Методом элементарных преобразований решить матричное уравнение

Обратная матрица с помощью элементарных преобразований

Для того что бы найти обратную матрицу можно использовать два метода: с помощью алгебраических дополнений (метод присоединённой (союзной) матрицы) или элементарных преобразований (метод Жордано-Гаусса). Рассмотрим как найти обратную матрицу с помощью элементарных преобразований.

Обратной матрицей называется матрицы A -1 при умножении на исходную матрицу A получается единичная матрица E.

Алгоритм нахождения обратной матрицы с помощью элементарных преобразований:

  1. Найти определитель (детерминант) матрицы A. Если определитель ≠ 0, то обратная матрица существует. Если определитель = 0, то обратная матрица не существует.
  2. Дописываем справа единичную матрицу
  3. Делаем прямой ход. Обнуляем все элементы (с помощью элементарных преобразований) левой матрицы стоящей под ее главной диагонали.
  4. Делаем обратный ход. Обнуляем все элементы (с помощью элементарных преобразований) левой матрицы стоящей над ее главной диагонали.
  5. Элементы главной диагонали левой матрицы, преобразуем в единицы.

Пример

Рассмотрим данный метод на примере. Дана матрицы 3х3:

Допишем к нашей матрице слева единичную матрицу.

Чтобы сделать нули под элементом a11, вычтем 1-ую строку из всех строк, что расположены ниже её, при чём, для того, чтобы работать с меньшими числами, поделим каждую из этих строк на a11.

Чтобы сделать нули над элементом a33, вычтем 3-ую строку с всех строк, что расположены выше её, при чём, для того, чтобы работать с меньшими числами, поделим каждую из этих строк на a33.

Чтобы сделать нули над элементом a22, вычтем 2-ую строку с всех строк, что расположены выше её, при чём, для того, чтобы работать с меньшими числами, поделим каждую из этих строк на a22.

Поделим каждую строку на элемент, который стоит на главной диагонали.

Метод элементарных преобразований (методы Гаусса и Гаусса-Жордана для нахождения обратных матриц).

В первой части был рассмотрен способ нахождения обратной матрицы с помощью алгебраических дополнений. Здесь же мы опишем иной метод нахождения обратных матриц: с использованием элементарных преобразований.

Пусть нам задана квадратная матрица $A_>$. Допишем справа к матрице $A$ единичную матрицу $E$ n-го порядка. После такого дописывания мы получим матрицу $\left(A|E\right)$. Со строками этой матрицы можно выполнять такие преобразования:

  1. Смена мест двух строк.
  2. Умножение всех элементов строки на некоторое число, не равное нулю.
  3. Прибавление к элементам одной строки соответствующих элементов другой строки, умноженных на любой множитель.

Конечная цель указанных выше преобразований: привести матрицу $\left(A|E\right)$ к такому виду: $\left(E|A^<-1>\right)$. Т.е. нужно сделать так, чтобы матрица до черты стала единичной, тогда после черты будет записана обратная матрица $A^<-1>$.

Добиться этой цели можно, выполняя над исходной матрицей $\left(A|E\right)$ преобразования метода Гаусса или Гаусса-Жордана. Перед тем, как перейти к описанию этих методов, оговорим, что изначально матрица $A_>$ не должна иметь нулевых строк или столбцов. Если в матрице $A$ есть хоть один нулевой столбец или нулевая строка, то обратная матрица $A^<-1>$ не существует.

Строки матрицы станем обозначать буквами $r$ (от слова «row»): $r_1$ – первая строка, $r_2$ – вторая строка и так далее.

Метод Гаусса

Этот метод делят на два этапа, которые называют прямым ходом и обратным.

Прямой ход метода Гаусса

В процессе выполнения прямого хода мы последовательно используем строки матрицы. На первом шаге работаем с первой строкой, на втором шаге – со второй и так далее. Если в ходе решения в матрице до черты возникла нулевая строка, то прекращаем преобразования, так как обратная матрица $A^<-1>$ не существует.

На первом шаге прямого хода обратимся к первой строке $r_1$. Если первый элемент $a_1$ первой строки не равен нулю, то выполняем обнуление всех ненулевых элементов первого столбца, лежащих под первой строкой. Если же $a_1=0$, то меняем местами первую строку с одной из тех нижележащих строк, у которых первый элемент отличен от нуля, а затем уже производим обнуление.

На втором шаге прямого хода обратимся к второй строке $r_2$. Если второй элемент $a_2$ второй строки не равен нулю, то выполняем обнуление всех ненулевых элементов второго столбца, лежащих под второй строкой. Если же $a_2=0$, то меняем местами вторую строку с одной из тех нижележащих строк, у которых второй элемент отличен от нуля, а затем уже производим обнуление. В случае, когда второй элемент равен нулю как у второй строки, так и у всех нижележащих строк, прекращаем решение, так как обратная матрица $A^<-1>$ не существует.

Полагаю, логика прямого хода ясна. На некоем k-м шаге мы работаем с строкой $r_k$. Если k-й элемент $a_k$ этой строки не равен нулю, то выполняем обнуление всех ненулевых элементов k-го столбца, лежащих под строкой $r_k$. Если же $a_k=0$, то меняем местами строку $r_k$ с одной из тех нижележащих строк, у которых k-й элемент отличен от нуля, а затем уже производим обнуление. В случае, когда k-й элемент равен нулю как у строки $r_k$, так и у всех нижележащих строк, прекращаем решение, так как обратная матрица $A^<-1>$ не существует.

Когда мы придём к последней строке, матрица до черты станет верхней треугольной, т.е. все элементы под главной диагональю будут равны нулю. Это будет означать конец прямого хода метода Гаусса.

Обратный ход метода Гаусса

На этом этапе мы поднимаемся по матрице «снизу вверх». Сначала используем последнюю строку $r_n$, затем предпоследнюю $r_$ и так далее, пока не дойдём до первой строки. С каждой строкой выполняем однотипные операции.

Пусть, например, речь идёт о некоей k-й строке. Матрица, расположенная до черты, содержит в строке $r_k$ диагональный элемент $a_$. Если $a_=1$, то это нас вполне устраивает, а если $a_\neq<1>$, то просто умножаем строку $r_k$ на коэффициент $\frac<1>>$, чтобы диагональный элемент стал равен 1. Затем с помощью строки $r_k$ обнуляем элементы k-го столбца, расположенные над строкой $r_k$.

Как только мы дойдём до первой строки, матрица до черты станет единичной, и алгоритм завершится.

Метод Гаусса-Жордана

Последовательно используем строки матрицы. На первом шаге работаем с первой строкой, на втором шаге – со второй и так далее. Если в ходе решения в матрице до черты возникла нулевая строка, то прекращаем преобразования, так как обратная матрица $A^<-1>$ не существует.

На первом шаге прямого хода обратимся к первой строке $r_1$. Первый элемент этой строки обозначим как $a_1$. Если $a_1=0$, то меняем местами первую строку с одной из тех нижележащих строк, у которых первый элемент отличен от нуля. Затем, если $a_1\neq<1>$, умножаем строку $r_1$ на $\frac<1>$ (если $a_1=1$, то никакого домножения делать не надо). Далее с помощью строки $r_1$ производим обнуление всех остальных ненулевых элементов первого столбца, после чего переходим к следующему шагу.

На втором шаге прямого хода работаем с второй строкой $r_2$. Второй элемент этой строки обозначим как $a_2$. Если $a_2=0$, то меняем местами вторую строку с одной из тех нижележащих строк, у которых второй элемент отличен от нуля. Если таких строк нет, т.е. у всех нижележащих строк второй элемент равен нулю, то прекращаем решение, так как обратная матрица $A^<-1>$ не существует. Затем, если $a_2\neq<1>$, умножаем строку $r_2$ на $\frac<1>$ (если $a_2=1$, то никакого домножения делать не надо). Далее с помощью строки $r_2$ производим обнуление всех остальных ненулевых элементов второго столбца, после чего переходим к следующему шагу.

Полагаю, логика данного метода ясна. На k-м шаге работаем с k-й строкой $r_k$, k-й элемент которой обозначим как $a_k$. Если $a_k=0$, то меняем местами строку $r_k$ с одной из тех нижележащих строк, у которых k-й элемент отличен от нуля. Если таких строк нет, т.е. у всех нижележащих строк k-й элемент равен нулю, то прекращаем решение, так как обратная матрица $A^<-1>$ не существует. Затем, если $a_k\neq<1>$, умножаем строку $r_k$ на $\frac<1>$ (если $a_k=1$, то никакого домножения делать не надо). Далее с помощью строки $r_k$ производим обнуление всех остальных ненулевых элементов k-го столбца, после чего переходим к следующему шагу.

Когда мы обработаем последнюю строку, матрица до черты станет единичной, и алгоритм завершится.

Перед тем, как переходить к примерам, я введу один дополнительный термин: ведущий элемент. Ведущим элементом ненулевой строки называется её первый (считая слева направо) отличный от нуля элемент. Например, в строке $(0;0;5;-9;0)$ ведущим будет третий элемент (он равен 5).

Найти матрицу $A^<-1>$, если $A=\left(\begin -5 & 23 & -24\\ -1 & 4 & -5\\ 9 & -40 & 43 \end \right)$.

Заданная нам матрица не имеет нулевых строк или столбцов, поэтому можем приступать к нахождению $A^<-1>$. Поставленную задачу решим двумя способами: как преобразованиями метода Гаусса, так и метода Гаусса-Жордана. Для начала запишем матрицу $(A|E)$, которая в нашем случае будет иметь такой вид:

$$ \left(\begin -5 & 23 & -24 & 1 & 0 & 0\\ -1 & 4 & -5 & 0 & 1 & 0\\ 9 & -40 & 43 & 0 & 0 & 1 \end\right) $$

Наша цель: привести матрицу $(A|E)$ к виду $\left(E|A^<-1>\right)$.

Метод Гаусса

Прямой ход метода Гаусса

На первом шаге прямого хода мы работаем с первой строкой. Первый элемент этой строки (число -5) не равен нулю, поэтому можем приступать к обнулению ненулевых элементов первого столбца, расположенных под первой строкой. Однако для тех преобразований, которые мы станем делать для обнуления элементов, удобно, когда ведущий элемент используемой строки равен 1 или -1. Почему это так, станет ясно из дальнейших действий. Чтобы ведущий элемент текущей строки стал равен -1, поменяем местами первую строку с одной из нижележащих строк – с второй строкой:

$$ \left(\begin -5 & 23 & -24 & 1 & 0 & 0\\ -1 & 4 & -5 & 0 & 1 & 0\\ 9 & -40 & 43 & 0 & 0 & 1 \end\right) \overset> <\rightarrow>\left(\begin \boldred <-1>& 4 & -5 & 0 & 1 & 0\\ \normblue <-5>& 23 & -24 & 1 & 0 & 0\\ \normblue <9>& -40 & 43 & 0 & 0 & 1 \end\right) $$

Теперь ведущий элемент первой строки стал равен -1 (я выделил этот элемент красным цветом). Приступим к обнулению ненулевых элементов первого столбца, лежащих под первой строкой (они выделены синим цветом). Для этого над строками матрицы нужно выполнить такие действия:

Запись $r_2-5r_1$ означает, что от элементов второй строки вычли соответствующие элементы первой строки, умноженные на пять. Результат записывают на место второй строки в новую матрицу. Если с устным выполнением такой операции возникают сложности, то это действие можно выполнить отдельно:

Действие $r_3+9r_1$ выполняется аналогично. Первую строку мы не трогали, поэтому в новую матрицу она перейдёт без изменений:

$$ \left(\begin -1 & 4 & -5 & 0 & 1 & 0\\ -5 & 23 & -24 & 1 & 0 & 0\\ 9 & -40 & 43 & 0 & 0 & 1 \end\right) \begin \phantom<0>\\ r_2-5r_1 \\ r_3+9r_1 \end \rightarrow \left(\begin -1 & 4 & -5 & 0 & 1 & 0\\ 0 & 3 & 1 & 1 & -5 & 0\\ 0 & -4 & -2 & 0 & 9 & 1 \end\right) $$

На этом первый шаг закончен. Нулевых строк в матрице до черты не возникло, поэтому продолжаем решение. Кстати, теперь, я полагаю, ясно, зачем надо было менять местами строки. Если бы не смена мест строк, нам пришлось бы выполнять действия $r_2-\frac<1><5>\cdot$ и $r_3+\frac<9><5>\cdot$, что привело бы к появлению дробей. А легче, разумеется, работать с целыми числами, чем с дробями.

На втором шаге прямого хода мы работаем с второй строкой. Второй элемент этой строки (число 3) не равен нулю, поэтому можем приступать к обнулению ненулевых элементов второго столбца, расположенных под второй строкой:

$$ \left(\begin -1 & 4 & -5 & 0 & 1 & 0\\ 0 & 3 & 1 & 1 & -5 & 0\\ 0 & -4 & -2 & 0 & 9 & 1 \end\right) \begin \phantom<0>\\ \phantom <0>\\ r_3+4/3\cdot \end \rightarrow \left(\begin -1 & 4 & -5 & 0 & 1 & 0\\ 0 & 3 & 1 & 1 & -5 & 0\\ 0 & 0 & -2/3 & 4/3 & 7/3 & 1 \end\right) $$

Матрица до черты стала верхней треугольной, поэтому прямой ход метода Гаусса окончен.

Пару слов насчёт действий со строками, которые мы выполняли на втором шаге. На первом шаге мы меняли местами строки, чтобы ведущий элемент первой строки стал равен -1. Здесь такая смена строк ничего не даст, так как доступна к обмену лишь третья строка, а у неё ведущий элемент тоже не равен ни 1, ни -1. В этом случае можно выполнить дополнительное преобразование со второй строкой: $r_2+r_3$:

$$ \left(\begin -1 & 4 & -5 & 0 & 1 & 0\\ 0 & 3 & 1 & 1 & -5 & 0\\ 0 & -4 & -2 & 0 & 9 & 1 \end\right) \begin \phantom<0>\\ r_2+r_3 \\ \phantom <0>\end \rightarrow \left(\begin -1 & 4 & -5 & 0 & 1 & 0\\ 0 & -1 & -1 & 1 & 4 & 1\\ 0 & -4 & -2 & 0 & 9 & 1 \end\right) $$

После этого текущий шаг прямого хода будет продолжен без дробей. Можно было сделать и такое действие: $3r_3+4r_2$, тогда и необходимый элемент третьего столбца был бы обнулён, и дробей бы не появилось. Выполнять такие действия или нет – надо смотреть по ситуации. Если работы с дробями предвидится немного, то особого смысла в попытках их избежать нет. Если же нас ожидают ещё несколько шагов прямого хода, то, возможно, лучше упростить себе расчёты и выполнить вспомогательное действие, чтобы потом не работать с дробями. К слову, если есть необходимость избавиться от дробей в некоей строке, то можно просто домножить данную строку на соответствующий коэффициент. Например, строку $\left(\frac<1><3>;\;-\frac<4><5>;\;2;0\right)$ можно домножить на число 15, тогда дроби исчезнут, и строка станет такой: $\left(5;\;-12;\;30;0\right)$.

Обратный ход метода Гаусса

На первом шаге обратного хода мы работаем с последней, т.е. третьей строкой матрицы. Посмотрим на диагональный элемент в третьей строке: он равен $-\frac<2><3>$. Сделаем этот элемент единицей, домножив третью строку на $-\frac<3><2>$, а затем с помощью третьей строки обнулим ненулевые элементы третьего столбца, расположенные над третьей строкой:

$$ \left(\begin -1 & 4 & -5 & 0 & 1 & 0\\ 0 & 3 & 1 & 1 & -5 & 0\\ 0 & 0 & -2/3 & 4/3 & 7/3 & 1 \end\right) \begin \phantom<0>\\ \phantom<0>\\ -3/2\cdot \end \rightarrow\\ \left(\begin -1 & 4 & -5 & 0 & 1 & 0\\ 0 & 3 & 1 & 1 & -5 & 0\\ 0 & 0 & 1 & -2 & -7/2 & -3/2 \end\right) \begin r_1+5r_3 \phantom<0>\\ r_2-r_3\\ \phantom <0>\end \rightarrow \left(\begin -1 & 4 & 0 & -10 & -33/2 & -15/2\\ 0 & 3 & 0 & 3 & -3/2 & 3/2\\ 0 & 0 & 1 & -2 & -7/2 & -3/2 \end\right) $$

На втором шаге обратного хода мы работаем с предпоследней, т.е. второй строкой матрицы. Посмотрим на диагональный элемент во второй строке: он равен 3. Сделаем этот элемент единицей, домножив вторую строку на $\frac<1><3>$, а затем с помощью второй строки обнулим ненулевой элемент второго столбца, расположенный над второй строкой:

$$ \left(\begin -1 & 4 & 0 & -10 & -33/2 & -15/2\\ 0 & 3 & 0 & 3 & -3/2 & 3/2\\ 0 & 0 & 1 & -2 & -7/2 & -3/2 \end\right) \begin \phantom<0>\\ 1/3\cdot \\ \phantom <0>\end \rightarrow\\ \left(\begin -1 & 4 & 0 & -10 & -33/2 & -15/2\\ 0 & 1 & 0 & 1 & -1/2 & 1/2\\ 0 & 0 & 1 & -2 & -7/2 & -3/2 \end\right) \begin r_1-4r_2\\ \phantom <0>\\ \phantom <0>\end \rightarrow \left(\begin -1 & 0 & 0 & -14 & -29/2 & -19/2\\ 0 & 1 & 0 & 1 & -1/2 & 1/2\\ 0 & 0 & 1 & -2 & -7/2 & -3/2 \end\right) $$

Работаем с первой строкой. Сделаем диагональный элемент в первой строке (число -1) равным единице, домножив первую строку на -1:

$$ \left(\begin -1 & 0 & 0 & -14 & -29/2 & -19/2\\ 0 & 1 & 0 & 1 & -1/2 & 1/2\\ 0 & 0 & 1 & -2 & -7/2 & -3/2 \end\right) \begin -1\cdot\\ \phantom <0>\\ \phantom <0>\end \rightarrow \left(\begin 1 & 0 & 0 & 14 & 29/2 & 19/2\\ 0 & 1 & 0 & 1 & -1/2 & 1/2\\ 0 & 0 & 1 & -2 & -7/2 & -3/2 \end\right) $$

Матрица до черты стала единичной, преобразования завершены. Обратная матрица будет такой:

$$ A^ <-1>=\left(\begin 14 & 29/2 & 19/2\\ 1 & -1/2 & 1/2\\ -2 & -7/2 & -3/2 \end\right) $$

Если пропустить все пояснения, то решение будет таким:

$$ \left(\begin -5 & 23 & -24 & 1 & 0 & 0\\ -1 & 4 & -5 & 0 & 1 & 0\\ 9 & -40 & 43 & 0 & 0 & 1 \end\right) \overset> <\rightarrow>$$ $$ \rightarrow\left(\begin -1 & 4 & -5 & 0 & 1 & 0\\ -5 & 23 & -24 & 1 & 0 & 0\\ 9 & -40 & 43 & 0 & 0 & 1 \end\right) \begin \phantom<0>\\ r_2-5r_1 \\ r_3+9r_1 \end \rightarrow \left(\begin -1 & 4 & -5 & 0 & 1 & 0\\ 0 & 3 & 1 & 1 & -5 & 0\\ 0 & -4 & -2 & 0 & 9 & 1 \end\right) \begin \phantom<0>\\ \phantom <0>\\ r_3+4/3\cdot \end \rightarrow $$ $$ \rightarrow\left(\begin -1 & 4 & -5 & 0 & 1 & 0\\ 0 & 3 & 1 & 1 & -5 & 0\\ 0 & 0 & -2/3 & 4/3 & 7/3 & 1 \end\right) \begin \phantom<0>\\ \phantom<0>\\ -3/2\cdot \end \rightarrow \left(\begin -1 & 4 & -5 & 0 & 1 & 0\\ 0 & 3 & 1 & 1 & -5 & 0\\ 0 & 0 & 1 & -2 & -7/2 & -3/2 \end\right) \begin r_1+5r_3 \phantom<0>\\ r_2-r_3\\ \phantom <0>\end \rightarrow $$ $$ \rightarrow\left(\begin -1 & 4 & 0 & -10 & -33/2 & -15/2\\ 0 & 3 & 0 & 3 & -3/2 & 3/2\\ 0 & 0 & 1 & -2 & -7/2 & -3/2 \end\right) \begin \phantom<0>\\ 1/3\cdot \\ \phantom <0>\end \rightarrow \left(\begin -1 & 4 & 0 & -10 & -33/2 & -15/2\\ 0 & 1 & 0 & 1 & -1/2 & 1/2\\ 0 & 0 & 1 & -2 & -7/2 & -3/2 \end\right) \begin r_1-4r_2\\ \phantom <0>\\ \phantom <0>\end \rightarrow $$ $$ \rightarrow\left(\begin -1 & 0 & 0 & -14 & -29/2 & -19/2\\ 0 & 1 & 0 & 1 & -1/2 & 1/2\\ 0 & 0 & 1 & -2 & -7/2 & -3/2 \end\right) \begin -1\cdot\\ \phantom <0>\\ \phantom <0>\end \rightarrow \left(\begin 1 & 0 & 0 & 14 & 29/2 & 19/2\\ 0 & 1 & 0 & 1 & -1/2 & 1/2\\ 0 & 0 & 1 & -2 & -7/2 & -3/2 \end\right) $$

Теперь решим этот же пример методом Гаусса-Жордана.

Метод Гаусса-Жордана

На первом шаге мы работаем с первой строкой. Первый элемент этой строки (число -5) не равен нулю, поэтому можем следовать стандартному алгоритму: домножить первую строку на $-\frac<1><5>$, чтобы первый элемент стал равен единице, а затем обнулить все иные ненулевые элементы первого столбца. Однако, как и при решении методом Гаусса, удобно, когда ведущий элемент используемой строки равен 1 или -1. Поэтому как и на первом шаге метода Гаусса, поменяем местами первую строку с второй строкой:

$$ \left(\begin -5 & 23 & -24 & 1 & 0 & 0\\ -1 & 4 & -5 & 0 & 1 & 0\\ 9 & -40 & 43 & 0 & 0 & 1 \end\right) \overset> <\rightarrow>\left(\begin -1 & 4 & -5 & 0 & 1 & 0\\ \normblue <-5>& 23 & -24 & 1 & 0 & 0\\ \normblue <9>& -40 & 43 & 0 & 0 & 1 \end\right) $$

Теперь первый элемент первой строки стал равен -1. Чтобы этот элемент стал равен 1, домножим первую строку на -1, а потом обнулим все остальные ненулевые элементы первого столбца (они выделены в матрице выше синим цветом):

$$ \left(\begin -1 & 4 & -5 & 0 & 1 & 0\\ -5 & 23 & -24 & 1 & 0 & 0\\ 9 & -40 & 43 & 0 & 0 & 1 \end\right) \begin -1\cdot\\ \phantom <0>\\ \phantom <0>\end \rightarrow\\ \rightarrow\left(\begin 1 & -4 & 5 & 0 & -1 & 0\\ -5 & 23 & -24 & 1 & 0 & 0\\ 9 & -40 & 43 & 0 & 0 & 1 \end\right) \begin \phantom<0>\\ r_2+5r_1 \\ r_3-9r_1 \end \rightarrow \left(\begin 1 & -4 & 5 & 0 & -1 & 0\\ 0 & 3 & 1 & 1 & -5 & 0\\ 0 & -4 & -2 & 0 & 9 & 1 \end\right) $$

На этом первый шаг закончен. Нулевых строк в матрице до черты не возникло, поэтому продолжаем решение.

На втором шаге мы работаем с второй строкой. Второй элемент этой строки (число 3) не равен нулю, поэтому домножаем вторую строку на $\frac<1><3>$, чтобы второй элемент стал равен единице, а затем обнуляем все иные ненулевые элементы второго столбца.

$$ \left(\begin 1 & -4 & 5 & 0 & -1 & 0\\ 0 & 3 & 1 & 1 & -5 & 0\\ 0 & -4 & -2 & 0 & 9 & 1 \end\right) \begin \phantom<0>\\1/3\cdot \\\phantom<0>\end \rightarrow\\ \rightarrow\left(\begin 1 & -4 & 5 & 0 & -1 & 0\\ 0 & 1 & 1/3 & 1/3 & -5/3 & 0\\ 0 & -4 & -2 & 0 & 9 & 1 \end\right) \begin r_1+4r_2\\ \phantom <0>\\ r_3+4r_2 \end \rightarrow \left(\begin 1 & 0 & 19/3 & 4/3 & -23/3 & 0\\ 0 & 1 & 1/3 & 1/3 & -5/3 & 0\\ 0 & 0 & -2/3 & 4/3 & 7/3 & 1 \end\right) $$

Замечание относительно облегчения работы с дробями, сделанное после второго шага прямого хода метода Гаусса, остаётся в силе и здесь.

На третьем шаге мы работаем с третьей строкой. Третий элемент этой строки (число -2/3) не равен нулю, поэтому домножаем третью строку на $-\frac<3><2>$, чтобы третий элемент стал равен единице, а затем обнуляем все иные ненулевые элементы третьего столбца.

$$ \left(\begin 1 & 0 & 19/3 & 4/3 & -23/3 & 0\\ 0 & 1 & 1/3 & 1/3 & -5/3 & 0\\ 0 & 0 & -2/3 & 4/3 & 7/3 & 1 \end\right) \begin \phantom<0>\\\phantom <0>\\ -3/2\cdot\end \rightarrow\\ \rightarrow\left(\begin 1 & 0 & 19/3 & 4/3 & -23/3 & 0\\ 0 & 1 & 1/3 & 1/3 & -5/3 & 0\\ 0 & 0 & 1 & -2 & -7/2 & -3/2 \end\right) \begin r_1-19/3r_3\\ r_2-1/3\cdot \\ \phantom <0>\end \rightarrow \left(\begin 1 & 0 & 0 & 14 & 29/2 & 19/2\\ 0 & 1 & 0 & 1 & -1/2 & 1/2\\ 0 & 0 & 1 & -2 & -7/2 & -3/2 \end\right) $$

Матрица до черты стала единичной, преобразования завершены. Обратная матрица будет такой:

$$ A^ <-1>=\left(\begin 14 & 29/2 & 19/2\\ 1 & -1/2 & 1/2\\ -2 & -7/2 & -3/2 \end\right) $$

Если пропустить все пояснения, то решение будет таким:

$$ \left(\begin -5 & 23 & -24 & 1 & 0 & 0\\ -1 & 4 & -5 & 0 & 1 & 0\\ 9 & -40 & 43 & 0 & 0 & 1 \end\right) \overset> <\rightarrow>\left(\begin -1 & 4 & -5 & 0 & 1 & 0\\ -5 & 23 & -24 & 1 & 0 & 0\\ 9 & -40 & 43 & 0 & 0 & 1 \end\right) \begin -1\cdot\\ \phantom <0>\\ \phantom <0>\end \rightarrow $$ $$ \rightarrow\left(\begin 1 & -4 & 5 & 0 & -1 & 0\\ -5 & 23 & -24 & 1 & 0 & 0\\ 9 & -40 & 43 & 0 & 0 & 1 \end\right) \begin \phantom<0>\\ r_2+5r_1 \\ r_3-9r_1 \end \rightarrow \left(\begin 1 & -4 & 5 & 0 & -1 & 0\\ 0 & 3 & 1 & 1 & -5 & 0\\ 0 & -4 & -2 & 0 & 9 & 1 \end\right) \begin \phantom<0>\\1/3\cdot \\\phantom<0>\end \rightarrow $$ $$ \rightarrow\left(\begin 1 & -4 & 5 & 0 & -1 & 0\\ 0 & 1 & 1/3 & 1/3 & -5/3 & 0\\ 0 & -4 & -2 & 0 & 9 & 1 \end\right) \begin r_1+4r_2\\ \phantom <0>\\ r_3+4r_2 \end \rightarrow \left(\begin 1 & 0 & 19/3 & 4/3 & -23/3 & 0\\ 0 & 1 & 1/3 & 1/3 & -5/3 & 0\\ 0 & 0 & -2/3 & 4/3 & 7/3 & 1 \end\right) \begin \phantom<0>\\\phantom <0>\\ -3/2\cdot\end \rightarrow $$ $$ \rightarrow\left(\begin 1 & 0 & 19/3 & 4/3 & -23/3 & 0\\ 0 & 1 & 1/3 & 1/3 & -5/3 & 0\\ 0 & 0 & 1 & -2 & -7/2 & -3/2 \end\right) \begin r_1-19/3r_3\\ r_2-1/3\cdot \\ \phantom <0>\end \rightarrow \left(\begin 1 & 0 & 0 & 14 & 29/2 & 19/2\\ 0 & 1 & 0 & 1 & -1/2 & 1/2\\ 0 & 0 & 1 & -2 & -7/2 & -3/2 \end\right) $$

Ответ: $A^ <-1>=\left(\begin 14 & 29/2 & 19/2\\ 1 & -1/2 & 1/2\\ -2 & -7/2 & -3/2 \end\right)$.

Найти матрицу $A^<-1>$, если $A=\left(\begin -2 & 3 & 0 & 1\\ -6 & 9 & -2 & 7\\ 0 & -2 & -18 & 27\\ -4 & 5 & -8 & 14\end \right)$.

В предыдущем примере были даны подробные пояснения каждого шага как метода Гаусса, так и метода Гаусса-Жордана. В этом примере я стану комментировать лишь некие нюансы, которые возникнут в ходе решения.

Метод Гаусса

Пора переходить ко второму шагу прямого хода метода Гаусса. На этом шаге должна использоваться вторая строка, однако второй элемент данной строки равен нулю. Согласно алгоритму, нужно поменять местами вторую строку с одной из нижележащих строк, у которых второй элемент отличен от нуля. Поменяем местами вторую и четвёртую строки, а потом продолжим преобразования:

$$ \left(\begin -2 & 3 & 0 & 1 & 1 & 0 & 0 & 0\\ 0 & 0 & -2 & 4 & -3 & 1 & 0 & 0 \\ 0 & -2 & -18 & 27 & 0 & 0 & 1 & 0\\ 0 & -1 & -8 & 12 & -2 & 0 & 0 & 1 \end \right) \overset> <\rightarrow>\left(\begin -2 & 3 & 0 & 1 & 1 & 0 & 0 & 0\\ 0 & -1 & -8 & 12 & -2 & 0 & 0 & 1\\ 0 & -2 & -18 & 27 & 0 & 0 & 1 & 0\\ 0 & 0 & -2 & 4 & -3 & 1 & 0 & 0 \end \right) \begin \phantom <0>\\ \phantom <0>\\ r_3-2r_2 \\ \phantom <0>\end \rightarrow $$ $$ \rightarrow\left(\begin -2 & 3 & 0 & 1 & 1 & 0 & 0 & 0\\ 0 & -1 & -8 & 12 & -2 & 0 & 0 & 1\\ 0 & 0 & -2 & 3 & 4 & 0 & 1 & -2\\ 0 & 0 & -2 & 4 & -3 & 1 & 0 & 0 \end \right) \begin \phantom <0>\\ \phantom <0>\\ \phantom <0>\\ r_4-r_3 \end \rightarrow $$ $$ \rightarrow\left(\begin -2 & 3 & 0 & 1 & 1 & 0 & 0 & 0\\ 0 & -1 & -8 & 12 & -2 & 0 & 0 & 1\\ 0 & 0 & -2 & 3 & 4 & 0 & 1 & -2\\ 0 & 0 & 0 & 1 & -7 & 1 & -1 & 2 \end \right) \begin r_1-r_4 \\ r_2-12r_4 \\ r_3-3r_1 \\ \phantom <0>\end \rightarrow $$ $$ \rightarrow\left(\begin -2 & 3 & 0 & 0 & 8 & -1 & 1 & -2\\ 0 & -1 & -8 & 0 & 82 & -12 & 12 & -23\\ 0 & 0 & -2 & 0 & 25 & -3 & 4 & -8\\ 0 & 0 & 0 & 1 & -7 & 1 & -1 & 2 \end \right) \begin \phantom <0>\\ \phantom <0>\\ -1/2\cdot \\ \phantom <0>\end \rightarrow $$ $$ \rightarrow\left(\begin -2 & 3 & 0 & 0 & 8 & -1 & 1 & -2\\ 0 & -1 & -8 & 0 & 82 & -12 & 12 & -23\\ 0 & 0 & 1 & 0 & -25/2 & 3/2 & -2 & 4\\ 0 & 0 & 0 & 1 & -7 & 1 & -1 & 2 \end \right) \begin \phantom <0>\\ r_2+8r_3 \\ \phantom <0>\\ \phantom <0>\end \rightarrow $$ $$ \rightarrow\left(\begin -2 & 3 & 0 & 0 & 8 & -1 & 1 & -2\\ 0 & -1 & 0 & 0 & -18 & 0 & -4 & 9\\ 0 & 0 & 1 & 0 & -25/2 & 3/2 & -2 & 4\\ 0 & 0 & 0 & 1 & -7 & 1 & -1 & 2 \end \right) \begin \phantom <0>\\ -1\cdot \\ \phantom <0>\\ \phantom <0>\end \rightarrow $$ $$ \rightarrow\left(\begin -2 & 3 & 0 & 0 & 8 & -1 & 1 & -2\\ 0 & 1 & 0 & 0 & 18 & 0 & 4 & -9\\ 0 & 0 & 1 & 0 & -25/2 & 3/2 & -2 & 4\\ 0 & 0 & 0 & 1 & -7 & 1 & -1 & 2 \end \right) \begin r_1-3r_2 \\ \phantom <0>\\ \phantom <0>\\ \phantom <0>\end \rightarrow $$ $$ \rightarrow\left(\begin -2 & 0 & 0 & 0 & -46 & -1 & -11 & 25\\ 0 & 1 & 0 & 0 & 18 & 0 & 4 & -9\\ 0 & 0 & 1 & 0 & -25/2 & 3/2 & -2 & 4\\ 0 & 0 & 0 & 1 & -7 & 1 & -1 & 2 \end \right) \begin -1/2\cdot \\ \phantom <0>\\ \phantom <0>\\ \phantom <0>\end \rightarrow $$ $$ \rightarrow\left(\begin 1 & 0 & 0 & 0 & 23 & 1/2 & 11/2 & -25/2\\ 0 & 1 & 0 & 0 & 18 & 0 & 4 & -9\\ 0 & 0 & 1 & 0 & -25/2 & 3/2 & -2 & 4\\ 0 & 0 & 0 & 1 & -7 & 1 & -1 & 2 \end\right) $$

Из последней матрицы получаем ответ:

$$ A^ <-1>=\left(\begin 23 & 1/2 & 11/2 & -25/2\\ 18 & 0 & 4 & -9\\ -25/2 & 3/2 & -2 & 4\\ -7 & 1 & -1 & 2 \end\right) $$

Метод Гаусса-Жордана

Пора переходить ко второму шагу метода Гаусса-Жордана. На этом шаге должна использоваться вторая строка, однако второй элемент данной строки равен нулю. Согласно алгоритму, нужно поменять местами вторую строку с одной из нижележащих строк, у которых второй элемент отличен от нуля. Поменяем местами вторую и четвёртую строки, а потом продолжим преобразования:

$$ \left(\begin 1 & -3/2 & 0 & -1/2 & -1/2 & 0 & 0 & 0\\ 0 & 0 & -2 & 4 & -3 & 1 & 0 & 0 \\ 0 & -2 & -18 & 27 & 0 & 0 & 1 & 0\\ 0 & -1 & -8 & 12 & -2 & 0 & 0 & 1 \end \right) \overset> <\rightarrow>$$ $$ \rightarrow\left(\begin 1 & -3/2 & 0 & -1/2 & -1/2 & 0 & 0 & 0\\ 0 & -1 & -8 & 12 & -2 & 0 & 0 & 1 \\ 0 & -2 & -18 & 27 & 0 & 0 & 1 & 0\\ 0 & 0 & -2 & 4 & -3 & 1 & 0 & 0 \end \right) \begin \phantom <0>\\ -1\cdot \\ \phantom <0>\\ \phantom <0>\end \rightarrow $$ $$ \rightarrow\left(\begin 1 & -3/2 & 0 & -1/2 & -1/2 & 0 & 0 & 0\\ 0 & 1 & 8 & -12 & 2 & 0 & 0 & -1 \\ 0 & -2 & -18 & 27 & 0 & 0 & 1 & 0\\ 0 & 0 & -2 & 4 & -3 & 1 & 0 & 0 \end \right) \begin r_1+3/2\cdot \\ \phantom <0>\\ r_3+2r_2 \\ \phantom <0>\end \rightarrow $$ $$ \rightarrow\left(\begin 1 & 0 & 12 & -37/2 & 5/2 & 0 & 0 & -3/2\\ 0 & 1 & 8 & -12 & 2 & 0 & 0 & -1 \\ 0 & 0 & -2 & 3 & 4 & 0 & 1 & -2\\ 0 & 0 & -2 & 4 & -3 & 1 & 0 & 0 \end \right) \begin \phantom <0>\\ \phantom <0>\\ -1/2\cdot \\ \phantom <0>\end \rightarrow $$ $$ \rightarrow\left(\begin 1 & 0 & 12 & -37/2 & 5/2 & 0 & 0 & -3/2\\ 0 & 1 & 8 & -12 & 2 & 0 & 0 & -1 \\ 0 & 0 & 1 & -3/2 & -2 & 0 & -1/2 & 1\\ 0 & 0 & -2 & 4 & -3 & 1 & 0 & 0 \end \right) \begin r_1-12r_3 \\ r_2-8r_3 \\ \phantom <0>\\ r_4+2r_3 \end \rightarrow $$ $$ \rightarrow\left(\begin 1 & 0 & 0 & -1/2 & 53/2 & 0 & 6 & -27/2\\ 0 & 1 & 0 & 0 & 18 & 0 & 4 & -9 \\ 0 & 0 & 1 & -3/2 & -2 & 0 & -1/2 & 1\\ 0 & 0 & 0 & 1 & -7 & 1 & -1 & 2 \end \right) \begin r_1+1/2\cdot \\ \phantom <0>\\ r_3+3/2\cdot \\ \phantom <0>\end \rightarrow $$ $$ \rightarrow\left(\begin 1 & 0 & 0 & 0 & 23 & 1/2 & 11/2 & -25/2\\ 0 & 1 & 0 & 0 & 18 & 0 & 4 & -9\\ 0 & 0 & 1 & 0 & -25/2 & 3/2 & -2 & 4\\ 0 & 0 & 0 & 1 & -7 & 1 & -1 & 2 \end\right) $$

Из последней матрицы получаем ответ:

$$ A^ <-1>=\left(\begin 23 & 1/2 & 11/2 & -25/2\\ 18 & 0 & 4 & -9\\ -25/2 & 3/2 & -2 & 4\\ -7 & 1 & -1 & 2 \end\right) $$

Ответ: $ A^ <-1>=\left(\begin 23 & 1/2 & 11/2 & -25/2\\ 18 & 0 & 4 & -9\\ -25/2 & 3/2 & -2 & 4\\ -7 & 1 & -1 & 2 \end\right) $.

Найти матрицу $A^<-1>$, если $A=\left(\begin 1 & -2 & 5\\ -2 & 5 & -13\\ -3 & 4 & -9\end \right)$.

В данном примере применим метод Гаусса.

$$ \left(\begin 1 & -2 & 5 & 1 & 0 & 0\\ -2 & 5 & -13 & 0 & 1 & 0\\ -3 & 4 & -9 & 0 & 0 & 1\end \right) \begin \phantom <0>\\ r_2+2r_1 \\ r_3+3r_1 \end \rightarrow\\ $$ $$ \rightarrow\left(\begin 1 & -2 & 5 & 1 & 0 & 0\\ 0 & 1 & -3 & 2 & 1 & 0\\ 0 & -2 & 6 & 3 & 0 & 1\end \right) \begin \phantom <0>\\ \phantom <0>\\ r_3+2r_2 \end \rightarrow \left(\begin 1 & -2 & 5 & 1 & 0 & 0\\ 0 & 1 & -3 & 2 & 1 & 0\\ 0 & 0 & 0 & 7 & 2 & 1\end\right) $$

В матрице до черты появилась нулевая строка. Это означает, что обратная матрица $A^<-1>$ не существует.

Ответ: обратной матрицы не существует.

Как найти обратную матрицу?

Продолжаем разговор о действиях с матрицами. А именно – в ходе изучения данной лекции вы научитесь находить обратную матрицу. Научитесь. Даже если с математикой туго.

Что такое обратная матрица? Здесь можно провести аналогию с обратными числами: рассмотрим, например, оптимистичное число 5 и обратное ему число . Произведение данных чисел равно единице: . С матрицами всё похоже! Произведение матрицы на обратную ей матрицу равно единичной матрице, которая является матричным аналогом числовой единицы. Однако обо всём по порядку – сначала решим важный практический вопрос, а именно, научимся эту самую обратную матрицу находить.

Что необходимо знать и уметь для нахождения обратной матрицы? Вы должны уметь решать определители. Вы должны понимать, что такое матрица и уметь выполнять некоторые действия с ними.

Есть? Тогда поехали дальше. А хотя… ехать могут все, если что-то не знаете, я буду ставить нужную ссылку по ходу объяснений.

Существует два основных метода нахождения обратной матрицы:
с помощью алгебраических дополнений и с помощью элементарных преобразований.

Сегодня мы изучим первый, более простой способ.

Начнем с самого ужасного и непонятного. Рассмотрим квадратную матрицу . Обратную матрицу можно найти по следующей формуле:

, где – определитель матрицы , – транспонированная матрица алгебраических дополнений соответствующих элементов матрицы .

Понятие обратной матрицы существует только для квадратных матриц, матриц «два на два», «три на три» и т.д.

Обозначения: Как вы уже, наверное, заметили, обратная матрица обозначается надстрочным индексом

Начнем с простейшего случая – матрицы «два на два». Чаще всего, конечно, требуется найти обратную матрицу для матрицы «три на три», но, тем не менее, настоятельно рекомендую изучить более простое задание, для того чтобы усвоить общий принцип решения.

Найти обратную матрицу для матрицы

Решаем. Последовательность действий удобно разложить по пунктам.

1) Сначала находим определитель матрицы.

Если с пониманием сего действа плоховато, ознакомьтесь с материалом Как вычислить определитель?

Важно! В том случае, если определитель матрицы равен НУЛЮ – обратной матрицы НЕ СУЩЕСТВУЕТ.

В рассматриваемом примере, как выяснилось, , а значит, всё в порядке.

2) Находим матрицу миноров .

Для решения нашей задачи не обязательно знать, что такое минор, однако, желательно ознакомиться со статьей Как вычислить определитель.

Матрица миноров имеет такие же размеры, как и матрица , то есть в данном случае .
Дело за малым, осталось найти четыре числа и поставить их вместо звездочек.

Возвращаемся к нашей матрице
Сначала рассмотрим левый верхний элемент:

Как найти его минор?
А делается это так: МЫСЛЕННО вычеркиваем строку и столбец, в котором находится данный элемент:

Оставшееся число и является минором данного элемента, которое записываем в нашу матрицу миноров:

Рассматриваем следующий элемент матрицы :

Мысленно вычеркиваем строку и столбец, в котором стоит данный элемент:

То, что осталось, и есть минор данного элемента, который записываем в нашу матрицу:

Аналогично рассматриваем элементы второй строки и находим их миноры:


Готово.

– матрица миноров соответствующих элементов матрицы .

3) Находим матрицу алгебраических дополнений .

Это просто. В матрице миноров нужно ПОМЕНЯТЬ ЗНАКИ у двух чисел:

Именно у этих чисел, которые я обвел в кружок!

– матрица алгебраических дополнений соответствующих элементов матрицы .

4) Находим транспонированную матрицу алгебраических дополнений .

Что такое транспонирование матрицы, и с чем это едят, смотрите в лекции Действия с матрицами.

– транспонированная матрица алгебраических дополнений соответствующих элементов матрицы .

5) Ответ.

Вспоминаем нашу формулу
Всё найдено!

Таким образом, обратная матрица:

Ответ лучше оставить в таком виде. НЕ НУЖНО делить каждый элемент матрицы на 2, так как получатся дробные числа. Более подробно данный нюанс рассмотрен в той же статье Действия с матрицами.

Как проверить решение?

Необходимо выполнить матричное умножение либо

Проверка:

Получена уже упомянутая единичная матрица – это матрица с единицами на главной диагонали и нулями в остальных местах.

Таким образом, обратная матрица найдена правильно.

Если провести действие , то в результате тоже получится единичная матрица. Это один из немногих случаев, когда умножение матриц перестановочно, более подробную информацию можно найти в статье Свойства операций над матрицами. Матричные выражения. Также заметьте, что в ходе проверки константа (дробь) выносится вперёд и обрабатывается в самом конце – после матричного умножения. Это стандартный приём.

Переходим к более распространенному на практике случаю – матрице «три на три»:

Найти обратную матрицу для матрицы

Алгоритм точно такой же, как и для случая «два на два».

Обратную матрицу найдем по формуле: , где – транспонированная матрица алгебраических дополнений соответствующих элементов матрицы .

1) Находим определитель матрицы.


Здесь определитель раскрыт по первой строке.

Также не забываем, что , а значит, всё нормально – обратная матрица существует.

2) Находим матрицу миноров .

Матрица миноров имеет размерность «три на три» , и нам нужно найти девять чисел.

Я подробно рассмотрю парочку миноров:

Рассмотрим следующий элемент матрицы:

МЫСЛЕННО вычеркиваем строку и столбец, в котором находится данный элемент:

Оставшиеся четыре числа записываем в определитель «два на два»

Этот определитель «два на два» и является минором данного элемента. Его нужно вычислить:

Всё, минор найден, записываем его в нашу матрицу миноров:

Как вы, наверное, догадались, необходимо вычислить девять определителей «два на два». Процесс, конечно, муторный, но случай не самый тяжелый, бывает хуже.

Ну и для закрепления – нахождение еще одного минора в картинках:

Остальные миноры попробуйте вычислить самостоятельно.

Окончательный результат:
– матрица миноров соответствующих элементов матрицы .

То, что все миноры получились отрицательными – чистая случайность.

3) Находим матрицу алгебраических дополнений .

В матрице миноров необходимо СМЕНИТЬ ЗНАКИ строго у следующих элементов:

В данном случае:
– матрица алгебраических дополнений соответствующих элементов матрицы .

4) Находим транспонированную матрицу алгебраических дополнений .

– транспонированная матрица алгебраических дополнений соответствующих элементов матрицы .

5) Ответ:

Проверка:

Таким образом, обратная матрица найдена правильно.

Как оформить решение на чистовик? Примерный образец чистового оформления задания можно найти на странице Правило Крамера. Метод обратной матрицы в параграфе, где идет речь о матричном методе решения системы линейных уравнений. По существу, основная часть упомянутой задачи – и есть поиск обратной матрицы.

Нахождение обратной матрицы для матрицы «четыре на четыре» не рассматриваем, так как такое задание может дать только преподаватель-садист (чтобы студент вычислил один определитель «четыре на четыре» и 16 определителей «три на три»). В моей практике встретился только один такой случай, и заказчик контрольной работы заплатил за мои мучения довольно дорого =).

В ряде учебников, методичек можно встретить несколько другой подход к нахождению обратной матрицы, однако я рекомендую пользоваться именно вышеизложенным алгоритмом решения. Почему? Потому что вероятность запутаться в вычислениях и знаках – гораздо меньше.

Иногда обратную матрицу требуется найти методом Гаусса-Жордана, но второй способ доступен для студентов с приличной техникой элементарных преобразований.

Автор: Емелин Александр

(Переход на главную страницу)

Zaochnik.com – профессиональная помощь студентам

cкидкa 15% на первый зaкaз, при оформлении введите прoмoкoд: 5530-hihi5


источники:

http://math1.ru/education/matrix/inverse.html

http://mathprofi.net/kak_naiti_obratnuyu_matricu.html