Методика решения квадратных уравнений и неравенств

Метод интервалов, решение неравенств

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Определение квадратного неравенства

Неравенство — алгебраическое выражение, в котором используются знаки ≠, , ≤, ≥.

Числовое неравенство — это такое неравенство, в записи которого по обе стороны от знака находятся числа или числовые выражения.

Решение — значение переменной, при котором неравенство становится верным.

Решить неравенство значит найти множество, для которых оно выполняется.

Квадратное неравенство выглядит так:

где x — переменная,

Квадратное неравенство можно решить двумя способами:

  • графический метод;
  • метод интервалов.

Решение неравенства графическим методом

При решении квадратного неравенства необходимо найти корни соответствующего квадратного уравнения ax 2 + bx + c = 0. Чтобы найти корни, нужно найти дискриминант данного уравнения.

Как дискриминант влияет на корни уравнения:

  1. D = 0. Если дискриминант равен нулю, тогда у квадратного уравнения есть один корень;
  2. D > 0. Если дискриминант больше нуля, тогда у квадратного уравнения есть два различных корня;
  3. D 2 + bx + c.

Если требуется найти числовой промежуток, на котором квадратный трехчлен ax 2 + bx + c больше нуля, то этот числовой промежуток находится там, где парабола лежит выше оси ОХ.

Если нужно найти числовой промежуток, на котором квадратный трехчлен ax 2 + bx + c меньше нуля — это числовой промежуток, где парабола лежит ниже оси ОХ.

Если квадратное неравенство нестрогое, то корни входят в числовой промежуток. А если строгое — не входят.

Обучение на курсах по математике в онлайн-школе Skysmart сделает сложные темы понятными, а высокий балл на экзаменах — достижимым!

Решение неравенства методом интервалов

Метод интервалов — это специальный алгоритм, который предназначен для решения рациональных неравенств.

Рациональное неравенство имеет вид f(x) ≤ 0, где f(x) — рациональная функция. При этом знак может быть любым: >, 2 + bx + c из левой части квадратного неравенства.

Изобразить координатную прямую и при наличии корней отметить их на ней.

Если неравенство строгое, нужно отметить корни пустыми (выколотыми) точками. Если нестрогое — обычными точками. Именно эти точки разбивают координатную ось на промежутки.

  • Определить, какие знаки имеют значения трехчлена на каждом промежутке (если на первом шаге нашли нули) или на всей числовой прямой (если нулей нет). И проставить над этими промежутками + или − в соответствии с определенными знаками.
  • Если квадратное неравенство со знаком > или ≥ — наносим штриховку над промежутками со знаками +.

    Если неравенство со знаком 2 + 4x — 5, его корнями являются числа -5 и 1, они разбивают числовую ось на три промежутка: (-∞, -5), (-5, 1) и (1, +∞).

    Определим знак трехчлена x 2 + 4x — 5 на промежутке (1, +∞). Для этого вычислим значение данного трехчлена при некотором значении x из этого промежутка. Можно брать любое значение переменной, главное — чтобы вычисления были простыми. В нашем случае, возьмем x = 2. Подставим его в трехчлен вместо переменной x:

    • 2 2 + 4 * 2 — 5 = 4 + 8 — 5 = 7.

    7 — положительное число. Это значит, что любое значение квадратного трехчлена на интервале (1, +∞) будет положительным. Так мы определили знак плюс.

    Определим знаки на оставшихся двух промежутках. Начнем с интервала (-5, 1). Из этого интервала можем взять x = 0 и вычислить значение квадратного трехчлена при этом значении переменной:

    • 0 2 + 4 * 0 — 5 = 0 + 0 — 5 = -5.

    Так как -5 — отрицательное число, то на этом интервале все значения трехчлена будут отрицательными. Так мы определили знак минус.

    Осталось определиться со знаком на промежутке (-∞, -5). Возьмем x = -6, подставляем:

    • (-6) 2 + 4 * (-6) — 5 = 36 — 24 — 5 = 7.

    Следовательно, искомый знак — плюс.

    Можно расставить знаки быстрее, если запомнить эти факты:

    Плюс или минус: как определить знаки

    Можно сделать вывод о знаках по значению старшего коэффициента a:

    если a > 0, последовательность знаков: +, −, +,

    если a 0, последовательность знаков: +, +,

    если a 2 — 7 не имеет корней и на промежутке (−∞, +∞) его значения отрицательны, так как коэффициент при x 2 есть отрицательное число -4, и свободный член -7 тоже отрицателен.

    • Когда квадратный трехчлен при D > 0 имеет два корня, то знаки его значений на промежутках чередуются. Это значит, что достаточно определить знак на одном из трех промежутков и расставить знаки над оставшимися промежутками, чередуя их. В результате возможна одна из двух последовательностей: +, −, + или −, +, −.
    • Если квадратный трехчлен при D = 0 имеет один корень, то этот корень разбивает числовую ось на два промежутка, а знаки над ними будут одинаковыми. Это значит, что достаточно определить знак над одним из них и над другим поставить такой же. При этом получится, либо +, +, либо −, −.
    • Когда квадратный трехчлен корней не имеет (D

    Теперь мы знаем пошаговый алгоритм. Чтобы закрепить материал потренируемся на примерах и научимся использовать метод интервалов для квадратных неравенств.

    Пример 1. Решить неравенство методом интервалов: x^2 — 5x + 6 ≥ 0.



      Разложим квадратный трехчлен на множители.

    Неравенство примет вид:

    Проанализируем два сомножителя:

    Первый: х — 3. Этот сомножитель может поменять знак при х = 3, значит при х 0 принимает положительные значения: х — 3 > 0.

    Второй: х — 2. Для этого сомножителя такая «знаковая» точка: х = 2.

    Вывод: знак произведения (х — 3) * (х — 2) меняется только при переходе переменной через значения х = 3 и х = 2.

    В этом весь смысл метода интервалов: определить интервалы значений переменной, на которых ситуация не меняется и рассматривать их как единое целое.

  • Построим чертеж.
  • Рассмотрим интервалы в том же порядке, как пишем и читаем: слева направо.

    Отобразим эти данные на чертеже:

    2 3 — на этом интервале ситуация не изменяется. Значит нужно взять любое значение из этого интервала и подставить его в произведение. Например: х = 25.

    • (25 — 3) (25 — 2) = 22*23 = 506 > 0

    Вывод: при х > 3 верно неравенство (х — 3) * (х — 2) > 0. Внесем эти данные в чертеж.


    Исходное неравенство: (х — 3) * (х — 2) ≥ 0.

    Если (х — 3) * (х — 2) > 0:

    Если (х — 3) (х — 2) = 0 — при х1 = 3, х2 = 2.

    Удовлетворяющие неравенству точки закрасим, а не удовлетворяющие — оставим пустыми.

    Ответ: х ≤ 0, х ≥ 3.

    Пример 2. Применить метод интервалов для решения неравенства х2+4х+3

    Квадратные неравенства, примеры, решения

    В данном разделе мы собрали информацию о квадратных неравенствах и основных подходах к их решению. Закрепим материал разбором примеров.

    Что представляет собой квадратное неравенство

    Давайте посмотрим, как по виду записи различать неравенства различных видов и выделять среди них квадратные.

    Квадратное неравенство – это такое неравенство, которое имеет вид a · x 2 + b · x + c 0 , где a , b и c – некоторые числа, причем a не равно нулю. x – это переменная, а на месте знака может стоять любой другой знак неравенства.

    Вторым названием квадратных уравнений является название «неравенства второй степени». Объяснить наличие второго названия можно следующим образом. В левой части неравенства находится многочлен второй степени – квадратный трехчлен. Применение к квадратным неравенствам термина «квадратичные неравенства» некорректен, так как квадратичными являются функции, которые задаются уравнениями вида y = a · x 2 + b · x + c .

    Приведем пример квадратного неравенства:

    Возьмем 5 · x 2 − 3 · x + 1 > 0 . В этом случае a = 5 , b = − 3 и c = 1 .

    Или вот такое неравенство:

    − 2 , 2 · z 2 − 0 , 5 · z − 11 ≤ 0 , где a = − 2 , 2 , b = − 0 , 5 и c = − 11 .

    Покажем несколько примеров квадратных неравенств:

    Здесь коэффициенты этого квадратного неравенства есть ; 1 2 3 · x 2 — x + 5 7 0 , в этом случае a = 1 2 3 , b = — 1 , c = 5 7 .

    Особое внимание нужно обратить на тот факт, что коэффициент при x 2 считается неравным нулю. Объясняется это тем, что иначе мы получим линейное неравенство вида b · x + c > 0 , так как квадратная переменная при умножении на ноль сама станет равной нулю. При этом, коэффициенты b и c могут быть равны нулю как вместе, так и по отдельности.

    Пример такого неравенства x 2 − 5 ≥ 0 .

    Способы решения квадратных неравенств

    Основным метода три:

    • графический;
    • метод интервалов;
    • через выделение квадрата двучлена в левой части.

    Графический метод

    Метод предполагает проведение построения и анализа графика квадратичной функции y = a · x 2 + b · x + c для квадратных неравенств a · x 2 + b · x + c 0 ( ≤ , > , ≥ ) . Решением квадратного неравенства являются промежутки или интервалы, на которых указанная функция принимает положительные и отрицательные значения.

    Метод интервалов

    Решить квадратное неравенство с одной переменной можно методом интервалов. Метод применим для решения любого вида неравенств, не только квадратных. Суть метода в том, чтобы определить знаки промежутков, на которые разбивается ось координат нулями трехчлена a · x 2 + b · x + c при их наличии.

    Для неравенства a · x 2 + b · x + c 0 решениями являются промежутки со знаком минус, для неравенства a · x 2 + b · x + c > 0 , промежутки со знаком плюс. Если мы имеем дело с нестрогими неравенствами, то решением становится интервал, который включает точки, которые соответствуют нулям трехчлена.

    Выделение квадрата двучлена

    Принцип выделения квадрата двучлена в левой части квадратного неравенства состоит в выполнении равносильных преобразований, которые позволяют перейти к решению равносильного неравенства вида ( x − p ) 2 q ( ≤ , > , ≥ ) , где p и q – некоторые числа.

    Неравенства, сводящиеся к квадратным

    К квадратным неравенствам с помощью равносильных преобразований можно прийти от неравенств других видов. Сделать это можно разными способами. Например, перестановкой в данном неравенства слагаемых или переносом слагаемых из одной части в другую.

    Приведем пример. Рассмотрим равносильное преобразование неравенства 5 ≤ 2 · x − 3 · x 2 . Если мы перенесем все слагаемые из правой части в левую, то получим квадратное неравенство вида 3 · x 2 − 2 · x + 5 ≤ 0 .

    Необходимо найти множество решений неравенства 3 · ( x − 1 ) · ( x + 1 ) ( x − 2 ) 2 + x 2 + 5 .

    Решение

    Для решения задачи используем формулы сокращенного умножения. Для этого соберем все слагаемые в левой части неравенства, раскроем скобки и приведем подобные слагаемые:

    3 · ( x − 1 ) · ( x + 1 ) − ( x − 2 ) 2 − x 2 − 5 0 , 3 · ( x 2 − 1 ) − ( x 2 − 4 · x + 4 ) − x 2 − 5 0 , 3 · x 2 − 3 − x 2 + 4 · x − 4 − x 2 − 5 0 , x 2 + 4 · x − 12 0 .

    Мы получили равносильное квадратное неравенство, которое можно решить графическим способом, определив дискриминант и точки пересечения.

    D ’ = 2 2 − 1 · ( − 12 ) = 16 , x 1 = − 6 , x 2 = 2

    Построив график, мы можем увидеть, что множеством решений является интервал ( − 6 , 2 ) .

    Ответ: ( − 6 , 2 ) .

    Примером неравенств, которые часто сводятся к квадратным, могут служить иррациональные и логарифмические неравенства. Так, например, неравенство 2 · x 2 + 5 x 2 + 6 · x + 14

    равносильно квадратному неравенству x 2 − 6 · x − 9 0 , а логарифмическое неравенство log 3 ( x 2 + x + 7 ) ≥ 2 – неравенству x 2 + x − 2 ≥ 0 .

    Квадратные неравенства

    Квадратные неравенства – это неравенства вида: a x 2 + b x + c > 0 a x 2 + b x + c ≥ 0 a x 2 + b x + c 0 a x 2 + b x + c ≤ 0 где a, b, c – некоторые числа, причем a ≠ 0, x – переменная.

    Существует универсальный метод решения неравенств степени выше первой (квадратных, кубических, биквадратных и т.д.) – метод интервалов. Если его один раз как следует осмыслить, то проблем с решением любых неравенств не возникнет.

    Для того, чтобы применять метод интервалов для решения квадратных неравенств, надо уметь хорошо решать квадратные уравнения.

    Алгоритм решения квадратного неравенства методом интервалов

    1. Решить уравнение a x 2 + b x + c = 0 и найти корни x 1 и x 2 .
    1. Отметить на числовой прямой корни трехчлена.

    Если знак неравенства строгий > , , точки будут выколотые.

    Если знак неравенства нестрогий ≥ , ≤ , точки будут жирные (заштрихованный).

    1. Расставить знаки на интервалах. Для этого надо выбрать точку из любого промежутка (в примере взята точка A ) и подставить её значение в выражение a x 2 + b x + c вместо x .

    Если получилось положительное число, знак на интервале плюс. На остальных интервалах знаки будут чередоваться.

    Точки выколотые, если знак неравенства строгий.

    Точки жирные, если знак неравенства нестрогий.

    Если получилось отрицательное число, знак на интервале минус. На остальных интервалах знаки будут чередоваться.

    Точки выколотые, если знак неравенства строгий.

    Точки жирные, если знак неравенства нестрогий.

    1. Выбрать подходящие интервалы (или интервал).

    Если знак неравенства > или ≥ в ответ выбираем интервалы со знаком +.

    Если знак неравенства или ≤ в ответ выбираем интервалы со знаком -.

    Примеры решения квадратных неравенств:

    №1. Решить неравенство x 2 ≥ x + 12.

    Решение:

    Приводим квадратное неравенство к виду a x 2 + b x + c ≥ 0, а затем решаем уравнение a x 2 + b x + c = 0.

    a = 1, b = − 1, c = − 12

    D = b 2 − 4 a c = ( − 1 ) 2 − 4 ⋅ 1 ⋅ ( − 12 ) = 1 + 48 = 49

    D > 0 ⇒ будет два различных действительных корня

    x 1,2 = − b ± D 2 a = − ( − 1 ) ± 49 2 ⋅ 1 = 1 ± 7 2 = [ 1 + 7 2 = 8 2 = 4 1 − 7 2 = − 6 2 = − 3

    Наносим точки на ось x . Так как знак неравенства нестрогий, точки будут жирными. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 6 . Подставляем эту точку в исходное выражение:

    x 2 − x − 1 = 6 2 − 6 − 1 = 29 > 0

    Это значит, что знак на интервале, в котором лежит точка 6 будет +.

    Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

    В ответ пойдут два интервала. В математике для объединения нескольких интервалов используется знак объединения: ∪ .

    Точки -3 и 4 будут в квадратных скобках, так как они жирные.

    Ответ: x ∈ ( − ∞ ; − 3 ] ∪ [ 4 ; + ∞ )

    №2. Решить неравенство − 3 x − 2 ≥ x 2 .

    Решение:

    Приводим квадратное неравенство к виду a x 2 + b x + c ≥ 0, а затем решаем уравнение a x 2 + b x + c = 0.

    a = − 1, b = − 3, c = − 2

    D = b 2 − 4 a c = ( − 3 ) 2 − 4 ⋅ ( − 1 ) ⋅ ( − 2 ) = 9 − 8 = 1

    D > 0 ⇒ будет два различных действительных корня

    x 1,2 = − b ± D 2 a = − ( − 3 ) ± 1 2 ⋅ ( − 1 ) = 3 ± 1 − 2 = [ 3 + 1 − 2 = 4 − 2 = − 2 3 − 1 − 2 = 2 − 2 = − 1

    x 1 = − 2, x 2 = − 1

    Наносим точки на ось x . Так как знак неравенства нестрогий, точки будут жирными. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 0 . Подставляем эту точку в исходное выражение:

    − x 2 − 3 x − 2 = − ( 0 ) 2 − 3 ⋅ 0 − 2 = − 2 0

    Это значит, что знак на интервале, в котором лежит точка 0 будет − .

    Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

    Поскольку знак неравенства ≥ , выбираем в ответ интервал со знаком +.

    Точки -2 и -1 будут в квадратных скобках, так как они жирные.

    Ответ: x ∈ [ − 2 ; − 1 ]

    №3. Решить неравенство 4 x 2 + 3 x .

    Решение:

    Приводим квадратное неравенство к виду a x 2 + b x + c ≥ 0, а затем решаем уравнение a x 2 + b x + c = 0.

    a = − 1, b = − 3, c = 4

    D = b 2 − 4 a c = ( − 3 ) 2 − 4 ⋅ ( − 1 ) ⋅ 4 = 9 + 16 = 25

    D > 0 ⇒ будет два различных действительных корня

    x 1,2 = − b ± D 2 a = − ( − 3 ) ± 25 2 ⋅ ( − 1 ) = 3 ± 5 − 2 = [ 3 + 5 − 2 = 8 − 2 = − 4 3 − 5 − 2 = − 2 − 2 = 1

    Наносим точки на ось x . Так как знак неравенства строгий, точки будут выколотыми. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 2 . Подставляем эту точку в исходное выражение:

    − x 2 − 3 x + 4 = − ( 2 ) 2 − 3 ⋅ 2 + 4 = − 6 0

    Это значит, что знак на интервале, в котором лежит точка 2 , будет -.

    Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

    Поскольку знак неравенства , выбираем в ответ интервалы со знаком − .

    Точки -4 и 1 будут в круглых скобках, так как они выколотые.

    Ответ: x ∈ ( − ∞ ; − 4 ) ∪ ( 1 ; + ∞ )

    №4. Решить неравенство x 2 − 5 x 6.

    Решение:

    Приводим квадратное неравенство к виду a x 2 + b x + c ≥ 0, а затем решаем уравнение a x 2 + b x + c = 0.

    a = 1, b = − 5, c = − 6

    D = b 2 − 4 a c = ( − 5 ) 2 − 4 ⋅ 1 ⋅ ( − 6 ) = 25 + 25 = 49

    D > 0 ⇒ будет два различных действительных корня

    x 1,2 = − b ± D 2 a = − ( − 5 ) ± 49 2 ⋅ 1 = 5 ± 7 2 = [ 5 + 7 2 = 12 2 = 6 5 − 7 2 = − 2 2 = − 1

    Наносим точки на ось x . Так как знак неравенства строгий, точки будут выколотыми. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 10. Подставляем эту точку в исходное выражение:

    x 2 − 5 x − 6 = 10 2 − 5 ⋅ 10 − 6 = 100 − 50 − 6 = 44 > 0

    Это значит, что знак на интервале, в котором лежит точка 10 будет +.

    Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

    Поскольку знак неравенства , выбираем в ответ интервал со знаком -.

    Точки -1 и 6 будут в круглых скобках, так как они выколотые

    Ответ: x ∈ ( − 1 ; 6 )

    №5. Решить неравенство x 2 4.

    Решение:

    Переносим 4 в левую часть, раскладываем выражение на множители по ФСУ и находим корни уравнения.

    ( x − 2 ) ( x + 2 ) = 0 ⇔ [ x − 2 = 0 x + 2 = 0 [ x = 2 x = − 2

    Наносим точки на ось x . Так как знак неравенства строгий, точки будут выколотыми. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 3 . Подставляем эту точку в исходное выражение:

    x 2 − 4 = 3 2 − 4 = 9 − 4 = 5 > 0

    Это значит, что знак на интервале, в котором лежит точка 3 будет +.

    Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

    Поскольку знак неравенства , выбираем в ответ интервал со знаком − .

    Точки -2 и 2 будут в круглых скобках, так как они выколотые.

    Ответ: x ∈ ( − 2 ; 2 )

    №6. Решить неравенство x 2 + x ≥ 0.

    Решение:

    Выносим общий множитель за скобку, находим корни уравнения x 2 + x = 0.

    x ( x + 1 ) = 0 ⇔ [ x = 0 x + 1 = 0 [ x = 0 x = − 1

    Наносим точки на ось x . Так как знак неравенства нестрогий, точки будут жирными. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 1 . Подставляем эту точку в исходное выражение:

    x 2 + x = 1 2 + 1 = 2 > 0

    Это значит, что знак на интервале, в котором лежит точка 1 будет +.

    Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

    Поскольку знак неравенства ≥ , выбираем в ответ интервалы со знаком +.

    В ответ пойдут два интервала. Точки -1 и 0 будут в квадратных скобках, так как они жирные.


    источники:

    http://zaochnik.com/spravochnik/matematika/kvadratnye-neravenstva/kvadratnye-neravenstva-primery-reshenija/

    http://epmat.ru/kvadratnye-neravenstva/