с параметрами.

Цель исследования: выделить виды, методы решения уравнений и неравенств с параметрами в школьном курсе математике.

Для достижения поставленной цели необходимо было решить следующие задачи:

— Изучить и проанализировать специальную литературу по проблеме исследования;

— Рассмотреть роль уравнений и неравенств в школьном курсе математике;

— Разработка методических рекомендаций к решению уравнений и неравенств с параметрами.

1. Графический способ решения систем линейных уравнений и уравнений более высоких степеней

Ввиду важности и обширности материала, связанного с понятием уравнения, его изучение в современной методике математики организовано в содержательно-методическую линию уравнений и неравенств. Здесь рассматриваются вопросы формирования понятий уравнения и неравенства, общих и частных методов их решения, взаимосвязи изучения уравнений и неравенств с числовой, функциональной и другими линиями школьного курса математики [1].

Выделенным областям возникновения и функционирования понятия уравнения в алгебре соответствуют три основных направления развертывания линии уравнений и неравенств в школьном курсе математики.

а) Прикладная направленность линии уравнений и неравенств раскрывается главным образом при изучении алгебраического метода решения текстовых задач. Этот метод широко применяется в школьной математике, поскольку он связан с обучением приемам, используемым в приложениях математики.

В настоящее время ведущее положение в приложениях математики занимает математическое моделирование. Используя это понятие, можно сказать, что прикладное значение уравнений, неравенств и их систем определяется тем, что они являются основной частью математических средств, используемых в математическом моделировании.

б) Теоретико-математическая направленность линии уравнений и неравенств раскрывается в двух аспектах: во-первых, в изучении наиболее важных классов уравнений, неравенств и их систем и, во-вторых, в изучении обобщенных понятий и методов, относящихся к линии в целом. Оба эти аспекта необходимы в курсе школьной математики.
Основные классы уравнений и неравенств связаны с простейшими и одновременно наиболее важными математическими моделями.

Использование обобщенных понятий и методов позволяет логически упорядочить изучение линии в целом, поскольку они описывают то общее, что имеется в процедурах и приемах решения, относящихся к отдельным классам уравнений, неравенств, систем. В свою очередь, эти общие понятия и методы опираются на основные логические понятия: неизвестное, равенство, равносильность, логическое следование, которые также должны быть раскрыты в линии уравнений и неравенств.

в) Для линии уравнений и неравенств характерна направленность на установление связей с остальным содержанием курса математики. Эта линия тесно связана с числовой линией. Основная идея, реализуемая в процессе установления взаимосвязи этих линий, — это идея последовательного расширения числовой системы. Все числовые области, рассматриваемые в школьной алгебре и началах анализа, за исключением области всех действительных чисел, возникают в связи с решением каких-либо уравнений, неравенств, систем. Например, числовые промежутки выделяются неравенствами или системами неравенств. Области иррациональных и логарифмических выражений связаны соответственно с уравнениями (k-натуральное число, большее [5].

Связь линии уравнений и неравенств с числовой линией двусторонняя. Приведенные примеры показывают влияние уравнений и неравенств на развертывание числовой системы. Обратное влияние проявляется в том, что каждая вновь введенная числовая область расширяет возможности составления и решения различных уравнений и неравенств.

Линия уравнений и неравенств тесно связана также и с функциональной линией. Одна из важнейших таких связей приложения методов, разрабатываемых в линии уравнений и неравенств, к исследованию функции (например, к заданиям на нахождение области определения некоторых функций, их корней, промежутков знакопостоянства и т.д.). С другой стороны, функциональная линия оказывает существенное влияние как на содержание линии уравнений и неравенств, так и на стиль ее изучения. В частности, функциональные представления служат основой привлечения графической наглядности к решению и исследованию уравнений, неравенств и их систем.

Рассмотрим систему

Пару чисел которая одновременно является решением и первого и второго уравнения системы, называют решением системы уравнений.

Решить систему уравнений – это значит найти все её решения, или установить, что решений нет. Мы рассмотрели графики основных уравнений, перейдем к рассмотрению систем.

Решение линейной системы уравнений

Пример 1. Решить систему

Решение:

Это линейные уравнения, графиком каждого из них является прямая. График первого уравнения проходит через точки (0; 1) и (-1; 0). График второго уравнения проходит через точки (0; -1) и (-1; 0). Прямые пересекаются в точке (-1; 0), это и есть решение системы уравнений (Рис. 1).

Решением системы является пара чисел Подставив эту пару чисел в каждое уравнение, получим верное равенство.

Мы получили единственное решение линейной системы.

Вспомним, что при решении линейной системы возможны следующие случаи:

cистема имеет единственное решение – прямые пересекаются,

система не имеет решений – прямые параллельны,

система имеет бесчисленное множество решений – прямые совпадают.

Мы рассмотрели частный случай системы, когда p(x; y) и q(x; y) – линейные выражения от x и y.

Решение нелинейных систем уравнений

Пример 2. Решить систему уравнений

Решение:

График первого уравнения – прямая, график второго уравнения – окружность. Построим первый график по точкам (Рис. 2).

x0-1
y10

Центр окружности в точке О(0; 0), радиус равен 1.

Графики пересекаются в т. А(0; 1) и т. В(-1; 0).

Ответ:

Пример 3. Решить систему графически

Решение: Построим график первого уравнения – это окружность с центром в т.О(0; 0) и радиусом 2. График второго уравнения – парабола. Она сдвинута относительно начала координат на 2 вверх, т.е. ее вершина – точка (0; 2) (Рис. 3).

Графики имеют одну общую точку – т. А(0; 2). Она и является решением системы. Подставим пару чисел в уравнение, чтобы проверить правильность.

Пример 4. Решить систему

Решение: Построим график первого уравнения – это окружность с центром в т.О(0; 0) и радиусом 1 (Рис. 4).

Построим график функции Это ломаная (Рис. 5).

Теперь сдвинем ее на 1 вниз по оси oy. Это и будет график функции

Поместим оба графика в одну систему координат (Рис. 6).

Получаем три точки пересечения – т. А(1; 0), т. В(-1; 0), т. С(0; -1).

Ответ:

Мы рассмотрели графический метод решения систем. Если можно построить график каждого уравнения и найти координаты точек пересечения, то этого метода вполне достаточно [8].

Но часто графический метод даёт возможность найти только приближенное решение системы или ответить на вопрос о количестве решений. Поэтому нужны и другие методы, более точные.

Общие методы решения уравнений всех типов (рациональных, иррациональных, тригонометрических, показательных и логарифмических):
1.Графический метод [9].

График функции — множество точек, у которых абсциссы являются допустимыми значениями аргумента , а ординаты — соответствующими значениями функции .

При решении задач с параметрами необходимо выяснить, при каких значениях параметра уравнение имеет решение. Одним из методов решения уравнений с параметрами является графический. Этот метод позволяет учащимся не только исследовать свойства функций, входящих в уравнение, но и наглядно увидеть решение уравнения. Прежде всего, при решении задач с параметрами необходимо сделать то, что делается при решении любого уравнения: привести заданное уравнение к более простому виду, если это возможно: разложить рациональное выражение на множители, избавиться от модулей, логарифмов и т.д.

При графическом решении уравнения с параметром необходимо:

  1. Найти область определения уравнения, т.е. область допустимых значений неизвестного и параметра, при которых уравнение может иметь решения.
  2. Выразить параметр как функцию от x:
  3. В системе координат хОa построить графики функций и для тех значений х, которые входят в область определения уравнения.
  4. Определить точки пересечения прямой с графиком функции .

Возможны ситуации:

1. Прямая не пересекает график . Следовательно, при данном значении а исходное уравнение решений не имеет.

2. Прямая пересекает график в одной или нескольких точках. Следовательно, при данном значении а можно сделать вывод о числе решений исходного уравнения, найти абсциссы точек пересечения и т.д.

Графическое решение уравнения- наглядный способ, он хорош при необходимости определения наличия или отсутствия корней и их количества, при данной задаче можно использовать свойства монотонности функций:

Пусть у=f(x) и у=φ(x) непрерывные на некотором промежутке функции. Тогда, если у=f(x) монотонно возрастает, а у=φ(x) убывает, то уравнение f(x)=φ(x) имеет не более одного корня на этом промежутке.

Однако, графический метод не гарантирует того, что полученный результат является точным, поэтому найденные решения следует проверить.

2. Метод областей
Неравенства с двумя неизвестными [16].

Неравенство с двумя неизвестными можно представить так: f (x; y)>0 , где f- функция двух переменных х и у. Если мы рассмотрим уравнение f (x; y)=0, то множество точек (х, у) , координаты которых удовлетворяют этому уравнению, образует, как правило, некоторую кривую, которая разобьёт плоскость на две или несколько областей. В каждой из этих областей функция сохраняет знак, остается выбрать те из них, в которых f (x; y)>0.

Остановимся на самых простейших неравенствах с двумя неизвестными.

1 . Рассмотрим, прежде всего, неравенство + Зх 6 . Если какой-нибудь из коэффициентов xили y отличен от нуля, то уравнение задает прямую, разбивающую плоскость на две полуплоскости. В каждой из них будет сохраняться знак функции . Для определения этого знака достаточно взять любую точку этой полуплоскости и вычислить значение функции в этой точке.

Для того, чтобы убедиться, где находится нужное множество точек, под прямой или над прямой, удобно вычислить значение функции в точке (0,0).

2. Рассмотрим графическое решение ещё одного простого неравенства: х 2 + 2х + у 2 — 4у + 1 > 0

Чтобы решить данное неравенство, достаточно рассмотреть функцию х 2 + 2х + у 2 — 4у + 1 = 0 . Вы­делим в этом уравнении уравнение окружности: (х 2 + 2х + 1) + (у 2 — 4у + 4) = 4, или (х + 1) 2 + (у — 2) 2 = 2 2 .

Это уравнение окружности с центром в точке 0 (-1; 2) и радиусом R = 2. Построим эту окружность.

Решение неравенства и показано на рисунке.

Заметим, что граница (сама линия, при которой неравенство обращается в уравнение) принадлежит решению лишь в случае, когда неравенство строгое. Если неравенство нестрогое, то граница изображается пунктирной линией, т.е. её точки не входят в область решения неравенства.

Решением системы неравенств с двумя переменными называется упорядоченная пара чисел, удовлетворяющая каждому неравенству этой системы.

Для графического изображения решения системы неравенств находят сначала множество Х1точек плоскости, на котором выполняется первое неравенство, потом множество Х2 точек плоскости, где выполняется второе неравенство, и, наконец берут пересечение этих множеств (т.е. их общую часть).

П ример1. Изобразите графически решение системы неравенств

Решение. Первое неравенство системы перепишем в виде у 2 +1. Ясно, что оно представляет собой внутреннюю область параболы у=-х 2 +1, включая её границу. Второе неравенство системы перепишем в виде у≥х 2 -2х-3. Оно выполняется на параболе у=х 2 -2х-3 и внутри неё. Общая часть этих множеств показана на рисунке. Ответ: решением является заштрихованная часть плоскости

Пример2. Изобразите графически решение системы неравенств

Р ешение. Множество решений каждого из неравенств системы есть полуплоскость. Границы первых двух неравенств системы у=-х-1, у=-х+3 попарно параллельные прямые (их угловые коэффициенты равны), прямые х=-1 и х=3 также параллельны. Ответ: решением данной системы является параллелограмм, изображенный на рисунке [19].

Применение метода областей

при решении неравенств с двумя неизвестными.

Метод интервалов без существенных изменений переносится с числовой оси на координатную плоскость. При этом роль критических точек на координатной плоскости играют критические линии, а роль промежутков – области. Эти линии делят область определения функции двух переменных на «более мелкие» области, в каждой из которых непрерывная функция сохраняет знак.

Для нахождения этого знака достаточно взять в рассматриваемой области какую-нибудь отдельную «удобную» точку и найти знак функции в выбранной точке, который сохраняется во всей области. При переходе через критические (граничные) линии, знак функции, как правило, не меняется.

Случаи, когда знак не меняется, аналогичны случаям критических точек четной кратности.

Схема исследования неравенств с двумя неизвестными методом областей аналогична схеме решения неравенств с одной неизвестной методом интервалов.

3. Использование геометрических преобразований графиков функций при решении систем
Наверняка многие из вас могут быстро и правильно построить графики некоторых функций, не прибегая к вычислениям значений точек. Всем известно, что график функции – это прямая, а график функции – это парабола. Но как построить, например, график функции , не вычисляя значения точек? Для этого существуют правила преобразования графиков функций [27].

Преобразование симметрии относительно оси Ox

Предположим, что у нас есть функция (график этой функции – это парабола) и необходимо построить график функции . Вычислим значения некоторых точек для графиков этих функций.

Из таблиц видно, что одним и тем же значениям аргумента соответствуют противоположные значения функций. Графически это означает, что графики расположены симметрично относительно оси абсцисс. То есть заданная парабола ( ) зеркально отобразится относительно оси (см. Рис. 1).

Рис. 1. Графики функций и

Таким образом, если у нас есть произвольный график , то для построения графика необходимо график симметрично отразить относительно оси (см. Рис. 2). Такое преобразование называется преобразованием симметрии относительно оси .

Рис. 2. Преобразование симметрии относительно оси
Преобразование симметрии – зеркальное отражение относительно прямой. График получается из графика функции преобразованием симметрии относительно оси .

На рисунке 3 показаны примеры симметрии относительно оси .

Рис. 3. Симметрия относительно оси Ox

Параллельный перенос вдоль оси Oy

Предположим, что у нас есть функция (график этой функции – это парабола) и необходимо построить график функции . Вычислим значения некоторых точек для графиков этих функций.

Из таблиц видно, что при одних и тех же значениях аргумента значения функции у графика больше на 3 единицы. Графически это означает, что график функции находится на 3 единицы выше, чем график функции (см. Рис. 4).

Рис. 4. Графики функций и

График получается из графика функции параллельным переносом последнего вдоль оси ординат на единиц вверх, если , и на единиц вниз, если (см. Рис. 5, 6).

Рис. 5. Параллельный перенос вдоль оси (при )

Рис. 6. Параллельный перенос вдоль оси (при )

Растяжение от оси Ox и сжатие к оси Ox

Предположим, что у нас есть функция (график этой функции – это парабола) и необходимо построить график функции . Вычислим значения некоторых точек для графиков этих функций.

Из таблиц видно, что при одних и тех же значениях аргумента значения функции у графика больше в 2 раза. Графически это означает, что график функции сужается по сравнению с графиком функции (см. Рис. 7).

Рис. 7. Графики функций и

Если необходимо построить график функций , то из таблиц видно, что при одних и тех же значениях аргумента значения функции у графика меньше в 2 раза, чем у . Графически это означает, что график функции расширяется по сравнению с графиком функции (см. Рис. 8).

Рис. 8. Графики функций и

Чтобы построить график функции , где и , нужно ординаты точек заданного графика умножить на . Такое преобразование называется растяжением от оси с коэффициентом , если , и сжатием к оси , если (см. Рис. 9, 10) [8].

Рис. 9. Растяжение от оси

Рис. 10. Сжатие к оси

Параллельный перенос вдоль оси Ox

Предположим, что у нас есть функция , необходимо построить график функции . Вычислим значения некоторых точек для графиков этих функций.

Из таблиц видно, что одинаковым значениям функции соответствуют значения аргумента, отличающиеся на 2 единицы. Это означает, что график данной функции переместился на 2 единицы относительно оси ординат влево (см. Рис. 11), так как для получения одинаковых значений функций приходится брать значения аргумента на 2 меньше:

при

Следовательно, если необходимо было построить график функции , то сдвиг на 3 единицы относительно оси ординат был бы вправо (по сравнению с графиком функции ) (см. Рис. 11).

Рис. 11. Графики функций , и

График получается из графика функции параллельным переносом последнего на единиц влево, если , и на единиц вправо, если (см. Рис. 12, 13).

Рис. 12. Параллельный перенос влево при

Рис. 13. Параллельный перенос вправо при

Обратите внимание на то, что по этому принципу из графика не построить график , ведь мы добавили 1 не ко всем вхождениям в это выражение. А вот график построить можно, сдвинув исходный график на 1 влево (см. Рис. 14).

Рис. 14. Графики функции и

Растяжение от оси Oy и сжатие к оси Oy

График функции , где и , получается из графика функции сжатием с коэффициентом к оси (если указанное «сжатие» фактически является растяжением с коэффициентом ) (см. Рис. 15, 16).

Рис. 15. Сжатие к оси

Рис. 16. Растяжение от оси

Подобное преобразование мы уже рассматривали в случае построения графика функции .

Преобразование симметрии относительно оси Oy

Ранее мы рассматривали преобразование симметрии относительно оси Ox, то есть функция умножалась на (-1). Рассмотрим случай, когда на (-1) умножается только аргумент.

В этом случае график симметрично отображается относительно оси ординат, так как значения функций будут одинаковы при противоположных значениях аргумента:

при

при

при

при

График получается из графика функции преобразованием симметрии относительно оси (см. Рис. 17).

Рис. 17. Преобразование симметрии относительно оси Oy

Построение графиков и

Пусть дан график , построим график . Для начала раскроем модуль по определению:

Следовательно, те точки, в которых значения функции положительны или равны 0, остаются на месте, а все точки, в которых значения отрицательны, – отражаются относительно оси (см. Рис. 18).

Рис. 18. Графики функций и (красным цветом выделена общая часть этих графиков)

Для того чтобы построить график , нужно часть исходного графика, лежащую выше оси , оставить без изменения, а нижнюю отразить наверх относительно оси .

Пусть дан график , построим график . Для начала раскроем модуль по определению:

Следовательно, все точки с положительными или равными нулю абсциссами остаются без изменения, а все точки с отрицательными – заменяются точками с противоположными абсциссами (см. Рис. 19).

Рис. 19. Графики функций и (красным цветом выделена общая часть этих графиков)

Для того чтобы построить график , нужно часть исходного графика, соответствующую значениям , оставить без изменений и отразить ее относительно оси для значений .

Построить график функции .

Построим график заданной функции последовательно (см. Рис. 20):

1. Строим график .

2. График получается из графика параллельным переносом последнего на 2 единицы вправо.

3. График получается из графика функции параллельным переносом последнего вдоль оси ординат на 3 единицы вверх.

Рис. 20. Иллюстрация к задаче

Мы могли бы сделать операции в обратном порядке, то есть сначала поднять график на 3 единицы вверх, а потом получившийся график сдвинуть вправо на 2 единицы (см. Рис. 21).

Рис. 21. Иллюстрация к задаче

Обратите внимание, что не все графики функций можно строить в произвольном порядке. Например, для построения графика сначала нужно построить график , затем график (растяжение от оси ), а далее – график (параллельный перенос вдоль оси ординат) (см. Рис. 22). Если же сделать в другой последовательности, то есть построить , то далее на 2 придется умножить всё выражение [20].

– ПРАВИЛЬНО

– НЕПРАВИЛЬНО

Рис. 22. Иллюстрация к задаче

Построить график .

1. Строим график (гипербола) (см. Рис. 23).

2. Строим график (из аргумента вычитается 2, следовательно, сдвигаем график на 2 единицы вправо) (см. Рис. 23).

3. Строим график (домножение функции на (-1), следовательно, отражаем график относительно оси ) (см. Рис. 24).

4. Строим график (добавление 2 к функции, следовательно, сдвигаем график на 2 единицы вверх) (см. Рис. 24).

5. Строим график (модуль функции, следовательно, отражаем нижнюю часть графика относительно оси , а верхнюю оставляем без изменений) (см. Рис. 25).

Рис. 23. Иллюстрация к задаче

Рис. 24. Иллюстрация к задаче

Рис. 25. Иллюстрация к задаче (искомый график)

4. Графический метод решения систем иррациональных и трансцендентных уравнений и неравенств
Основной подход к решению иррациональных уравнений и неравенств – это их рационализация, то есть приведение их к рациональным алгебраическим уравнениям и неравенствам. Но между процедурами решения иррациональных неравенств и иррациональных уравнений существует заметное различие.

При решении иррациональных неравенств постоянно необходимо следить за тем, чтобы после каждого преобразования получалось неравенство эквивалентное исходному неравенству. Отсюда и получаем различные методы решения иррациональных уравнений и неравенств.

Метод возведения в степень. Данный метод является одним из наиболее известных методов решения иррациональных выражений. При использовании данного метода, следует не забывать, что всякое уравнение и неравенство всегда можно возвести в нечетную степень, ведь это преобразование является равносильным [18].

А если уравнение нужно возвести в четную степень, то в общем случае получается переход к следствию, что допустимо, если возможна проверка корней. Если же при решении проверка невозможна или крайне затруднительна по какой-либо причине (например, при решении неравенств и некоторых уравнений получается бесконечное число корней), то необходимо сохранять равносильность преобразований.

Для этого перед каждым возведением в четную степень надо не забывать выписывать условия, при которых обе части уравнения будут неотрицательны. Если уравнение или неравенство содержит несколько радикалов, то для избавления от них придется несколько раз возводить в степень исходное уравнение или неравенство. В таком случае перед очередным возведением в степень используют прием уединения радикала. В общем виде данный метод можно записать так: fx =gx ⟺ gx≥0,fx=g2x. Для иррациональных неравенств метод возведения в степень будет выглядеть так: fx 0,fx2gx⇔fx>0,gx≥0,fx2>gx2 ∧ fx≥0,gx [11 с.74]

Классификация иррациональных уравнение и неравенств по методам их решения Каждый из выявленных выше методов подходит для решения не всех иррациональных уравнений и неравенств. Поэтому имеет место классификация иррациональных уравнений (неравенств) по методам их решения. Метод возведения в степень подходит для решения большинства распространенных видов иррациональных уравнений и неравенств. Для каждого из таких видов существует стандартная схема решения. Уравнения вида fx =gx ⟺ gx≥0,fx=g2x.

Неравенства вида fx0,fx2g(x)⇔gx≥0fx>g2xg(x) Список литературы

1. Болтянский В.Г. Графическое решение уравнений. – Математика в школе. 1995 – 100 с.

2. Балдин, К.В. Краткий курс высшей математики: Учебник / К.В. Балдин. — М.: Дашков и К, 2015. — 510 c.

3. Богомолова, Е.П. Сборник задач и типовых расчетов по общему и специальным курсам высшей математики: Учебное пособие / Е.П. Богомолова, А. Бараненков. — СПб.: Лань, 2015. — 464 c.

4. Богомолова, Е.П. Сборник задач и типовых расчетов по общему и специальным курсам высшей математики: Учебное пособие / Е.П.

5. Богомолова, А.И. Бараненков, И.М. Петрушко. — СПб.: Лань, 2015. — 464 c.

6. Бучаченко, А.Л. От квантовых струн до тайн мышления. Экскурс по самым завораживающим вопросам физики, химии, биологии, математики / А.Л. Бучаченко. — М.: Ленанд, 2017. — 188 c.

7. Горнштейн П.И., Полонский В.Б., Якир М.С. Задачи с параметрами. – М.: Колос, 1992. – 200 с.

8. Калинченко, А.В. Методика преподавания начального курса математики: Учебное пособие / А.В. Калинченко. — М.: Академия, 2016. — 224 c.

9. Калинченко, А.В. Методика преподавания начального курса математики: Учебное пособие / А.В. Калинченко. — М.: Academia, 2018. — 320 c.

10. Карягина, А.В. Курс математики для нематематических специальностей и направлений бакалавриата: Учебное пособие / А.В. Карягина. — СПб.: Лань П, 2016. — 576 c.

11. Катышева, Д.Н. Краткий курс высшей математики: Учебное пособие / Д.Н. Катышева. — СПб.: Лань П, 2016. — 736 c.

12. Кирнев, А.Д. Курс высшей математики. Введение в математический анализ. Дифференциальное исчисление. Лекции и практикум: Учебное пособие / А.Д. Кирнев. — СПб.: Лань П, 2016. — 288 c.

13. Кирсанов, М.Н. Курс высшей математики. Кратные интегралы. Векторный анализ. Лекции и практикум: Учебное пособие . / М.Н. Кирсанов. — СПб.: Лань П, 2016. — 320 c.

14. Кирюшин, В.И. Курс высшей математики. Интегральное исчисление. Функции нескольких переменных. Дифференциальные уравнения. Лекции и практикум: Учебное пособие КПТ / В.И. Кирюшин, С.В. Кирюшин. — СПб.: Лань КПТ, 2016. — 608 c.

15. Королев, Б., А. Сборник заданий по специальным курсам высшей математики.Типовые расчеты: Учебное пособие / Б. А. Королев, К. А. Сидорова. — СПб.: Лань П, 2016. — 192 c.

16. Черкасов О. Ю., Якушев А. Г. Математика: Справочник для школьников и поступающих в вузы. — АСТ-ПРЕСС Москва, 2014 — 464 с.

17. Лунина М.С. Обучение решению алгебраических задач. – М.: Математика. 1998. – 203 с.

18. Мордкович А.Г. Беседы с учителями математики. – М.: Кронос, 1995 – 271 с.

19.Турлакова З.И. Решение текстовых задач. – М.: Математика. 1986. – 200 с. № 5.

20. Шабунин М.И. Математика для поступающих в вузы. – М.: Арт, 1997. – 200 с.

21. Шабунин М.И. Математика для поступающих в вузы. Уравнения. – М.: Аквариум, 1997. – 200 с.

Методика изучения уравнений и неравенств в средней школе

Тема “Уравнения и неравенства” является одной из самых основных тем школьного курса математики. Она имеет большое внутрипредметное и межпредметное значение. Внутрипредметные связи: тема связана с темой “Функции” и темой “Тождественные преобразования”. Межпредметные связи: тема широко используется в физике и химии. Основная задача темы – освоить способы решения различных видов уравнений и неравенств.

Основными понятиями темы являются:

  1. уравнение, неравенство;
  2. корень уравнения, решение неравенства;
  3. равносильность уравнений, равносильность неравенств.

Понятие уравнение рассматривается дважды: в 5 классе, как равенство, содержащее неизвестное, (здесь понятие вводится конкретно-индуктивным методом через решение задачи, используя картинку с весами) и в 7 классе, где вводится уже точное определение уравнения: уравнение – это равенство, содержащее переменную. Здесь же вводятся понятия “корень уравнения” и “решить уравнение”. В 7 классе вводится и понятие “равносильные уравнения”, формулируются теоремы о равносильных преобразованиях. Эти теоремы формулируются в виде свойств, они не доказываются, а поясняются на примерах.

С числовыми неравенствами 2 5 учащиеся знакомятся в начальной школе. В 5 классе вводится двойное неравенство: 1 , ?, ? называется неравенством.

Понятие “решение неравенства” удобно вводить по аналогии с понятием “корень уравнения”.

5x – 4 = 11

Является ли число 3 корнем уравнения? Почему? Добиться полной формулировки ответа: число 3 является корнем уравнения, т.к. при этом значении переменной уравнение обращается в верное равенство.

5x – 4 > 11

Обращает ли число 4 данное неравенство в верное числовое неравенство? Да. Кто сможет дать определение, что называется решением неравенства? Решением неравенства называется значение переменной, которое обращает его в верное числовое неравенство. Далее решаются номера на усвоение.

А можно ли указать все решения неравенства? Встает вопрос, как изобразить все решения неравенства? Учитель сообщает, что оказывается, решения неравенства изображаются на координатной прямой, а ответ записывается с помощью числовых прямых. После этого необходимо рассмотреть всевозможные случаи неравенств и их решений.

При обучении решению любого вида уравнений и неравенств строго соблюдается методика формирования математических умений. Например, в 5 классе решаются линейные уравнения, которые содержат переменную только в одной части. Записывается на доске уравнение: 52 + (3x – 14) = 62. Что представляет собой левая часть уравнения? Сумма. Назовите слагаемые. Какое слагаемое известно? В каком из компонентов содержится неизвестное? Как найти неизвестное слагаемое? 3x – 14 = 10. Что представляет собой левая часть уравнения? Разность. В каком из компонентов содержится неизвестное? Как найти уменьшаемое? 3x = 24. Что представляет собой левая часть уравнения? Произведение. Назовите множители. Какой множитель известен? В каком из компонентов содержится неизвестное? Как найти неизвестный множитель? x = 8. Как проверить, что число 8 является корнем уравнения? 52 + (3 ? 8 – 14) = 62 ? 62 = 62. После этого составляем и записываем в тетрадь правило решения таких уравнений:

  1. определяем вид уравнения по последнему действию;
  2. определить, что неизвестно и найти неизвестное по соответствующему правилу;
  3. в случае необходимости, повторит шаги 1 – 2;
  4. найти корень уравнения;
  5. выполнить проверку;
  6. записать ответ.

Учитель показывает образец решения на доске. После этого переходим к решению упражнений на отработку каждого шага правила.

Методические основы решения уравнений:

  1. определяем условия, когда уравнения не имеет решения;
  2. выделяем промежуток, на котором уравнение имеет единственное решение, словесно описываем решение уравнения, вводим символическую запись решения уравнения на этом промежутке;
  3. другие решения уравнения, если они есть, выражаем через это решение и записываем все решения данного уравнения.


источники:

http://topuch.ru/metodika-obucheniya-graficheskomu-sposobu-resheniya-uravnenij/index.html

http://neudov.net/4students/otvety-po-tmom/metodika-izucheniya-uravnenij-i-neravenstv-v-srednej-shkole/