Методика решения уравнений и неравенств

Способы решения уравнений и неравенств

Разделы: Математика

Анализируя опыт моей работы в старших классах, (а я выпустила уже 4 класса, сдающих ЕГЭ) я сделала вывод: необходимо знакомить учащихся как можно с большим количеством методов решения задач. Проиллюстрировать широкие возможности использования хорошо усвоенных школьных знаний, привить навыки употребления нестандартных методов рассуждения при решении задач, т. к. знание некоторых приемов позволит многие трудные задачи сделать вполне посильными. Выбраны способы, овладение которыми может оказаться полезными при решении заданий части С.

Например, при изучении темы “ Иррациональные уравнения” помимо основного способа возведения обеих частей уравнения в соответствующую степень рассмотреть следующие методы, выполняя поставленные цели и задачи:

  • показать нестандартные приемы решения иррациональных уравнений;
  • повысить уровень понимания и практической подготовки в решении уравнений и неравенств;
  • формировать и развивать качества мышления, характерные для математической деятельности.
  • научиться решать уравнения и неравенства более высокого, по сравнению с обязательным, уровнем сложности;
  • овладеть рядом технических и интеллектуальных математических умений на уровне свободного их использования.

I. Иррациональные уравнения.

1) Решив, такой пример сначала обычным способом определив, что проверка корней связана с определенными трудностями, необходимо предложить более простой способ решения, который не требует столь скрупулезной проверки.

Обратим внимание, что при таком способе нет необходимости делать проверку, так же как и проверять, попадет ли найденное значение корня в область допустимых значений уравнения. Вместо этого мы по ходу решения следили за тем, чтобы вновь введенные переменные удовлетворяли условиям u ≥ 0, z ≥ 0.

Проверкой убеждаемся, что x = 5 корень исходного уравнения.

4) Метод сведения иррациональных уравнений к системам рациональных эффективно применять при решении таких уравнений:

Проверкой убеждаемся, что оба числа являются корнями исходного уравнения.

5) Умножение обеих частей уравнения на функцию, имеющую смысл на ООУ. При решении необходимо следить за равносильностью преобразований на ООУ, либо в конце решения надо сделать проверку, так как могут появиться посторонние корни.

Проверкой убеждаемся, что число 2 является корнем исходного уравнения.

6) Рассмотрим еще один очень эффективный метод решения некоторых иррациональных уравнений, который редко применяется. Речь идет о заменах, но не алгебраических, а тригонометрических.

установим взаимнооднозначное соответствие между х и γ, ограничим промежуток изменения следующим неравенством: 0 γ π

Оба слагаемых в левой части неотрицательны, т. к. их сумма равна нулю, то каждое из них также равно нулю, значит:

Задания, в которых можно применять указанный метод:

II. Задачи связанные с исследованием свойств, входящих в них функций.

1) Использование ОДЗ

Проверка

2) Использование оценки множества значений функции.

(Использование ограниченности функций.)

Уравнение имеет решение обе части уравнения одновременно равны 4.

III. Использование монотонности функции.

а) Если f(x) – непрерывная и строго монотонная функция на промежутке L, то уравнение f(x) = С, где С – const, может имеет не более одного решения на промежутке L.

б) Если f(x) и g(x) – непрерывные на промежутке L функции f(x) строго возрастает, а g(x) строго убывает на этом промежутке, то уравнение f(x) = g(x) может иметь не более одного решения на промежутке L.

в) Если y = f(x) возрастает при а ≤ x ≤ b

y = g(x) убывает и f(а) > g(а), то корней уравнения для а ≤ x ≤ в нет.

1а) log2 (7 – x) = x – 1

О.О.У x х + 4 х + 5 х = 6 х

Делим на 5 х ≠ 0.

x = 2 и этот корень один.

IV. Использование графиков функций.

Иногда полезно рассмотреть эскиз графиков правой и левой части в одной системе координат.

Но эскиз лишь помогает найти решение, ответ еще надо обосновать.

Преобразования не обещают ничего хорошего, но в левой части сумма двух взаимообратных положительных величин, т.е. всегда ≥2.

Правая часть определена при x≥0 и x 2 + 1≥2x.

Ответ: х = 1,

Творческие проекты и работы учащихся

В процессе работы над индивидуальным проектом по математике «Нестандартные методы решения уравнений и неравенств» ученицей 10 класса школы была поставлена и реализована цель изучить новые методы решения уравнений и неравенств. Каждый из методов был описан и продемонстрирован отдельно.

Подробнее о проекте:

В готовом творческом и исследовательском проекте по математике «Нестандартные методы решения уравнений и неравенств» учащейся приведены характеристики таких методов решения уравнений, как метод разложения на множители, метод замены переменной, метод решения уравнений с помощью теоремы Виета и метод интервалов, а также продемонстрированы нестандартные методы решения алгебраических уравнений и неравенств, метод рационализации, учёт ОДЗ и метод мажорант.

Оглавление

Введение
1. Теория уравнений и неравенств.
1.1 Основные понятия теории уравнений и неравенств.
1.2 Методы решения уравнений и неравенств.
1.2.1 Метод разложения на множители.
1.2.2 Метод замены переменной.
1.2.3 Метод решения уравнений с помощью теоремы Виета.
1.2.4 Метод интервалов.
2. Нестандартные методы решения алгебраических уравнений и неравенств.
2.1 Метод рационализации.
2.2 Учёт ОДЗ.
2.3 Метод мажорант (оценки).
2.4 Использование свойств функций.
2.4.1 Использование ОДЗ.
2.4.2 Использование монотонности функции.
2.4.3 Использование графиков.
2.5 Некоторые искусственные способы решения алгебраических уравнений.
2.5.1 Угадывание корня уравнения.
3. Разработка интерактивного тренажера «Нестандартные методы решения уравнений и неравенств».
3.1 Анализ и характеристика сетевого сервиса, с помощью которого будет создаваться продукт.
3.2 Создание контента тренажёра.
3.3 Описание созданного продукта.
3.4 Апробация продукта.
Заключение
Список литературы

Введение

Объектом исследования являются уравнения и неравенства.

Предмет исследования: некоторые нестандартные методы решения уравнений и неравенств.

В начале работы над проектом была сформулирована гипотеза: благодаря новым методам решения уравнений и неравенств, удастся сократить количество шагов решения в алгоритме и снизить вероятность допущения ошибки. Исходя из этого вывода, была поставлена цель проекта: изучить новые методы решения уравнений и неравенств.

Продуктом проекта были выбраны дидактические материалы с алгоритмом решения уравнений и неравенств новыми методами и тренажёры для отработки заданий подобного типа. Для продуктивного и удобного использования тренажера необходимо установить критерии оценки продукта проекта:понятный и удобный интерфейс, наличие мобильной версии, возможность использования русского языка, возможность бесплатного использования ресурсов сетевого сервиса при создании и дальнейшем использовании тренажера, тиражируемость (возможность быстрого распространения (с помощью ссылок, QR-кодов и т.п.) и использования).

В процессе создания проекта были сформулированы некоторые задачи:

  1. Изучить всевозможные источники информации по данной теме, структурировать собранную информацию
  2. Провести опрос
  3. Разработать алгоритмы решения уравнений и неравенств определенным (нестандартным) способом
  4. Анализ имеющихся тренажёров, подобрать задания, решаемые нестандартным способом, решить их
  5. Создать тренажёр
  6. Апробировать продукт
  7. Провести опрос об эффективности продукта
  8. Собрать статистику
  9. Распространить продукт

Методы исследования, используемые при работе над проектом: анализ, обобщение, синтез, классификация, систематизация, сравнение, прототипирование.

Научная новизна: разработаны уникальные дидактические материалы

Теоретическая значимость: расширение представления о некоторых методах решения уравнений и неравенств.

Практическая значимость: продукт проекта может быть использован учениками при подготовке к ЕГЭ, а также учителями математики.

Социальная значимость: проект может помочь ученикам 9-11 классов при подготовке к экзамену.

Основные понятия теории уравнений и неравенств

Уравнение – равенство, содержащее в себе переменную, значение которой требуется найти.

Корень (решение) уравнения – это значение переменной, при котором уравнение обращается в верное числовое равенство.

Решить уравнение — найти его корни или доказать, что корней нет.

Неравенство – два числа или математических выражения, соединенных одним из знаков: , ≤, ≥.

Основные свойства уравнений:

  • Любой член уравнения можно перенести из одной части в другую, изменив его знак на противоположный.
  • Обе части уравнения можно умножить или разделить на одно и то же число, не равное нулю.

Решение неравенства – то значение неизвестного, при котором это неравенство обращается в верное числовое неравенство.

Решить неравенство – найти все его решения или установить, что их нет.

Методы решения уравнений и неравенств

Теперь, после перечисления основных понятий, следует вспомнить известные нам из школьной программы способы решения уравнений и неравенств.

Метод разложения на множители

Для разложения на множители используют формулы сокращённого умножения (ФСУ), вынесение общего множителя за скобку, способ группировки, деление многочлена на многочлен.

Суть данного метода в том, чтобы путем равносильных преобразований представить левую часть исходного уравнения, содержащую неизвестную величину в какой-либо степени, в виде произведения двух выражений, содержащих неизвестную величину в меньшей степени. При этом справа от знака равенства должен оказаться ноль.

Метод замены переменной

Цель данного метода в том, чтобы удачным образом заменить сложное выражение, содержащее неизвестную величину, новой переменной, в результате чего уравнение принимает более простой вид. Далее полученное уравнение решается относительно новой переменной, после чего происходит возврат к исходной переменной.

Метод решения уравнений с помощью теоремы Виета

Важно. Не ко всем квадратным уравнениям имеет смысл использовать эту теорему. Применять теорему Виета имеет смысл только к приведённым квадратным уравнениям.

Приведенное квадратное уравнение – это уравнение, в котором старший коэффициент «a = 1». В общем виде приведенное квадратное уравнение выглядит следующим образом: х2 + px + q = 0. разница с обычным общим видом квадратного уравнения ax2 + bx + c = 0 в том, что в приведённом уравнении x2 + px + q = 0 коэффициент а = 1.

Теорема Виета для приведённых квадратных уравнений «x2 + px + q = 0» гласит что справедливо следующее:

x1 · x2 = q, где x1 и x2 — корни этого уравнения.

Нестандартные методы решения алгебраических уравнений и неравенств. Метод рационализации

Приведем алгоритм решения уравнений и неравенств методом рационализации:

  • Нахождение ОДЗ уравнения/неравенства
  • Привести данное неравенство к стандартному виду: слева дробь (или произведение), справа – ноль.
  • Заменить выражения левой части на более простые, эквивалентные им по знаку.
  • Решить полученное неравенство, например, методом интервалов.

Учёт ОДЗ

Иногда знание ОДЗ позволяет доказать, что уравнение (или неравенство) не имеет решений, а иногда позволяет найти решение уравнения (или неравенства) непосредственно подстановкой чисел из ОДЗ.

  • Найти ОДЗ уравнения/неравенства.
  • Подставить значение ОДЗ в исходное уравнение/неравенство, чтобы проверить, является ли оно корнем.

Метод мажорант (оценки)

Метод мажорант также называют методом оценки левой и правой частей, входящих в уравнения и неравенства.

Мажорантой данной функции f(х) на множестве Р, называется такое число М, что либо f(х) ≤ М для всех х ϵ Р, либо f(х) ≥ М для всех х ϵ Р.

Мажоранты многих элементарных функции известны. Их нетрудно указать, зная область значений функции.

  • Определить монотонность и область определения функции (ООФ).
  • Методом подбора найти корень уравнения/неравенства.
  • Исходя из монотонности функции делаем вывод о количестве корней.

Использование графиков

При решении уравнений и неравенств иногда полезно рассмотреть эскиз графиков их правой и левой частей. Тогда этот эскиз графиков поможет выяснить, на какие множества надо разбить числовую ось, чтобы на каждом из них решение уравнения (или неравенства) было очевидно.

Обратим внимание, что эскиз графика лишь помогает найти решение, но писать, что из графика следует ответ, нельзя, ответ ещё надо обосновать.

  • Определить ОДЗ уравнения/неравенства.
  • Представить левую и правую части уравнения/неравенства как функции и построить их графики.
  • По графику определить решение уравнения/неравенства.
  • Доказать справедливость ответа.

Угадывание корня уравнения

Иногда внешний вид уравнения подсказывает, какое число является корнем уравнения.

  • Методом подбора определить корень уравнения.
  • Найти ОДЗ уравнения.
  • Привести многочлен к стандартному виду.
  • Определить остальные корни уравнения.

Разработка интерактивного тренажера «Нестандартные методы решения уравнений и неравенств»

В качестве продукта проекта был выбран интерактивный тренажер, который позволит практиковаться в решении уравнений и неравенств с помощью новых, нестандартных методов решения. Размещение тренажера на сетевой платформе позволит сделать данный продукт доступным для всех, кто хочет разобраться в этой теме.

Анализ и характеристика сетевого сервиса, с помощью которого будет создаваться продукт

При создании продукта были проанализированы следующие сетевые сервисы:

Платформы были проанализированы по критериям:

  • Понятный и удобный интерфейс сайта
  • Возможность составления разнотипных заданий, для создания интересного и разнообразного контента
  • Наличие мобильной версии
  • Возможность использования русского языка
  • Возможность бесплатного использования ресурсов сетевого сервиса при создании и дальнейшем использовании тренажера
  • Доступность (возможность быстрого распространения (с помощью ссылок, QR-кодов и т.п.) и использования)
  • В данной таблице приведены результаты оценки сетевых сервисов по выбранным критериям:

Методы решения уравнений, неравенств и их систем

Методы решения систем уравнений с двумя переменными

  1. Выражаем из какого-либо уравнения системы одну переменную через другую.
  2. Подставляем вместо этой переменной полученное выражение во второе уравнение.
  3. Решаем получившееся уравнение с одной переменной.
  4. Находим соответствующие значения второй переменной.

Просмотр содержимого документа
«Методы решения уравнений, неравенств и их систем»

Материал, связанный с уравнениями и неравенствами, составляет значительную часть школьного курса математики. Однако решению всех видов уравнений и неравенств уделяется недостаточно внимания. Актуальность рассмотрения данной темы обусловлена противоречием между тем, что задания, связанные с уравнениями и неравенствами и их системами регулярно встречаются в материалах ЕГЭ и ОГЭ и тем, что их решение, вызывают у учащихся значительные трудности.

Целью данной работы является: Рассмотреть методические основы профильного и углубленного обучения теме «Уравнения, неравенства и их системы».

Из данной цели вытекают задачи:

Выделить методы решения уравнений, неравенств и их систем.

Выполнить логико-дидактический анализ темы «Уравнения, неравенства и их системы» по школьным учебникам «Алгебра» Ю.Н. Макарычева за 7-9 класс и «Алгебра» А.Г. Мордковича 10-11 класс.

Разработать конспект урока по теме «Уравнения, неравенства и их системы» для 8 класса.

Данные практические разработки могут быть использованы в школе.

Данная работа состоит из трех параграфов:

§1. Методы решения уравнений, неравенств и их систем.

§2. Логико-дидактический анализ по теме «Уравнения, неравенства и их системы» по школьным учебникам «Алгебра» Ю.Н. Макарычева за 7-9 класс и «Алгебра» А.Г. Мордковича 10-11 класс.

§3. Конспект урока по теме «Уравнения, неравенства и их системы» для 8 класса.

§1. Методы решения уравнений, неравенств и их систем

Методы решения целых уравнений первой степени.

Раскрытие скобок (умножаем многочлен на многочлен). Пример: (2x+1)(3x-2)-6x(x+4)=67-2x

Домножение на НОК знаменателей дробей обеих частей уравнения. Пример:

Способы решения целых уравнений.

Разложение многочлена на множители. Пример: +3=0

С помощью теоремы о корне многочлена. Пример:

Введение новой переменной. Пример:

Метод неопределенных коэффициентов. Пример:

Графический способ. Пример:

С помощью алгоритма решения квадратных уравнений:

Алгоритмы и способы решения дробно-рациональных уравнений.

а) Умножаем обе части уравнения на общий знаменатель дробей, входящих в уравнение.

б) Решаем полученное целое уравнение.

в) Исключаем из его корней те, которые обращают в нуль общий знаменатель дробей.

Пример:

Используя нестандартные преобразования. Пример:

Введение новой переменной. Пример:

Введение вспомогательной переменной. Пример:

Графический способ решения. Пример:

Способы решения целых неравенств с одной переменной.

1.Используя свойства дискриминанта квадратного уравнения и свойств графика квадратичной функции. Пример:

2. Метод интервалов. Пример:

3. Используя свойства графика квадратной функции. Пример:

Способы решения дробно-рациональных неравенств с одной переменной.

Разложение на множители числителя и знаменателя. Пример:

Используя систему. Примеры:

Способы решения уравнений с переменной под знаком модуля.

Замена на систему уравнений. Пример:

Замена совокупность из двух систем. Пример:

Графический способ с дальнейшей заменой на совокупность из трех систем уравнений. Пример:

Способы решения неравенств с переменной под знаком модуля.

Замена на систему неравенств. Пример:

Используя свойство модуля. Пример:

Графический способ с дальнейшей заменой на совокупность из трех систем неравенств. Пример:

Способы решения уравнений с параметром.

Вынесение многочлена за скобку. Пример: ax-2x=a 2 +a-6

Используя дискриминант. Пример:

Способы решения дробно-рациональных уравнений с параметром.

Домножение на общий знаменатель. Пример:

Методы решения систем уравнений с двумя переменными

Выражаем из какого-либо уравнения системы одну переменную через другую.

Подставляем вместо этой переменной полученное выражение во второе уравнение.

Решаем получившееся уравнение с одной переменной.

Находим соответствующие значения второй переменной.

Умножаем левые и правые части уравнений.

Складываем почленно левые и правые части уравнений.

Решаем получившееся при сложении уравнение с одной переменной.

Находим соответствующие значения второй переменной.

б) Разложение на линейные множители.

Способы решения линейных неравенств с двумя переменными.

Графический. Пример: 4x-5y20

Способы решения неравенств с двумя переменными выше первой.

Способы решения системы неравенств с двумя переменными.

Способы решения неравенств с двумя переменными, содержащие знак модуля.

Методы решения уравнений высших степеней.

Используя делители свободного члена уравнения. Пример: x 3 +2x 2 -7x-12=0

Деления обеих частей уравнения на x 2 . Пример: 3x 4 -2x 3 -9x 2 -4x+12=0

Метод замены двух переменных. Пример: 2(x 2 +x+1)-7(x-1) 2 =13(x 3 -1)

Графический метод. Пример: x 5 +5x-42=0

Используя производную функции. Пример: x 4 -8x+63=0

Методы решения показательных уравнений.

Метод введения новой переменной. Пример: 4 x +2 x +1 -24=0

Методы решения показательных неравенств.

Метод уравнивания показателей. Пример:

Метод введения новой переменной. Пример:

Деления обеих частей уравнения на число с наибольшим показателем в степени. (однородные уравнения второй степени) Пример: 8 x +18 x 2∙27 x

Используя свойство дискриминанта. Пример: (x 2 +x+1) x ≤1

Методы решения логарифмических уравнений.

Введение новой переменной. Пример: lg 2 x+lg x+1=

Методы решения логарифмических неравенств.

Представление обеих частей неравенства в виде логарифмов с одинаковым основанием. Пример: (16+4xx 2 )≤-4

Введение новой переменной. Пример:

Методы решения уравнений и неравенств с модулем.

Раскрытие модуля по определению. Пример:

Графический способ. Пример:

Используя совокупность уравнений (неравенств). Пример:

Методы решения иррациональных уравнений.

Возведение обеих частей уравнения в одну и ту же степень. Пример:

Введение новой переменной. Пример:

Уединение корня и возведение обеих частей уравнения в степень. Пример:

Введение двух новых переменных. Пример:

Умножение обеих частей уравнения на выражение сопряженное данному. Пример:

Методы решения иррациональных неравенств.

Используя совокупность неравенств. Пример:

Введение новой переменной. Пример:

Методы решения систем уравнений.

Перемножением правых и левых частей уравнения. Пример:


источники:

http://tvorcheskie-proekty.ru/node/3678

http://multiurok.ru/files/mietody-rieshieniia-uravnienii-nieravienstv-i-ikh.html