Методом даламбера найти уравнение формы

Лекция 6. Метод Даламбера

В этой лекции решение задачи Коши для волнового уравнения

Шаг 1. Заменим переменные (x, t) новыми переменными (ξ,η), в которых волновое уравнение примет другой вид: Такая замена выполняется по формулам

После подстановки этих производных в волновое уравнение, получим:

что и требовалось доказать.

Шаг 2. Преобразованное уравнение легко решается двумя последовательными интегрированиями (сначала по переменной η , а затем по ξ):

где C1(η) – произвольная функция от η. Так как C(ξ) – произвольная функция, то и – также произвольная функция.

Окончательно, общее решение U(ξ,η) имеет вид

Шаг 3. Для нахождения общего решения первоначального уравнения подставим в (25) вместо ξ и η выражения (24):

Шаг 4. Определим функции C1 и C2, используя начальные условия из (23). После подстановки первого условия получим

Найдем производную функции U в (26) по переменной t и подставим второе условие:

В результате будем иметь систему уравнений

Если проинтегрировать второе уравнение системы (27) по x в пределах от xo до х , то получим следующую систему:

При сложении этих уравнений получим

Если из первого уравнения системы вычесть второе уравнение, то будем иметь

Подставим теперь полученные функции в общее решение (26):

Поменяем местами пределы интегрирования во втором интеграле, стоящем в скобках в (28). В результате получим решение исходной задачи Коши

Формула (29) называется формулой Даламбера.

Далее мы исследуем решение, определяемое по формуле Даламбера.

Пространственно-временная интерпретация формулы Даламбера

При исследовании формулы Даламбера будем исходить из физического смысла волнового уравнения. Рассмотрим уравнение свободных колебаний бесконечной струны

и начальные условия

Такая задача Коши с помощью замены независимой переменной сводится к задаче (23):

Решение преобразованной задачи имеет вид (см. формулу Даламбера (29):

Если теперь в эту формулу вместо τ подставить at, то получится решение исходной задачи

Прежде, чем перейти к физической интерпретации этой формулы, сделаем следующее замечание.

Замечание. Рассмотрим в отдельности функции C1(x-at) и C2(x-at), входящие в общее решение (26) (коэффициент а в них появился потому, что нас сейчас интересует более общее уравнение (30)). Начнем с функции C1(x-at) и построим графики этой функции при возрастающих значениях t: t=to, t=t1, t=t2 и т.д. (см. рис. 8).

Если по очереди проецировать эти картинки на экран (как в мультфильмах), то они «побегут» вправо. Процесс передвижения отклонения по струне называется волной. При этом коэффициент а является скоростью распространения волны. В самом деле, предположим, что параллельно оси х движется наблюдатель со скоростью а. Пусть в некоторый момент to он находился в точке xo. Тогда за промежуток наблюдатель сместится вправо на величину и окажется в точке Если в точке xo наблюдатель видел отклонение струны на величину то в момент t величина отклонения – будет точно такой же! То есть наблюдатель будет видеть форму струны не изменяющейся.

Вторая функция C2(x-at) тоже представляет собой волну, но только она будет распространяться со скоростью а влево. Часто функции C1(x-at) и C2(x-at) называют, соответственно, прямой и обратной волной. Таким образом, общее решение U(x,t) (формула (26)) волнового уравнения является суперпозицией прямой и обратной волны.

Теперь дадим интерпретацию формулы Даламбера для двух частных случаев.

СЛУЧАЙ 1. Предположим, что начальное отклонение отлично от нуля, а начальная скорость равна нулю. Это означает, что начальные условия имеют вид

При таких начальных условиях получается решение задачи Коши, которое называется волной отклонения. Уравнение волны отклонения определяется формулой Даламбера

то есть решение U в некоторой точке xo в момент времени to зависит от значений начальной функции φ в двух точках на оси х: в точке (xo — ato) и в точке (xo + ato) (см. рис. 9).

Значение U равно среднему арифметическому значений начальной функции φ в точках (xo — ato) и (xo + ato). На рис. 9 изображена плоскость xOt, которая называется фазовой плоскостью. На оси х указаны точки (xo — ato, 0) и (xo + ato, 0), в которых начальные отклонения струны определяют величину отклонения струны в точке xo в момент времени to. Эти точки являются точками пересечения прямых x — at = xo — ato и x + at = xo + ato с осью х. Указанные прямые называются характеристиками волнового уравнения. Треугольник с вершиной в точке o, to) и основанием, которое получается при пересечении характеристик с осью х (см. рис. 9), называется характеристическим треугольником.

Используя такую интерпретацию формулы Даламбера, изобразим фазовую картину решения следующей задачи:

Замечание. На самом деле начальные отклонения струны не могут быть разрывными в точках х = -1 и х = 1, ведь струна не разрывается. Однако мы не слишком сильно погрешим против истинной картины распространения колебаний, если будем считать их кусочно постоянными. Дело в том, что, во-первых, рассматриваются очень малые колебания струны, и, во-вторых, малые изменения начальных значений незначительно влияют на решение задачи.

На рисунке 10 изображена фазовая плоскость x0t. Решение U(x,t) задачи отлично от нуля только в заштрихованных областях, причем начальное отклонение распространяется с одинаковой скоростью в двух противоположных направлениях – возникает прямая и обратная волны. Границы этих областей – это характеристики волнового уравнения: x — at = -1, x — at = 1, x + at = -1, x + at = 1.

Если рассмотреть процесс колебания некоторой фиксированной точки струны x = xo, то нетрудно заметить, что она колеблется только в конечный промежуток времени: от момента до момента , то есть В остальное время точка xo находится в покое. Говорят, что в момент t1 через точку x = xo проходит передний фронт волны, а в момент t2 — задний фронт волны. Вообще, фронтом волны называется граница между возмущенной (колеблющейся) и невозмущенной областями среды (точками струны). Для прямой волны уравнение переднего фронта x — at = 1, а заднего фронта x — at = -1. Для обратной волны, соответственно, x + at = -1 — уравнение переднего фронта, а x + at = 1 — заднего фронта.

СЛУЧАЙ 2. Пусть начальное отклонение равно нулю, а начальная скорость отлична от нуля. Это означает, что начальные условия имеют вид

В этом случае решение задачи Коши называют волной импульса. Оно имеет вид (см. формулу Даламбера)

то есть решение U в некоторой точке xo в момент времени to зависит от начальных скоростей ψ во всех точках отрезка [xo — ato , xo + ato] (см. рис 11). Значение U равно (интегральному) среднему значению начальной скорости на отрезке [xo — ato , xo + ato], умноженному на промежуток времени t.

На рис. 11 изображена фазовая плоскость x0t. Точки (xo — ato, 0) и (xo + ato, 0) являются точками пересечения характеристик x — at = xo — ato и x + at = xo + ato с осью х. В качестве примера приведем фазовую картину решения следующей задачи:

Рис. 12 описывает процесс колебания струны, которой сообщается начальная единичная скорость на отрезке -1

При вычислении интеграла всегда удобно представить себе характеристический треугольник с вершиной в точке, лежащей в соответствующей области (см. рис 12). Тогда значение U(x,t) будет определяться значениями начальной функции ψ(x) в основании характеристического треугольника.

2. В области 2 функция

3. В области 3 функция

4. В области 4 функция

5. В области 6 функция

Это решение в различные моменты времени можно изобразить на плоскости x0U (см. рис 13). Здесь для простоты положим a=1.

Графики функции U(x,t), изображенные на рис. 13, задают форму струны в различные моменты времени.

Методом даламбера найти уравнение формы







Решебник Арутюнова Ю. С.
11. Уравнения математической физики. Функции комплексного переменного. Операционное исчисление

&nbsp &nbsp &nbsp &nbsp Решения задач из этого раздела размещены в формате pdf. Для их прочтения вам понадобится программа Adobe Reader, которую Вы можете скачать здесь.

&nbsp &nbsp &nbsp &nbsp В раздел «Уравнения математической физики. Функции комплексного переменного. Операционное исчисление» входят следующие задачи.

    &nbsp &nbsp &nbsp 471-480. &nbsp Методом Даламбера найти уравнение u=u(x;t) формы однородной бесконечной струны, определяемой волновым уравнением &nbsp &nbsp &nbsp &nbsp, если в начальный момент &nbsp &nbsp &nbsp &nbsp форма струны и скорость точки струны с абсциссой х определяется соответственно заданными функциями

&nbsp &nbsp &nbsp 471. &nbsp &nbsp 472. &nbsp &nbsp 473.&nbsp &nbsp 474.&nbsp &nbsp 475. &nbsp &nbsp 476. &nbsp &nbsp 477. &nbsp &nbsp 478. &nbsp &nbsp 479. &nbsp &nbsp 480.

&nbsp &nbsp &nbsp 481-490. &nbsp Представить заданную функцию W=f(z), где z=x+iy, в виде W=u(x,y)+iv(x,y); проверить, является ли она аналитической. Если да, то найти значение её производной в заданной точке &nbsp &nbsp &nbsp &nbsp .

&nbsp &nbsp &nbsp 481. &nbsp &nbsp 482. &nbsp &nbsp 483.&nbsp &nbsp 484.&nbsp &nbsp 485. &nbsp &nbsp 486. &nbsp &nbsp 487. &nbsp &nbsp 488. &nbsp &nbsp 489. &nbsp &nbsp 490.

&nbsp &nbsp &nbsp 491-500. &nbsp Разложить функцию f(z) в ряд Лорана в окрестности точки &nbsp &nbsp &nbsp &nbsp и определить область сходимости ряда.

&nbsp &nbsp &nbsp 491. &nbsp &nbsp 492. &nbsp &nbsp 493.&nbsp &nbsp 494.&nbsp &nbsp 495. &nbsp &nbsp 496. &nbsp &nbsp 497. &nbsp &nbsp 498. &nbsp &nbsp 499. &nbsp &nbsp 500.

&nbsp &nbsp &nbsp 501-510. &nbsp Методом операционного исчисления найти частное решение дифференциального уравнения, удовлетворяющее начальным условиям.

&nbsp &nbsp &nbsp 501. &nbsp &nbsp 502. &nbsp &nbsp 503.&nbsp &nbsp 504.&nbsp &nbsp 505. &nbsp &nbsp 506. &nbsp &nbsp 507. &nbsp &nbsp 508. &nbsp &nbsp 459. &nbsp &nbsp 510.

&nbsp &nbsp &nbsp 511-520. &nbsp Методом операционного исчисления найти частное решение системы дифференциальных уравнений, удовлетворяющее начальным условиям.

&nbsp &nbsp &nbsp 511. &nbsp &nbsp 512. &nbsp &nbsp 513.&nbsp &nbsp 514.&nbsp &nbsp 515. &nbsp &nbsp 516. &nbsp &nbsp 517. &nbsp &nbsp 518. &nbsp &nbsp 519. &nbsp &nbsp 520.


источники:

http://www.kvadromir.com/arutunov_sbornik_11.html