Методом параллельных сечений исследовать поверхность заданную уравнением

Поверхности второго порядка

Поверхностью второго порядка называется поверхность S, общее уравнение которой в декартовой прямоугольной системе координат имеет вид:

(15.22)

где коэффициенты при одночленах второй степени одновременно не равны нулю.

Существует девять типов невырожденных поверхностей, уравнения которых с помощью преобразования координат могут быть приведены к одному из следующих видов. Эти уравнения определяют тип поверхности и называются каноническими уравнениями.

1. Эллипсоид: (рис. 15.1).

2. Конус второго порядка: (рис. 15.2).

3. Гиперболоиды

1) однополостный: (рис. 15.3);2) двуполостный: (рис. 15.4).

Рис. 15.3 Рис. 15.4

4. Параболоиды

1) эллиптический: (рис. 15.5);2) гиперболический: (рис.15.6).

Рис. 15.5 Рис. 15.6

5. Цилиндры

1) эллиптический: (рис. 15.7);2) гиперболический: (рис. 15.8);

Рис. 15.7 Рис. 15.8

3) параболический: (рис. 15.9).

Основным методом исследования формы поверхности является метод параллельных сечений, который состоит в следующем. Поверхность пересекается координатными плоскостями и им параллельными, а затем на основании вида полученных в сечениях линий делается вывод о типе поверхности. Таким образом можно изучать основные геометрические свойства невырожденных поверхностей второго порядка на основе их канонических уравнений.

При этом, когда в общем уравнении поверхности коэффициенты приведение к каноническому виду осуществляется с помощью метода выделения полных квадратов.

В определенных случаях уравнение (15.22) поверхности может быть приведено к уравнениям, задающим, так называемые, вырожденные поверхности. Приведем примеры таких случаев:

– пустое множество точек (мнимый эллипсоид);

– точка (0, 0, 0);

– пустое множество точек (мнимый эллиптический цилиндр);

– прямая (ось Oz);

– пара пересекающихся плоскостей;

– пара параллельных плоскостей;

– пустое множество точек;

– плоскость (пара совпадающих плоскостей).

Пример 1. Привести уравнение к каноническому виду и определить тип поверхности, которую оно задает:

1)

2)

3)

4)

Решение. 1) Воспользуемся методом выделения полных квадратов.

Преобразуем левую часть уравнения:

Значит, заданное уравнение равносильно уравнению

или

Имеем уравнение однополостного гиперболоида, центр которого находится в точке (–1, 1, 2). Его ось симметрии – прямая, параллельная оси Oz и проходящая через точку (–1, 1, 2).

2) Поскольку

то заданное уравнение равносильно уравнению

или что приводит окончательно к уравнению гиперболического параболоида смещенного в точку (–1, 0, 1).

3) Выделяем полные квадраты в выражении, стоящем в левой части уравнения:

Поэтому заданное уравнение принимает вид:

или (после деления на 36)

Это уравнение эллипсоида с центром в точке (3, – 1, 2).

4. Методом выделения полных квадратов уравнение приводится к уравнению

т. е.

Почленное деление на 36 дает:

Это уравнение эллиптического цилиндра, смещенного в точку
(–2, 5, 0).

Пример 2. Исследовать поверхность методом сечений и построить ее:

Решение. Для исследования геометрических свойств и формы поверхности используем метод сечений.

Определим сечение поверхности плоскостями где параллельными координатной плоскости Oxy:

Очевидно, что это кривые, проекции которых на ось Oxy задаются уравнением

(15.23)

Уравнение (15.23) при не имеет решений относительно Это означает, что соответствующее сечение есть пустое множество точек, а значит, рассматриваемая поверхность целиком расположена ниже плоскости При уравнение (15.23) определяет эллипс

с полуосями и вырождающийся в точку (0, 0, 1) при Заметим, что все эллипсы, которые получаются в сечениях поверхности плоскостями подобны между собой, причем с уменьшением h их полуоси неограниченно монотонно возрастают.

Дальнейшее уточнение формы можно получить, рассматривая сечения координатными плоскостями Oxz и Oyz:

и

В первом случае имеем кривую т. е. параболу с параметром вершиной в точке и ветвями, направленными в отрицательную сторону оси Oz. Во втором – параболу с параметром вершиной в точке и аналогичным направлением ветвей.

Выполненное исследование позволяет построить заданную поверхность (рис. 15.10). Это эллиптический параболоид с вершиной в точке (0, 0, 1), направленный в сторону убывания значений z с осью симметрии Oz.

Пример 3. Построить тело, ограниченное поверхностями

Решение. Уравнение задает плоскость. Перейдя к уравнению плоскости «в отрезках», получим:

т. е. плоскость пересекает координатные оси в точках (3, 0, 0), (0, 3, 0) и (0, 0, 3) соответственно.

Уравнение задает круговой цилиндр, осью которого служит Oz. Уравнение определяет координатную плоскость Oxy.

Сделаем рисунок тела (рис. 15.11, 15.12), ограниченного заданными поверхностями.

Методом параллельных сечений исследовать поверхность заданную уравнением

8.4. Построение поверхностей

Мы приступаем к изучению формы поверхностей второго порядка, определённых в предыдущем разделе своими каноническими уравнениями. Напомним, что это вторая из двух основных задач аналитической геометрии: зная уравнение поверхности, изучить её геометрические свойства.

Метод, который мы будем применять, называется методом сечений: пересекая поверхность плоскостями, параллельными координатным плоскостям, будем рассматривать линии пересечения и по их виду делать выводы о форме поверхности.

Каноническое уравнение эллипсоида:

Отметим симметрию поверхности: если точка (x, у, z) лежит на эллипсоиде, то и все точки (±x, ±у, ±z) тоже лежат на эллипсоиде. Значит, поверхность симметрична относительно любой из координатных плоскостей. Пересечём эллипсоид плоскостью z = h. Получим линию

Это эллипс, полуоси которого убывают с увеличением |h|. При h = c эллипс превращается в точку, при h > c плоскость z = h не пересекает эллипсоид. Эллипсы получаются и при сечении эллипсоида плоскостями x = h, у = h. Используя эти данные, изображаем поверхность. Числа a, b, c называются полуосями эллипсоида. Если две полуоси равны, то получается эллипсоид вращения. Например, эллипсоид, образованный при вращении эллипса (лежит в плоскости XOZ) вокруг оси OZ. Если a = b = c, то эллипсоид превращается в сферу.


источники:

http://www.chem-astu.ru/chair/study/algebra-geometry/?p=228