Методика решения показательных уравнений и неравенств

Показательные уравнения и неравенства

Решение большинства математических задач так или иначе связано с преобразованием числовых, алгебраических или функциональных выражений. Сказанное в особенности относится к решению показательных уравнений и неравенств. В вариантах ЕГЭ по математике к такому типу задач относится, в частности, задача C3. Научиться решать задания C3 важно не только с целью успешной сдачи ЕГЭ, но и по той причине, что это умение пригодится при изучении курса математики в высшей школе.

Выполняя задания C3, приходится решать различные виды уравнений и неравенств. Среди них — рациональные, иррациональные, показательные, логарифмические, тригонометрические, содержащие модули (абсолютные величины), а также комбинированные. В этой статье рассмотрены основные типы показательных уравнений и неравенств, а также различные методы их решений. О решении остальных видов уравнений и неравенств читайте в рубрике «Методическая копилка репетитора по физике и математике» в статьях, посвященных методам решения задач C3 из вариантов ЕГЭ по математике.

Прежде чем приступить к разбору конкретных показательных уравнений и неравенств, как репетитор по математике, предлагаю вам освежить в памяти некоторый теоретический материал, который нам понадобится.

Показательная функция

Что такое показательная функция?

Функцию вида y = a x , где a > 0 и a ≠ 1, называют показательной функцией.

Основные свойства показательной функции y = a x :

Свойствоa > 10 только в показателях каких-либо степеней.

Для решения показательных уравнений требуется знать и уметь использовать следующую несложную теорему:

Помимо этого, полезно помнить об основных формулах и действиях со степенями:

0,\, b>0: \\ a^0 = 1, 1^x = 1; \\ a^<\frac>=\sqrt[n] \, (k\in Z,\, n\in N);\\ a^ <-x>= \frac<1>; \\ a^x\cdot a^y = a^; \\ \frac=a^; \\ (a^x)^y = a^; \\ a^x\cdot b^x = (ab)^x; \\ \frac=\left(\frac\right)^x.\\ \end> \]» title=»Rendered by QuickLaTeX.com»/>

Пример 1. Решите уравнение:

Решение: используем приведенные выше формулы и подстановку:

Уравнение тогда принимает вид:

Дискриминант полученного квадратного уравнения положителен:

0. \]» title=»Rendered by QuickLaTeX.com»/>

Это означает, что данное уравнение имеет два корня. Находим их:

Переходя к обратной подстановке, получаем:

Второе уравнение корней не имеет, поскольку показательная функция строго положительна на всей области определения. Решаем второе:

С учетом сказанного в теореме 1 переходим к эквивалентному уравнению: x = 3. Это и будет являться ответом к заданию.

Ответ: x = 3.

Пример 2. Решите уравнение:

Решение: ограничений на область допустимых значений у уравнения нет, так как подкоренное выражение имеет смысл при любом значении x (показательная функция y = 9 4 -x положительна и не равна нулю).

Решаем уравнение путем равносильных преобразований с использованием правил умножения и деления степеней:

Последний переход был осуществлен в соответствии с теоремой 1.

Пример 3. Решите уравнение:

Решение: обе части исходного уравнения можно поделить на 0,2 x . Данный переход будет являться равносильным, поскольку это выражение больше нуля при любом значении x (показательная функция строго положительна на своей области определения). Тогда уравнение принимает вид:

Ответ: x = 0.

Пример 4. Решите уравнение:

Решение: упрощаем уравнение до элементарного путем равносильных преобразований с использованием приведенных в начале статьи правил деления и умножения степеней:

Деление обеих частей уравнения на 4 x , как и в предыдущем примере, является равносильным преобразованием, поскольку данное выражение не равно нулю ни при каких значениях x.

Ответ: x = 0.

Пример 5. Решите уравнение:

Решение: функция y = 3 x , стоящая в левой части уравнения, является возрастающей. Функция y = —x-2/3, стоящая в правой части уравнения, является убывающей. Это означает, что если графики этих функций пересекаются, то не более чем в одной точке. В данном случае нетрудно догадаться, что графики пересекаются в точке x = -1. Других корней не будет.

Ответ: x = -1.

Пример 6. Решите уравнение:

Решение: упрощаем уравнение путем равносильных преобразований, имея в виду везде, что показательная функция строго больше нуля при любом значении x и используя правила вычисления произведения и частного степеней, приведенные в начале статьи:

Ответ: x = 2.

Решение показательных неравенств

Показательными называются неравенства, в которых неизвестная переменная содержится только в показателях каких-либо степеней.

Для решения показательных неравенств требуется знание следующей теоремы:

Теорема 2. Если a > 1, то неравенство a f(x) > a g(x) равносильно неравенству того же смысла: f(x) > g(x). Если 0 f(x) > a g(x) равносильно неравенству противоположного смысла: f(x) 2x , при этом (в силу положительности функции y = 3 2x ) знак неравенства не изменится:

Тогда неравенство примет вид:

Итак, решением неравенства является промежуток:

переходя к обратной подстановке, получаем:

Левое неравенства в силу положительности показательной функции выполняется автоматически. Воспользовавшись известным свойством логарифма, переходим к эквивалентному неравенству:

Поскольку в основании степени стоит число, большее единицы, эквивалентным (по теореме 2) будет переход к следующему неравенству:

Итак, окончательно получаем ответ:

Пример 8. Решите неравенство:

Решение: используя свойства умножения и деления степеней, перепишем неравенство в виде:

Введем новую переменную:

С учетом этой подстановки неравенство принимает вид:

Умножим числитель и знаменатель дроби на 7, получаем следующее равносильное неравенство:

Итак, неравенству удовлетворяют следующие значения переменной t:

Тогда, переходя к обратной подстановке, получаем:

Поскольку основание степени здесь больше единицы, равносильным (по теореме 2) будет переход к неравенству:

Окончательно получаем ответ:

Пример 9. Решите неравенство:

Решение:

Делим обе части неравенства на выражение:

Оно всегда больше нуля (из-за положительности показательной функции), поэтому знак неравенства изменять не нужно. Получаем:

Воспользуемся заменой переменной:

Исходное уравнение тогда принимает вид:

Итак, неравенству удовлетворяют значения t, находящиеся в промежутке:

Переходя к обратной подстановке получаем, что исходное неравенство распадается на два случая:

Первое неравенство решений не имеет в силу положительности показательной функции. Решаем второе:

Поскольку основание степени в данном случае оказалось меньше единицы, но больше нуля, равносильным (по теореме 2) будет переход к следующему неравенству:

Итак, окончательный ответ:

Пример 10. Решите неравенство:

Решение:

Ветви параболы y = 2x+2-x 2 направлены вниз, следовательно она ограничена сверху значением, которое она достигает в своей вершине:

Ветви параболы y = x 2 -2x+2, стоящей в показателе, направлены вверх, значит она ограничена снизу значением, которое она достигает в своей вершине:

Вместе с этим ограниченной снизу оказывается и функция y = 3 x 2 -2x+2 , стоящая в правой части уравнения. Она достигает своего наименьшего значения в той же точке, что и парабола, стоящая в показателе, и это значение равно 3 1 = 3. Итак, исходное неравенство может оказаться верным только в том случае, если функция слева и функция справа принимают в одной точке значение, равное 3 (пересечением областей значений этих функций является только это число). Это условие выполняется в единственной точке x = 1.

Ответ: x = 1.

Для того, чтобы научиться решать показательные уравнения и неравенства, необходимо постоянно тренироваться в их решении. В этом нелегком деле вам могут помочь различные методические пособия, задачники по элементарной математике, сборники конкурсных задач, занятия по математике в школе, а также индивидуальные занятия с профессиональным репетитором. Искренне желаю вам успехов в подготовке и блестящих результатов на экзамене.

P. S. Уважаемые гости! Пожалуйста, не пишите в комментариях заявки на решение ваших уравнений. К сожалению, на это у меня совершенно нет времени. Такие сообщения будут удалены. Пожалуйста, ознакомьтесь со статьёй. Возможно, в ней вы найдёте ответы на вопросы, которые не позволили вам решить своё задание самостоятельно.

Методика решения показательных уравнений и неравенств

Из предложенных тем я выбрала: «Методы решения показательных уравнений и неравенств», так как она наиболее актуальна не только для меня, но и для детей моего возраста. В связи с приближающимися экзаменами, данный проект так же поможет мне при решении заданий из ЕГЭ.

В данной работе исследуются разные способы решений показательных уравнений и неравенств.

В процессе выполнения проекта я приобрела навыки проектной деятельности, развила коммуникативные и аналитические способности, а также навыки самостоятельного поиска необходимого материала с помощью учебной и художественной литературы и интернет­-источников, более того получила знания как по математики, так и по истории.

Для достижения цели исследовательской работы необходимо было решить следующие задачи:

— осваивание математических знаний и умений, необходимых для изучения школьных естественнонаучных дисциплин на базовом уровне.

-изучить различные методы решения показательных уравнений и неравенств.

— развитие логического мышления и алгоритмической культуры;

Обычно математику считают прямой противоположностью поэзии. Однако математика и поэзия — ближайшие родственники, ведь и то и другое — работа воображения.
Томас Хилл

Определенно, чтобы понять и научиться решать любые математические задания, мало просто знать все многочисленные формулы и свойства, которыми богата данная наука. Если не подходить к заданию творчески, широко и открыто мыслить, то легко попадешь «в тупик», что может привести не только к разочарованию в науке, но и в самом себе. Математика как игра привлекательна свое содержательностью, сложностью и неожиданностью результатов. Так же для овладения почти любой современной профессии требуются математические познания. Строгое и абстрактное мышление, необходимое в реальной действительности, легче развить, занимаясь математикой, поскольку эта наука строга и абстрактна. Именно поэтому, на примере решения показательных уравнений и неравенств, я хочу показать, что данный процесс может не только увлечь вас, но и так же заставить ваш мозг работать куда продуктивнее.

История Показательных уравнений

Термин «показатель» для степени ввел в 1553 г. немецкий математик (сначала монах, а затем − профессор) Михаэль Штифель (1487-1567). По-немецки показатель − Exponent: «выставлять напоказ». Штифель же ввел дробные и нулевой показатели степени. Само обозначение ax для натуральных показателей степени ввел Рене Декарт (1637 г.), а свободно обращаться с такими же дробными и отрицательными показателями стал с 1676 г. сэр Исаак Ньютон.
Степени с произвольными действительными показателями, без всякого общего определения, рассматривали и Готфрид Вильгельм Лейбниц, и Иоганн Бернулли; в 1679 г. Лейбниц ввел понятия экспоненциальной (т.е., по-русски, показательной) функции для зависимости y=ax и экспоненциальной кривой для графика этой функции.

Уравнение, которое содержит неизвестное в показателе степени, называется показательным уравнением.

Самое простое показательное уравнение имеет вид:

Показательные уравнения путём алгебраических преобразований приводят к стандартным уравнениям, которые решаются, используя следующие методы:

  • метод приведения к одному основанию;
  • метод введения новых переменных;
  • метод вынесения общего множителя за скобки;
  • метод почленного деления;
  • метод группировки;
  • метод оценки.

Метод приведения к одному основанию

Способ основан на следующем свойстве степеней: если равны две степени и равны их основания, то равны и их показатели, т. е. уравнение надо попытаться свести к виду:

Представим правую часть в виде 3 log 3 7 x+1 3 2x-1 = 3 log 3 7 x+1 2x-1= log 3 7 x+1 2x-1=x log 3 7 1\AppData\Local\Temp\msohtmlclip1\01\clip_image005.png» /> + log 3 7 x(2- log 3 7 1\AppData\Local\Temp\msohtmlclip1\01\clip_image005.png» /> )= log 3 7 x= 1+ log 3 7 2- log 3 7 x= log 3 3+ log 3 7 log 3 3 2 — log 3 7 x= log 3 21 log 3 9 7 x= log 9 7 21 ≈12.1144 Ответ: 12.1144 4 x 2 1\AppData\Local\Temp\msohtmlclip1\01\clip_image012.png» /> — 2 x 2 Обозначим t= 2 x 2 t 2 t 1 t 2 Так как -1 2 x 2 x 2

Из первого уравнения совокупности находим x1 = — 1 2 1\AppData\Local\Temp\msohtmlclip1\01\clip_image019.png» /> ,x2= 1 2 x — 1= x — 3 +2 x — 3= x — 3 x — 3= x — 3, если x ≥3 x — 3=- x +3, если x 0∙ x =0, если x ≥3 2 x =6, x =3, если x Ответ: — 1 2 1\AppData\Local\Temp\msohtmlclip1\01\clip_image025.png» /> ∪ 1\AppData\Local\Temp\msohtmlclip1\01\clip_image026.png» /> 1 2 1\AppData\Local\Temp\msohtmlclip1\01\clip_image027.png» /> ∪ 1\AppData\Local\Temp\msohtmlclip1\01\clip_image026.png» /> 3; +∞ 22х·2– 7·2х·5х+52х·5=0 /52х≠ 0
2· 2 5 1\AppData\Local\Temp\msohtmlclip1\01\clip_image029.png» /> 2х– 7· 2 5 Пусть 2 5 1\AppData\Local\Temp\msohtmlclip1\01\clip_image029.png» /> х =t, t>0
2t2-7t+5=0
D=b2-4ac=49-4·2·5=9
t1=1, t2= 5 2 1\AppData\Local\Temp\msohtmlclip1\01\clip_image030.png» />
2 5 1\AppData\Local\Temp\msohtmlclip1\01\clip_image029.png» /> х=1, 2 5 1\AppData\Local\Temp\msohtmlclip1\01\clip_image029.png» /> х = 5 2 3·22х+ 1 2 1\AppData\Local\Temp\msohtmlclip1\01\clip_image020.png» /> ·9х+1– 6·4х+1= — 1 3 1 2 1\AppData\Local\Temp\msohtmlclip1\01\clip_image020.png» /> ·9х+1+ 1 3 1 2 1\AppData\Local\Temp\msohtmlclip1\01\clip_image020.png» /> ·9х·9+ 1 3 31,5= 21· 4 9 4 9 1\AppData\Local\Temp\msohtmlclip1\01\clip_image032.png» /> х= 3 2 2 3 1\AppData\Local\Temp\msohtmlclip1\01\clip_image034.png» /> 2х= 2 3 ( 5 ) 2+4+6+. +2 x 1\AppData\Local\Temp\msohtmlclip1\01\clip_image035.png» /> = 5 45 1 2 Sn =n( a 1 + a n 2 x 1+ x 2 1\AppData\Local\Temp\msohtmlclip1\01\clip_image038.png» /> =45 2 x — 3 ≥ 1\AppData\Local\Temp\msohtmlclip1\01\clip_image040.png» /> 4+ 1 6- 2 x — 3 Пусть 2 x — 3 t ≥ 1\AppData\Local\Temp\msohtmlclip1\01\clip_image043.png» /> 4+ 1 6- t 4+ 1 6- t 1\AppData\Local\Temp\msohtmlclip1\01\clip_image045.png» /> – t ≤ t 2 — 10 t +25 6- t ≤ (t-5) 2 6-t ≤ t=5, t > 1\AppData\Local\Temp\msohtmlclip1\01\clip_image049.png» /> 6. Отсюда 2 x — 3 1\AppData\Local\Temp\msohtmlclip1\01\clip_image042.png» /> =5 и 2 x — 3 > Пусть 2 x Из уравнения a-3 a-3=5 a-3=-5 a=8 a=-2 Подставим вместо a= 2 x 2 x =8 2 x =-2 Модуль a — 3 Для решения неравенств a — 3 > a — 3 > 1\AppData\Local\Temp\msohtmlclip1\01\clip_image056.png» /> 6 получаем a 1\AppData\Local\Temp\msohtmlclip1\01\clip_image057.png» /> -3 или a > 2 x 2 x >9 2 x > 2 log 2 9 x > log 2 9 Ответ: <3>∪ ( log 2 9 2 (3 2x + 2 x ∙ 3 x+1 + 3 0 ) > 3 (4 x — 2 x ∙ 3 x+1 + log 3 2) 3 2x + 2 x ∙ 3 x +1> log 2 3 (4 x — 2 x ∙ 3 x+1 + log 3 2) 3 2x + 2 x ∙ 3 x +1> (4 x — 2 x ∙ 3 x+1 + log 3 2)∙ log 2 3 3 2x + 2 x ∙ 3 x +1> (4 x — 2 x ∙ 3 x+1 )∙ log 2 3 +1 3 2x + 2 x ∙ 3 x > (4 x — 2 x ∙ 3 x+1 )∙ log 2 3 Поделим каждое слагаемое неравенства на ( 2 x ∙ 3 x ) 3 2 x +1> 2 3 x — 3 ∙ log 2 3 Обозначим: 3 2 x 1\AppData\Local\Temp\msohtmlclip1\01\clip_image069.png» /> =y, где y > y+1 > 1 y — 3 ∙ log 2 3 y 2 +y> 1-3y ∙ log 2 3 y 2 +y- 1-3y ∙ log 2 3 >0 y 2 +y — log 2 3+3y log 2 3 >0 y 2 + 3 log 2 3 +1 y- log 2 3 >0 y 2 + 3 log 2 3 +1 y- log 2 3=0 D = 3 log 2 3 +1 1\AppData\Local\Temp\msohtmlclip1\01\clip_image076.png» /> 2 + 1\AppData\Local\Temp\msohtmlclip1\01\clip_image077.png» /> 4 log 2 3= 9 log 2 3 2 +10 log 2 3 +1 D >0 y = — 3 log 2 3 +1 ± 9 log 2 3 2 +10 log 2 3 +1 2 В связи с тем, что log 2 3 >0 1\AppData\Local\Temp\msohtmlclip1\01\clip_image081.png» /> , то и D > 3 log 2 3 +1 y = — 3 log 2 3 +1 + 9 log 2 3 2 +10 log 2 3 +1 2 Отметим точку y на оси, y >0 y Î — 3 log 2 3 +1 + 9 log 2 3 2 +10 log 2 3 +1 2 ;+∞ Из этого следует, что x Î log 3 2 — 3 log 2 3 +1 + 9 log 2 3 2 +10 log 2 3 +1 2 ;+∞ Ответ: x Î log 3 2 — 3 log 2 3 +1 + 9 log 2 3 2 +10 log 2 3 +1 2 ;+∞ — 3 log 2 3 +1 + 9 log 2 3 2 +10 log 2 3 +1 2

1. Показательные уравнения.

Уравнения, содержащие неизвестные в показателе степени, называются показательными уравнениями. Простейшим из них является уравнение а x = b, где а > 0, а ≠ 1.

1) При b 0 используя монотонность функции и теорему о корне, уравнение имеет единственный корень. Для того, чтобы его найти, надо b представить в виде b = a с , а x = b с ó x = c или x = logab.

Показательные уравнения путем алгебраических преобразований приводят к стандартным уравнения, которые решаются, используя следующие методы:

1) метод приведения к одному основанию ;

3) графический метод;

4) метод введения новых переменных;

5) метод разложения на множители;

6) показательно – степенные уравнения;

7) показательные с параметром.

Скачать:

ВложениеРазмер
metody_pokazatelnye_uravneniya.docx207.68 КБ

Предварительный просмотр:

Лекция: «Методы решения показательных уравнений».

1 . Показательные уравнения.

Уравнения, содержащие неизвестные в показателе степени, называются показательными уравнениями. Простейшим из них является уравнение а x = b, где а > 0, а ≠ 1.

2) При b > 0 используя монотонность функции и теорему о корне, уравнение имеет единственный корень. Для того, чтобы его найти, надо b представить в виде b = a с , а x = b с ⬄ x = c или x = log a b.

Показательные уравнения путем алгебраических преобразований приводят к стандартным уравнения, которые решаются, используя следующие методы:

  1. метод приведения к одному основанию ;
  2. метод оценки;
  3. графический метод;
  4. метод введения новых переменных;
  5. метод разложения на множители;
  6. показательно – степенные уравнения;
  7. показательные с параметром.

2 . Метод приведения к одному основанию.

Способ основан на следующем свойстве степеней: если равны две степени и равны их основания, то равны и их показатели, т.е. уравнение надо попытаться свести к виду

Примеры. Решить уравнение:

Представим правую часть уравнения в виде 81 = 3 4 и запишем уравнение, равносильное исходному 3 x = 3 4 ; x = 4. Ответ: 4.

Представим правую часть уравнения в виде и перейдем к уравнению для показателей степеней 3x+1 = 3 – 5x; 8x = 4; x = 0,5. Ответ: 0,5.

Представим правую часть данного уравнения в виде 1 = 5 0 и перейдем к уравнению для показателей степеней x 2 -3x+2 = 0, откуда легко получить решения x = 1 и x=2.

Заметим, что числа 0,2 , 0,04 , √5 и 25 представляют собой степени числа 5. Воспользуемся этим и преобразуем исходное уравнение следующим образом:

, откуда 5 -x-1 = 5 -2x-2 ⬄ — x – 1 = — 2x – 2, из которого находим решение x = -1. Ответ: -1.

  1. 3 x = 5. По определению логарифма x = log 3 5. Ответ: log 3 5.
  2. 6 2x+4 = 3 3x . 2 x+8 .

Перепишем уравнение в виде 3 2x+4 .2 2x+4 = 3 2x .2 x+8 , т.е. далее

2 2x+4-x-8 = 3 3x-2x-4 , т.е. 2 x-4 = 3 x-4 . (Уже ясно, что x = 4). Перепишем уравнение, разделив на 3 x-4 ≠ 0. Отсюда x – 4 =0, x = 4. Ответ: 4.

7 . 2∙3 x+1 — 6∙3 x-2 — 3 x = 9. Используя свойства степеней, запишем уравнение в виде 6∙3 x — 2∙3 x – 3 x = 9 далее 3∙3 x = 9, 3 x+1 = 3 2 , т.е. x+1 = 2, x =1. Ответ: 1.

Тест №1. с выбором ответа. Минимальный уровень.

1) 0 2) 4 3) -2 4) -4

1)17/4 2) 17 3) 13/2 4) -17/4

1) 3;1 2) -3;-1 3) 0;2 4) корней нет

1) 7;1 2) корней нет 3) -7;1 4) -1;-7

1) 0;2; 2) 0;2;3 3) 0 4) -2;-3;0

1) -1 2) 0 3) 2 4) 1

Тест №2 с выбором ответа. Общий уровень.

1) 3 2) -1;3 3) -1;-3 4) 3;-1

1) 14/3 2) -14/3 3) -17 4) 11

1) 2;-1 2) корней нет 3) 0 4) -2;1

1) -4 2) 2 3) -2 4) -4;2

1) 3 2) -3;1 3) -1 4) -1;3

Теорема о корне : если функция f(x) возрастает (убывает) на промежутке I, число а –любое значение принимаемое f на этом промежутке, тогда уравнение f(x) = а имеет единственный корень на промежутке I.

При решении уравнений методом оценки используется эта теорема и свойства монотонности функции.

Примеры. Решить уравнения: 1. 4 x = 5 – x.

Решение. Перепишем уравнение в виде 4 x +x = 5.

1. если x = 1, то 4 1 +1 = 5 , 5 = 5 верно, значит 1 – корень уравнения.

2. докажем, что он единственный.

Функция f(x) = 4 x – возрастает на R, и g(x) = x –возрастает на R => h(x)= f(x)+g(x) возрастает на R, как сумма возрастающих функций, значит x = 1 – единственный корень уравнения 4 x = 5 – x. Ответ: 1.

Решение. Перепишем уравнение в виде .

  1. если x = -1, то , 3 = 3-верно, значит x = -1 – корень уравнения.
  2. докажем, что он единственный.
  3. Функция f(x) = — убывает на R, и g(x) = -x – убывает на R=> h(x) = f(x)+g(x) – убывает на R, как сумма убывающих функций. Значит по теореме о корне, x = -1 – единственный корень уравнения. Ответ: -1.

Банк задач №2. Решить уравнение

4. Метод введения новых переменных.

Метод описан в п. 2.1. Введение новой переменной (подстановка) обычно производится после преобразований (упрощения) членов уравнения. Рассмотрим примеры.

Примеры. Р ешить уравнение: 1. .

Перепишем уравнение иначе:

Обозначим 5 x = t > 0, тогда т.е. 3t 2 – 2t – 1 =0, отсюда t 1 = 1, -не удовлетворяет условию t > 0. Итак, 5 x = 1 = 5 0 x = 0. Ответ: 0.

Решение. Перепишем уравнение иначе:

Обозначим тогда — не подходит.

t = 4 => Отсюда — иррациональное уравнение. Отмечаем, что

Решением уравнения является x = 2,5 ≤ 4, значит 2,5 – корень уравнения. Ответ: 2,5.

Решение. Перепишем уравнение в виде и разделим его обе части на 5 6x+6 ≠ 0. Получим уравнение

2x 2 -6x-7 = 2x 2 -6x-8 +1 = 2(x 2 -3x-4)+1, т.е

Корни квадратного уравнения – t 1 = 1 и t 2 ,

x 1 = -1, x 2 = 4. Ответ: -1, 4.

Решение . Перепишем уравнение в виде

и заметим, что оно является однородным уравнением второй степени.

Разделим уравнение на 4 2x , получим

Заменим 2t 2 – 5t +3 = 0 , где t 1 = 1, t 2 = .

Банк задач № 3. Решить уравнение

Тест № 3 с выбором ответа. Минимальный уровень.

1) -0,2;2 2) log 5 2 3) –log 5 2 4) 2

А 2 0,5 2x – 3 0,5 x +2 = 0.

1) 2;1 2) -1;0 3) корней нет 4) 0

1) 0 2) 1; -1/3 3) 1 4) 5

А 4 5 2x -5 x — 600 = 0.

1) -24;25 2) -24,5; 25,5 3) 25 4) 2

1) корней нет 2) 2;4 3) 3 4) -1;2

Тест № 4 с выбором ответа. Общий уровень.

1) 2;1 2) ½;0 3)2;0 4) 0

А 2 2 x – (0,5) 2x – (0,5) x + 1 = 0

1) -1;1 2) 0 3) -1;0;1 4) 1

1) 64 2) -14 3) 3 4) 8

1)-1 2) 1 3) -1;1 4) 0

1) 0 2) 1 3) 0;1 4) корней нет

5. Метод разложения на множители.

1. Решите уравнение: 5 x+1 — 5 x-1 = 24.

Решение. Перепишем уравнение в виде

Теперь в левой части уравнения вынесем за скобки общий множитель 5 x .

2. 6 x + 6 x+1 = 2 x + 2 x+1 + 2 x+2 .

Решение. Вынесем за скобки в левой части уравнения 6 x , а в правой части – 2 x . Получим уравнение 6 x (1+6) = 2 x (1+2+4) ⬄ 6 x = 2 x .

Так как 2 x >0 при всех x, можно обе части этого уравнения разделить на 2 x , не опасаясь при этом потери решений. Получим 3 x = 1 ⬄ x = 0.

Решение. Решим уравнение методом разложения на множители.

Выделим квадрат двучлена

Решение. Преобразуем члены уравнения и перегруппируем слагаемые

x = -2 – корень уравнения.

Уравнение x + 1 = можно решить либо методом оценки, либо графически.

x = 1 – второй корень исходного уравнения.

Банк задач №4. Решить уравнение

а) 48 x – 4 2x+1 – 3 x+1 + 12 = 0.

б) 5 2x-1 + 2 2x – 5 2x +2 2x+2 = 0.

в) 3 x – 2 x+2 = 3 x-1 – 2 x-1 – 2 x-3 .

г) 4 x – 5 2 x + 4 = 0.

Тест №5 Минимальный уровень.

А 1 5 x-1 +5 x -5 x+1 =-19.

1) 1 2) 95/4 3) 0 4) -1

А 2 3 x+1 +3 x-1 =270.

1) 2 2) -4 3) 0 4) 4

А 3 3 2x + 3 2x+1 -108 = 0. x=1,5

1) 0,2 2) 1,5 3) -1,5 4) 3

1) 1 2) -3 3) -1 4) 0

А 5 2 x -2 x-4 = 15. x=4

1) -4 2) 4 3) -4;4 4) 2

Тест № 6 Общий уровень.

А 1 (2 2x -1)(2 4x +2 2x +1)=7.

1) ½ 2) 2 3) -1;3 4) 0,2

1) 2,5 2) 3;4 3) log 4 3/2 4) 0

А 3 2 x-1 -3 x =3 x-1 -2 x+2 .

1) 2 2) -1 3) 3 4) -3

А 4

1) 1,5 2) 3 3) 1 4) -4

1) 2 2) -2 3) 5 4) 0

6. Показательно – степенные уравнения.

К показательным уравнениям примыкают так называемые показательно – степенные уравнения, т.е. уравнения вида (f(x)) g(x) = (f(x)) h(x) .

Если известно, что f(x)>0 и f(x) ≠ 1, то уравнение, как и показательное, решается приравниванием показателей g(x) = f(x).

Если условием не исключается возможность f(x)=0 и f(x)=1, то приходится рассматривать и эти случаи при решении показательно – степенного уравнения.

1. Решить уравнение

Решение. Для нахождения корней уравнения следует рассмотреть четыре случая:

  1. x + 1=x 2 – 1 ( показатели равны);
  2. x = 1(основание равно единице);
  3. x = 0 (основание равно нулю);
  4. x = -1(основание равно -1).

Решим первое уравнение: x 2 – x – 2 = 0, x = 2, x = -1.

x 1 = 2 => 2 3 = 2 3 – верно;

x 2 = -1 => (-1) 0 =(-1) 0 – верно;

x 3 = 1 => 1 2 = 1 0 – верно;

x 4 = 0 => 0 1 = 0 (-1) – не имеет смысла.

Уравнение вида f(x) g(x) = 1 равносильно совокупности двух систем

Решение. x 2 +2x-8 – имеет смысл при любых x , т.к. многочлен, значит уравнение равносильно совокупности

Банк задач №5. Решить уравнение

7. Показательные уравнения с параметрами.

1. При каких значениях параметра p уравнение 4 (5 – 3)2 +4p 2 –3p = 0 (1) имеет единственное решение?

Решение. Введем замену 2 x = t, t > 0, тогда уравнение (1) примет вид t 2 – (5p – 3)t + 4p 2 – 3p = 0. (2)

Дискриминант уравнения (2) D = (5p – 3) 2 – 4(4p 2 – 3p) = 9(p – 1) 2 .

Уравнение (1) имеет единственное решение, если уравнение (2) имеет один положительный корень. Это возможно в следующих случаях.

1. Если D = 0, то есть p = 1, тогда уравнение (2) примет вид t 2 – 2t + 1 = 0, отсюда t = 1, следовательно, уравнение (1) имеет единственное решение x = 0.

2. Если p1, то 9(p – 1) 2 > 0, тогда уравнение (2) имеет два различных корня t 1 = p, t 2 = 4p – 3. Условию задачи удовлетворяет совокупность систем

Подставляя t 1 и t 2 в системы, имеем

Рассмотрим более общую задачу.

Задача 2. Сколько корней имеет уравнение в зависимости от параметра a ?

Решение. Пусть тогда уравнение (3) примет вид t 2 – 6t – a = 0. (4)

Найдем значения параметра a, при которых хотя бы один корень уравнения (4) удовлетворяет условию t > 0.

Введем функцию f(t) = t 2 – 6t – a . Возможны следующие случаи.

Случай 1. Уравнение (4) имеет два различных положительных корня, если выполнятся условия

где t 0 — абсцисса вершины параболы и D — дискриминант квадратного трехчлена f(t);

Случай 2. Уравнение (4) имеет единственное положительное решение, если

D = 0, если a = – 9, тогда уравнение (4) примет вид (t – 3) 2 = 0, t = 3, x = – 1.

Случай 3. Уравнение (4) имеет два корня, но один из них не удовлетворяет неравенству t > 0. Это возможно, если

Таким образом, при a 0 уравнение (4) имеет единственный положительный корень . Тогда уравнение (3) имеет единственное решение

если a a a = – 9, то x = – 1;

Сравним способы решения уравнений (1) и (3). Отметим, что при решении уравнение (1) было сведено к квадратному уравнению, дискриминант которого — полный квадрат; тем самым корни уравнения (2) сразу были вычислены по формуле корней квадратного уравнения, а далее относительно этих корней были сделаны выводы. Уравнение (3) было сведено к квадратному уравнению (4), дискриминант которого не является полным квадратом, поэтому при решении уравнения (3) целесообразно использовать теоремы о расположении корней квадратного трехчлена и графическую модель. Заметим, что уравнение (4) можно решить, используя теорему Виета.

Решим более сложные уравнения.

Задача 3. Решите уравнение

Решение. ОДЗ: x1, x2.

Введем замену. Пусть 2 x = t, t > 0, тогда в результате преобразований уравнение примет вид t 2 + 2t – 13 – a = 0. (*)Найдем значения a , при которых хотя бы один корень уравнения (*) удовлетворяет условию t > 0.

Рассмотрим функцию f(t) = t 2 + 2t – 13 – a . Возможны случаи.

Случай 1. Для того чтобы оба корня уравнения (*) удовлетворяли неравенству t > 0, должны выполняться условия

где t 0 — абсцисса вершины f(t) = t 2 + 2t – 13 – a , D — дискриминант квадратного трехчлена f(t).

Система решений не имеет.

Случай 2. Для того чтобы только один корень уравнения (*) удовлетворял неравенству t > 0, должно быть выполнено условие f(0) a > – 13.

Случай 3. Найдем значения a, когда t 2, t 4.

откуда a 11, a – 5.

Ответ: если a > – 13, a 11, a 5, то если a – 13,

a = 11, a = 5, то корней нет.

Список используемой литературы.

1. Гузеев В.В. Системные основания образовательной технологии.

2. Гузеев В.В. Образовательная технология: от приема до философии.

М. «Директор школы»№4, 1996 г.

3. Гузеев В.В. Методы и организационные формы обучения.

М. «Народное образование», 2001 г.

4. Гузеев В.В. Теория и практика интегральной образовательной технологии.

М. «Народное образование», 2001 г.

5. Гузеев В.В. Одна из форм урока – семинара.

Математика в школе №2, 1987 г. с .9 – 11.

6. Селевко Г.К. Современные образовательные технологии.

М. «Народное образование», 1998 г.

7. Епишева О.Б. Крупич В.И. Учить школьников учиться математике.

М. «Просвещение», 1990 г.

8. Иванова Т.А. Как подготовить уроки – практикумы.

Математика в школе №6, 1990 г. с. 37 – 40.

9. Смирнова Н.М. Профильная модель обучения математике.

Математика в школе №1, 1997 г. с. 32 – 36.

10. Тарасенко Н.А. Некоторые способы организации практической работы.

Математика в школе №1, 1993 г. с. 27 – 28.

11. Утеева Р.А. Об одном из видов индивидуальной работы.

Математика в школе №2, 1994 г. с .63 – 64.

12. Хазанкин Р.Г. Развивать творческие способности школьников.

Математика в школе №2, 1989 г. с. 10.

13. Сканави М.И. Математика. Издатель В.М.Скакун, 1997 г.

14. Шабунин М.И. и др. Алгебра и начала анализа. Дидактические материалы для

10 – 11 классов. М. Мнемозина, 2000 г.

15. Кривоногов В.В. Нестандартные задания по математике.

М. «Первое сентября», 2002 г.

16. Черкасов О.Ю. Якушев А.Г. Математика. Справочник для старшеклассников и

поступающих в вузы. «А С Т -пресс школа», 2002 г.

17. Жевняк Р.М. Карпук А.А. Математика для поступающих в вузы.

Минск И РФ «Обозрение», 1996 г.

18. Письменный Д. Готовимся к экзамену по математике. М. Рольф, 1999 г.

19. Денищева Л.О. и др. Учимся решать уравнения и неравенства.

М. «Интеллект – Центр», 2003 г.

20. Денищева Л.О. и др. Учебно – тренировочные материалы для подготовки к Е Г Э.

М. «Интеллект – центр», 2003 г. и 2004 г.

21 Денищева Л.О. и др. Варианты КИМ. Центр тестирования МО РФ, 2002 г., 2003г.

22. Гольдберг В.В. Показательные уравнения. «Квант» №3, 1971 г.

23. Волович М. Как успешно обучать математике.

Математика, 1997 г. №3.

24 Окунев А.А. Спасибо за урок, дети! М. Просвещение, 1988 г.

25. Якиманская И.С. Личностно – ориентированное обучение в школе.

«Директор школы», 1996 г. сентябрь.

26. Лийметс Х. Й. Групповая работа на уроке. М. Знание, 1975 г.

По теме: методические разработки, презентации и конспекты

Методы решения показательных уравнений.

Урок повторения и закрепления знаний с применением ИКТ. На уроке осуществляется индивидуальный подход к учащимся, включающий каждого в осознанную учебную деятельность и групповая форма работы. В течен.

Методы решения показательных уравнений

Изучению методов решения показательных уравнений должно быть уделено значительное внимание. Показательные уравнения, изучаемые на 1 курсе в колледже, осваиваются обучающимися хуже, та.

Основные методы решения показательных уравнений

Основные методы решения показательных уравнений.

разработка урока «Методы решения показательных уравнений» в 11 классе

конспект открытого урока по математике в 11 классе.

Метод.разработка по теме: «Методы решения показательных уравнений»

В школьном курсе математики важное место отводится решению показательных уравнений и неравенств и системам, содержащие показательные уравнения. Впервые ученики встречаются с показательными уравнениями.

алгебраические методы решения показательных уравнений

метод уравнивания оснований, разложение на множители, введение новой переменной, свойство монотонности.

Методическая разработка открытого урока «Показательные уравнения. Методы решения показательных уравнений»

Методическая разработка открытого урока «Показательные уравнения. Методы решения показательных уравнений&quot.


источники:

http://school-science.ru/8/7/41416

http://nsportal.ru/shkola/algebra/library/2015/10/21/lektsiya-metody-resheniya-pokazatelnyh-uravneniy