Методика применения уравнения бернулли для расчета трубопровода

Методика применения уравнения бернулли для расчета трубопровода

При расчетах напорных трубопроводов основной задачей является либо определение пропускной способности (расхода), либо потери напора на том или ином участке, равно как и на всей длине, либо диаметра трубопровода на заданных расходе и потерях напора.

В практике трубопроводы делятся на короткие и длинные. К первым относятся все трубопроводы, в которых местные потери напора превышают 5…10% потерь напора по длине. При расчетах таких трубопроводов обязательно учитывают потери напора в местных сопротивлениях. К ним относят, к примеру, маслопроводы объемных передач.

Ко вторым относятся трубопроводы, в которых местные потери меньше 5…10% потерь напора по длине. Их расчет ведется без учета местных потерь. К таким трубопроводам относятся, например, магистральные водоводы, нефтепроводы.

Учитывая гидравлическую схему работы длинных трубопроводов, их можно разделить также на простые исложные. Простыми называются последовательно соединенные трубопроводы одного или различных сечений, не имеющих никаких ответвлений. К сложным трубопроводам относятся системы труб с одним или несколькими ответвлениями, параллельными ветвями и т.д. К сложным относятся и так называемые кольцевые трубопроводы.

Жидкость по трубопроводу движется благодаря тому, что ее энергия в начале трубопровода больше, чем в конце. Этот перепад уровней энергии может создаваться несколькими способами: работой насоса, разностью уровней жидкости, давлением газа.

Рассмотрим простой трубопровод постоянного сечения, который расположен произвольно в пространстве (рис. 6.1), имеет общую длину l и диаметр d, а также содержит ряд местных сопротивлений (вентиль, фильтр и обратный клапан). В начальном сечении трубопровода 1-1 геометрическая высота равна z1 и избыточное давление Р1, а в конечном сечении 2-2 — соответственно z2 и Р2. Скорость потока в этих сечениях вследствие постоянства диаметра трубы одинакова и равна ν.

Запишем уравнение Бернулли для сечений 1-1 и 2-2. Поскольку скорость в обоих сечениях одинакова и α1 = α2, то скоростной напор можно не учитывать. При этом получим

Пьезометрическую высоту, стоящую в левой части уравнения, назовем потребным напором Нпотр. Если же эта пьезометрическая высота задана, то ее называют располагаемым напором Нрасп. Такой напор складывается из геометрической высоты Hпотр, на которую поднимается жидкость, пьезометрической высоты в конце трубопровода и суммы всех потерь напора в трубопроводе.

Назовем сумму первых двух слагаемых статическим напором, который представим как некоторую эквивалентную геометрическую высоту

а последнее слагаемое Σh — как степенную функцию расхода

где K — величина, называемая сопротивлением трубопровода;
Q — расход жидкости;
m — показатель степени, который имеет разные значения в зависимости от режима течения.

Для ламинарного течения при замене местных сопротивлений эквивалентными длинами сопротивление трубопровода равно

Численные значения эквивалентных длин lэкв для различных местных сопротивлений обычно находят опытным путем.

Для турбулентного течения, используя формулу Вейсбаха-Дарси, и выражая в ней скорость через расход, получаем

По этим формулам можно построить кривую потребного напора в зависимости от расхода. Чем больше расход Q, который необходимо обеспечить в трубопроводе, тем больше требуется потребный напор Нпотр. При ламинарном течении эта кривая изображается прямой линией (рис.6.2, а), при турбулентном — параболой с показателем степени равном двум (рис.6.2, б).

Крутизна кривых потребного напора зависит от сопротивления трубопровода K и возрастает с увеличением длины трубопровода и уменьшением диаметра, а также с увеличением местных гидравлических сопротивлений.

Величина статического напора Нст положительна в том случае, когда жидкость движется вверх или в полость с повышенным давлением, и отрицательна при опускании жидкости или движении в полость с пониженным давлением. Точка пересечения кривой потребного напора с осью абсцисс (точка А) определяет расход при движении жидкости самотеком. Потребный напор в этом случае равен нулю.

Иногда вместо кривых потребного напора удобнее пользоваться характеристиками трубопровода.Характеристикой трубопровода называется зависимость суммарной потери напора (или давления) в трубопроводе от расхода:

Простые трубопроводы могут соединяться между собой, при этом их соединение может бытьпоследовательным или параллельным.

Последовательное соединение. Возьмем несколько труб различной длины, разного диаметра и содержащих разные местные сопротивления, и соединим их последовательно (рис. 6.3, а).

При подаче жидкости по такому составному трубопроводу от точки М к точке N расход жидкости Q во всех последовательно соединенных трубах 1, 2 и 3 будет одинаков, а полная потеря напора между точками М и Nравна сумме потерь напора во всех последовательно соединенных трубах. Таким образом, для последовательного соединения имеем следующие основные уравнения:

Эти уравнения определяют правила построения характеристик последовательного соединения труб (рис. 6.3, б). Если известны характеристики каждого трубопровода, то по ним можно построить характеристику всего последовательного соединения M-N. Для этого нужно сложить ординаты всех трех кривых.

Параллельное соединение. Такое соединение показано на рис. 6.4, а. Трубопроводы 1, 2 и 3 расположены горизонтально.

Обозначим полные напоры в точках М и N соответственно HM и HN , расход в основной магистрали (т.е. до разветвления и после слияния) — через Q, а в параллельных трубопроводах через Q1, Q2 и Q3; суммарные потери в этих трубопроводах через Σ1 , Σ2 и Σ3.

Очевидно, что расход жидкости в основной магистрали

Выразим потери напора в каждом из трубопроводов через полные напоры в точках М и N :

Отсюда делаем вывод, что

т.е. потери напора в параллельных трубопроводах равны между собой. Их можно выразить в общем виде через соответствующие расходы следующим образом

где K и m — определяются в зависимости от режима течения.

Из двух последних уравнений вытекает следующее правило: для построения характеристики параллельного соединения нескольких трубопроводов следует сложить абсциссы (расходы) характеристик этих трубопроводов при одинаковых ординатах ( Σ h). Пример такого построения дан на рис. 6.3, б.

Разветвленное соединение. Разветвленным соединением называется совокупность нескольких простых трубопроводов, имеющих одно общее сечение — место разветвления (или смыкания) труб.

Пусть основной трубопровод имеет разветвление в сечении М-М, от которого отходят, например, три трубы1, 2 и 3 разных диаметров, содержащие различные местные сопротивления (рис. 6.5, а). Геометрические высоты z1, z2 и z3 конечных сечений и давления P1, P2 и P3 в них будут также различны.

Так же как и для параллельных трубопроводов, общий расход в основном трубопроводе будет равен сумме расходов в каждом трубопроводе:

Записав уравнение Бернулли для сечения М-М и конечного сечения, например первого трубопровода, получим (пренебрегая разностью скоростных высот)

Обозначив сумму первых двух членов через Hст и выражая третий член через расход (как это делалось в п.6.1), получаем

Аналогично для двух других трубопроводов можно записать

Таким образом, получаем систему четырех уравнений с четырьмя неизвестными: Q1, Q2 и Q3 и HM.

Построение кривой потребного напора для разветвленного трубопровода выполняется сложением кривых потребных напоров для ветвей по правилу сложения характеристик параллельных трубопроводов (рис. 6.5, б) — сложением абсцисс (Q) при одинаковых ординатах (HM). Кривые потребных напоров для ветвей отмечены цифрами 1, 2 и 3 , а суммарная кривая потребного напора для всего разветвления обозначена буквами ABCD. Из графика видно, что условием подачи жидкости во все ветви является неравенство HM > Hст1.

Сложный трубопровод в общем случае составлен из простых трубопроводов с последовательным и параллельным их соединением (рис. 6.6, а) или с разветвлениями (рис. 6.6, б).

Рассмотрим разомкнутый сложный трубопровод (рис. 6.6, б). магистральный трубопровод разветвляется в точках А и С. Жидкость подается к точкам (сечениям) B, D и E с расходами Q B и QD и QE .

Пусть известны размеры магистралей и всех ветвей (простых трубопроводов), заданы все местные сопротивления, а также геометрические высоты конечных точек, отсчитываемые от плоскости M — N и избыточные давления в конечных точках PB и PD и PE.

Для этого случая возможны два вида задач:

Задача 1. Дан расход Q в основной магистрали MA. Необходимо определить расходы QB и QD и QE, а также потребный напор в точке М.

Задача 2. Дан напор в точке М. Определить расход в магистрали Q и расходы в каждой ветви.

Обе задачи решают на основе одной и той же системы уравнений, число которых на единицу больше числа конечных ветвей, а именно:

уравнение равенства потребных напоров для ветвей CD и CE

уравнение равенства потребных напоров для ветви АВ и сложного трубопровода АСЕD

выражение для потребного напора в точке М

Расчет сложных трубопроводов часто выполняют графоаналитическим способом, т.е. с применением кривых потребного напора и характеристик трубопроводов. Кривую потребного напора для сложного трубопровода следует строить следующим образом:
1) сложный трубопровод разбивают на ряд простых;
2) строят кривые потребных напоров для каждого из простых трубопроводов;
3) складывают кривые потребных напоров для ветвей (и параллельных линий, если они имеются) по правилу сложения характеристик параллельных трубопроводов;
4) полученную кривую складывают с характеристикой последовательно присоединенного трубопровода по соответствующему правилу (см. п.6.2).

Таким образом, при расчете идут от конечных точек трубопровода к начальной точке, т.е. против течения жидкости.

Сложный кольцевой трубопровод. Представляет собой систему смежных замкнутых контуров, с отбором жидкости в узловых точках или с непрерывной раздачей жидкости на отдельных участках (рис. 6.7).

Задачи для таких трубопроводов решают аналогичным методом с применением электроаналогий (закон Кирхгофа). При этом основываются на двух обязательных условиях. Первое условие — баланс расходов, т.е. равенство притока и оттока жидкости для каждой узловой точки. Второе условие — баланс напоров, т.е. равенство нулю алгебраической суммы потерь напора для каждого кольца (контура) при подсчете по направлению движения часовой стрелки или против нее.

Для расчета таких трубопроводов типичной является следующая задача. Дан максимальный напор в начальной точке, т.е. в точке 0, минимальный напор в наиболее удаленной точке Е, расходы во всех шести узлах и длины семи участков. Требуется определить диаметры трубопроводов на всех участках.

Как уже отмечалось выше, перепад уровней энергии, за счет которого жидкость течет по трубопроводу, может создаваться работой насоса, что широко применяется в машиностроении. Рассмотрим совместную работу трубопровода с насосом и принцип расчета трубопровода с насосной подачей жидкости.

Трубопровод с насосной подачей жидкости может быть разомкнутым, т.е. по которому жидкость перекачивается из одной емкости в другую (рис. 6.8, а), или замкнутым (кольцевым), в котором циркулирует одно и то же количество жидкости (рис. 6.8, б).

Рассмотрим трубопровод, по которому перекачивают жидкость из нижнего резервуара с давлением P 0 в другой резервуар с давлением P3 (рис. 6.8, а). Высота расположения оси насоса H1 называетсягеометрической высотой всасывания, а трубопровод, по которому жидкость поступает к насосу,всасывающим трубопроводом или линией всасывания. Высота расположения конечного сечения трубопровода H2 называется геометрической высотой нагнетания, а трубопровод, по которому жидкость движется от насоса, напорным или линией нагнетания.

Составим уравнением Бернулли для потока рабочей жидкости во всасывающем трубопроводе, т.е. для сечений 0-0 и 1-1 (принимая α = 1):

Это уравнение является основным для расчета всасывающих трубопроводов.

Теперь рассмотрим напорный трубопровод, для которого запишем уравнение Бернулли, т.е. для сечений 2-2и 3-3:

Левая часть этого уравнения представляет собой энергию жидкости на выходе из насоса. А на входе насоса энергию жидкости можно будет аналогично выразить из уравнения:

Таким образом, можно подсчитать приращение энергии жидкости, проходящей через насос. Эта энергия сообщается жидкости насосом и поэтому обозначается обычно Hнас.

Для нахождения напора Hнас вычислим уравнение :

где Δz — полная геометрическая высота подъема жидкости, Δz = H 1 + H2;
КQ m — сумма гидравлических потерь,
P3 и Р0 — давление в верхней и нижней емкости соответственно.

Если к действительной разности уровней Δz добавить разность пьезометрических высот ( P3Р0 ) ( ρg ), то можно рассматривать увеличенную разность уровней

и формулу можно переписать так:

Из этой формулы делаем вывод, что

Отсюда вытекает следующее правило устойчивой работы насоса: при установившемся течении жидкости в трубопроводе насос развивает напор, равный потребному.

На этом равенстве основывается метод расчета трубопроводов с насосной подачей, который заключается в совместном построении в одном и том же масштабе и на одном графике двух кривых: напора Hпотр = f1(Q)и характеристики насоса Hнас = f2(Q) и в нахождении их точки пересечения (рис. 6.9).

Характеристикой насоса называется зависимость напора, создаваемого насосом, от его подачи (расхода жидкости) при постоянной частоте вращения вала насоса. На рис. 6.9 дано два варианта графика: а — для турбулентного режима; б — для ламинарного режима. Точка пересечения кривой потребного напора с характеристикой насоса называется рабочей точкой. Чтобы получить другую рабочую точку, необходимо изменить открытие регулировочного крана (изменить характеристику трубопровода) или изменить частоту вращения вала насоса.

Гидравлическим ударом называется резкое повышение давления, возникающее в напорном трубопроводе при внезапном торможении потока рабочей жидкости. Этот процесс является очень быстротечным и характеризуется чередованием резких повышений и понижений давления, которое связано с упругими деформациями жидкости и стенок трубопровода. Гидравлический удар чаще всего возникает при резком открытии или закрытии крана или другого устройства, управляемого потоком.

Пусть в конце трубы, по которой движется жидкость со скоростью υ0, произведено мгновенное закрытие крана (рис. 6.10, а).

При этом скорость частиц, натолкнувшихся на кран, будет погашена, а их кинетическая энергия перейдет в работу деформации стенок трубы и жидкости. При этом стенки трубы растягиваются, а жидкость сжимается в соответствии с увеличением давления на величину ΔPуд, которое называется ударным. Область (сечение n — n), в которой происходит увеличение давления, называется ударной волной. Ударная волна распространяется вправо со скоростью c, называемой скоростью ударной волны.

Когда ударная волна переместится до резервуара, жидкость окажется остановленной и сжатой во всей трубе, а стенки трубы — растянутыми. Ударное повышение давления распространится на всю длину трубы (рис. 6.10, б).

Далее под действием перепада давления ΔPуд частицы жидкости устремятся из трубы в резервуар, причем это течение начнется с сечения, непосредственно прилегающего к резервуару. Теперь сечение n-nперемещается обратно к крану с той же скоростью c, оставляя за собой выровненное давление P0 (рис. 6.10, в).

Жидкость и стенки трубы предполагаются упругими, поэтому они возвращаются к прежнему состоянию, соответствующему давлению P0. Работа деформации полностью переходит в кинетическую энергию, и жидкость в трубе приобретает первоначальную скорость υ0, но направленную теперь в противоположную теперь сторону.

С этой скоростью весь объем жидкости стремится оторваться от крана, в результате возникает отрицательная ударная волна под давлением P0 — ΔPуд, которая направляется от крана к резервуару со скоростью c, оставляя за собой сжавшиеся стенки трубы и расширившуюся жидкость, что обусловлено снижением давления (рис. 6.10, д). Кинетическая энергия жидкости вновь переходит в работу деформаций, но противоположного знака.

Состояние трубы в момент прихода отрицательной ударной волны к резервуару показано на рис. 6.10, е. Так же как и для случая, изображенного на рис. 6.10, б, оно не является равновесным. На рис. 6.10, ж, показан процесс выравнивания давления в трубе и резервуаре, сопровождающийся возникновением движения жидкости со скоростью υ0.

Очевидно, что как только отраженная от резервуара ударная волна под давлением ΔP уд достигнет крана, возникнет ситуация, уже имевшая место в момент закрытия крана. Весь цикл гидравлического удара повторится.

Протекание гидравлического удара во времени иллюстрируется диаграммой, представленной на рис. 6.11, а и б.

Штриховыми линиями показано теоретическое изменение давления у крана в точке А, а сплошной действительный вид картины изменения давления по времени (рис. 6.11, а). При этом затухание колебаний давления происходит за счет потерь энергии жидкости на преодоление сил трения и ухода энергии в резервуар.

Повышение давления при гидравлическом ударе можно определить по формуле

Данное выражение носит название формулы Жуковского. В нем скорость распространения ударной волны c определится по формуле:

где r — радиус трубопровода;
E — модуль упругости материала трубы;
δ — толщина стенки трубопровода;
K — объемный модуль упругости (см. п.1.3)

Если предположить, что труба имеет абсолютно жесткие стенки, т.е. E = , то скорость ударной волны определится из выражения

Для воды эта скорость равна 1435 м/с, для бензина 1116 м/с, для масла 1200 — 1400 м/с.

При проектировании напорных трубопроводов следует учитывать, что их пропускная способность в период эксплуатации снижается (например, для водопроводных труб до 50% и даже ниже). Вследствие коррозии и образования отложений в трубах (инкрустации), шероховатость труб увеличивается. Это можно оценить по формуле:

где k0 — абсолютная шероховатость для новых труб, (мм),
kt — шероховатость через t лет эксплуатации,
α — коэффициент характеризующий быстроту возрастания шероховатости (мм/год).

АНАЛИТИЧЕСКИЙ МЕТОД. Данный метод основан непосредственно на решении двух уравне­ий: уравнения Бернулли и уравнения расхода

Данный метод основан непосредственно на решении двух уравне­ий: уравнения Бернулли и уравнения расхода. Этим методом рассчитывают как простые, так и сложные (разветвленные) трубопроводы.

Расчет простого трубопровода. В расчетной схеме сеть трубопрово­дов системы обычно разбивают на отдельные участки, в пределах ко­торых сохраняются постоянство расхода жидкости и постоянство диа­метра сечения трубы. Такие трубопроводы называют простыми.

Рассмотрим расчет простого трубопровода (см. рис. 17). Напишем уравнение Бернулли для сечений 1 и 2 трубопровода:

(17)

Входящая в уравнение величина h, представляющая собой потери на трение и местные сопротивления, определяется зависимостью

(18)

Подставив в уравнение (17) значение h по формуле (18) и решив его относительно p2/rg, получим напор H2 в узловой точке 2:

(19)

Так как диаметр трубопровода постоянный, то и уравнение (19) примет окончательный вид

Представим зависимость (24) в виде

(20)

где — суммарный (полный) коэффициент сопротивления трубопровода сис­темы, определяемый по формуле

(21)

Поскольку в основной расчётной формуле (20) потери напора выражены в функции скоростного напора, то рассматриваемый метод расчёта часто называют методом динамических напоров.

Из формулы (20) получим выражение для скорости движения жидкости в трубопроводе

Расход жидкости в трубопроводе будет равен расходу жидкости у потребителя в точке 1. Для большинства потребителей (пожарного ствола, водораспылителя, дренчера и др.)

(22)

где — коэффициент расхода;

f — площадь сечения отверстия истечения у потребителя, м 2 ;

— напор у потребителя, м.

Зная расход Q, можно найти диаметр трубопровода по формуле

(23)

Покажем, как используют формулы при расчете трубопроводов. Если напор H2 в узловой точке 2 (см. рис. 24) является искомой величи­ной, то расчет трубопровода выполняют в такой последовательности: исходя из заданного напора Н1 у потребителя определяют расход Q жидкости по формуле (22); задавшись скоростью движения жидкости в трубопроводе, вычисляют его диаметр d по формуле (23); подбирают условный проход трубы, а затем находят по соответствующему госу­дарственному стандарту фактические наружный и внутренний диамет­ры трубы; уточняют скорость движения жидкости в трубе по формуле υ ; вычисляют число Рейнольдса ; по найденному значению Re и принятому значению эквивалентной шероховатости kэ вычисляют коэффициент гидравлического трения l или находят его по графику рис. 20; пользуясь табл. 4 или другими источниками, опреде­ляют сумму коэффициентов местных сопротивлений ; вычисляют суммарный коэффициент сопротивлений по формуле (21); определяют потери напора h в трубопроводе по формуле (20); находят напор в уз­ловой точке 2 по выражению H2=H1+h+(z1-z2). Из данного расчета видно, что задача решается полностью и в конечном виде.

Рассмотрим случай гидравлического расчета того же трубопровода 1—2, когда напор H2 в узловой точке 2 является заданным. Цель рас­чета — определить скорость υ жидкости в трубопроводе, а также рас­ход Q и напор H1 ее у потребителя. Диаметр d трубопровода предвари­тельно назначают. Данная задача решается рядом последовательных приближений. Задаемся в 1-м приближении напором у потребителя H1=H1 и вычисляем следующие величины:

расход воды на участке

;

скорость движения жидкости в трубопроводе

;

суммарный коэффициент сопротивления трубопровода

потери напора в трубопроводе

Далее решаем задачу во 2-м приближении. Напор у потребителя будет равен

Повторяем расчет по тем же формулам и в такой же последователь­ности, как и в 1-м приближении. В результате получаем . И так делаем ряд последовательных приближений, пока не получим значения напора для всех двух последующих приближе­ний, близкие между собой.

Расчет сложного трубопровода. Любой сложный (разветвленный) трубопровод состоит из отдельных простых трубопроводов, соединен­ных по определенной схеме. Гидравлический расчет разветвленного трубопровода (см. рис. 25) выполняется по участкам и обычно сводится к применению для них решений, рассмотренных для простых трубо­проводов. Как видно из рис. 25, насос по разветвленному трубопроводу подает воду к целому ряду потребителей. В данной схеме число потре­бителей равно четырем; в общем случае их может быть значительно больше. Предположим, что напор H и подача Q насоса неизвестны. Расчет трубопровода производим последовательно по участкам от са­мой отдаленной точки 1 к насосу (рис. 25, а). Участок 1—2 представля­ет собой простой трубопровод и рассчитывается в таком порядке:

расход воды на участке

,

где — скорость жидкости в трубопроводе, которой задаются в предела 2-4 м/с,

суммарный коэффициент сопротивления трубопровода

;

потери напора на участке

напор в точке 2

Участок 2—3 также представляет собой простой трубопровод, и по­скольку для него напор в точке 2 тот же, что и для участка 1-2 , т.е. H2 то рассчитывают его рядом последовательных приближений.

Участок 2—4 — простой трубопровод и рассчитывается следующим образом. Определяют расход воды на участке Q2-4=Q1-2+Q2-3, а затем вычисляют d2-1, Re2-4, zc2-4, h2-4 и находят напор H4 в точ­ке 4 по формуле

После этого рассчитывают участки 4—5, 4—6, 6—7 и 6—8.

Подача и напор насоса системы будут равны: Q=Q6-8, H=H8

В общем случае потребную подачу насоса определяют по выраже­нию

где — сумма расходов воды потребителями, рабо­тающими одновременно.

Из всех возможных комбинаций одновременной работы потребите­лей берут тот случай, когда расход воды будет максимальным.

Если подача Q и напор H насоса заданы, то целью расчета является определение параметров движения жидкости по участкам, а также на­пора и расхода жидкости у потребителей. На участки трубопровод раз­бивают в направлении от насоса к самой удаленной точке (рис. 25, б). Расчет начинают с магистрали 1- 4, а затем рассчитывают отдельные ответвления. Приняв скорость υм движения жидкости в магистрали рав­ной 2-4 м/с, определяют ее диаметр по формуле

Участки магистрали рассчитывают последовательно один за дру­гим, начиная с участка 1—2. Для этого участка имеем:

;

;

напор в точке 2

.

Аналогично рассчитывают участки 2—3 и 3—4.

Напор в точке 3

Напор в точке 4

По известным напорам в узловых точках 2,3 и 4 рассчитывают от­ветвления 2—6, 3—7, 4—8 и 4—5.

Дата добавления: 2015-12-11 ; просмотров: 659 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Методика применения уравнения бернулли для расчета трубопровода

Уравнение Бернулли для реальной и идеальной жидкости

Уравнение Бернулли позволяет выполнить расчет водоснабжения и отопления: Подобрать диаметры и насосы. В этой статье будет расписан энергетический и геометрический смысл уравнения Бернулли.

График Бернулли и уравнение Бернулли для идеальной жидкости:

График Бернулли и уравнение Бернулли для реальной жидкости:

Смысл уравнения Бернулли

Смысл уравнения Бернули в том, чтобы показать, что внутри системы заполненной жидкостью (участка трубопровода) сохраняется общая энергия между разными точками. То есть на участке трубопровода необходимо выделить две точки, и эти две точки равны друг другу по значению полной энергии. Полная энергия состоит из потенциальной и кинетической энергии.

Назначение уравнения Бернули

Понять, как распределяется давление в системе трубопроводов. А также с помощью уравнения находить неизвестные параметры внутри системы. Например, найти давление в каждой течке пространства системы заполненной жидкостью.

Подробнее на видео: (для запуска видео кликните по окошку) На видео намного больше информации

Решая задачу с уравнением Бернулли, Вы фактически занимаетесь гидравлическим расчетом. О том, как делать гидравлический расчет — написано тут: Конструктор водяного отопления

Задача. Пример решения уравнения Бернулли

По решению задачи необходимо найти давление в точке 2 при известных параметрах: давление и расход.

Как понять уравнение Бернулли?

Для расчета уравнения Бернулли необходимо выбрать две точки в пространстве

Точка 1 – это место где известно давление

Точка 2 – это место где нужно узнать давление

Поймите, что каждый кусок формулы измеряется давлением: м.в.ст. (метр водяного столба)

То есть для того, чтобы быстро считать гидравлику систем водоснабжения и отопления, необходимо меньше всего выражаться в Барах, Паскалях и тому подобное.

Проще выражать давление в единице измерения: м.в.ст. (метр водяного столба)

Вы этим самым упростите себе жизнь… просто другая единица это еще один процесс, который отнимает время.

Сборка формулы уравнения Бернулли

Как избавится от минуса?

Как избавится от множителя (-1)?

Необходимо множитель (-1) помножить на каждый слагаемый член. Знак каждого слагаемого члена меняется на противоположный. То есть (+ на -) (- на +). Далее перестановка слагаемых.

Что такое идеальная жидкость?

Идеальная жидкость — это жидкость, не обладающая внутренним трением. То есть такая жидкость не создает гидравлическое сопротивление.

Реальная жидкость — это жидкость, которая обладает вязкостью. То есть внутренним сопротивлением.

Формула Бернулли для реальной жидкости

Коэффициент Кориолиса – это поправка кинетической энергии на реальную жидкость.

Потому что реальная жидкость движется не равномерно

У реальной жидкости серединная струйка воды движется быстрее остальных. При ламинарном режиме градиент: Чем ближе к стенке, тем медленнее движется поток воды.

Формула коэффициента Кориолиса

Что такое коэффициент Кориолиса?

Коэффициент Кориолиса характеризует отношение действительной кинетической энергии потока жидкости в данном сечении к той кинетической энергии потока, которую он имел бы, если бы все частицы двигались с одинаковой скоростью, равной средней скорости потока.

Чему равен коэффициент Кориолиса?

Нд.п. – Это динамические потери. Это потери вызванные движением воды.

Имеются дополнительные задачи с уравнением Бернули на реальную жидкость:

Посмотрите видеоурок по составлению уравнения Бернулли:

Как сделать гидравлический расчет погружного насоса?


источники:

http://helpiks.org/6-18237.html

http://infosantehnik.ru/str/91.html