Методы окислительно восстановительного титрования уравнение нернста

Окислительно-восстановительное титрование (Red-Ox-метрия)

» data-shape=»round» data-use-links data-color-scheme=»normal» data-direction=»horizontal» data-services=»messenger,vkontakte,facebook,odnoklassniki,telegram,twitter,viber,whatsapp,moimir,lj,blogger»>

Окислительно-восстановительное титрование

– ис­пользует реакции, протекающие с изменением степени окисления реагирующих веществ.

Каждую окислительно-восстановительную реакцию можно представить как сумму двух полуреакций. Одна реакция отражает превращение окислителя, а вторая – восстановителя:

Молярная масса эквивалента окислителя или восстановителя в реакции зави­сит от числа принятых или отданных одной молекулой окислителя (восстанови­теля) электронов. Молярная масса эквивалента окислителя (восстановителя) равна произведению фактора эквивалентности данного вещества на его молярную массу:

M (fэкв (В)В) = fэкв (В) М (В),
где M (fэкв (В)В) – молярная масса эквивалента вещества В
М (В) – молярная масса вещества В
fэкв (В) – фактор эквивалентности вещества.
fэкв (В) = 1/n,
n – число электронов, принятых или отданных одной молекулой окислителя (восстановителя) в данной реакции.

Требования к реакциям в Red-Ox-метрии

К реакциям, применяемым в окислительно-восстановительном титровании, предъявляются следующие требования:
а) Реакции должны протекать до конца, являться необратимыми, не сопрово­ждаться побочными процессами.
б) В ходе реакции должны образовываться продукты определенного извест­ного состава.
в) Реакции должны протекать быстро.
г) Должна быть возможность фиксировать точку эквивалентности.

К недостатком окислительно-восстановительных реакций в большинстве случаев относится их невысокая скорость, что затрудняет процесс титрования. Для ускорения реакций применяют нагревание. Если нагревание использовать нельзя (вещество разлагается или улетучивается), то увеличивают концентрацию вещества или используют катализаторы.

Окислительно-восстановительный потенциал и факторы, влияющие на него

Известно, что химическая реакция протекает только в том случае, если изме­нение энергии Гиббса ∆Gr 0.
Окислительно-восстановительный потенциал или редокс-потенциал – это ко­личественная характеристика окислительно-восстановительной реакции.

Окислительно-восстановительный потенциал E или φ зависит от природы окислительно-восстановительной пары, концентрации (активности) ионов окисли­теля и восстановителя, температуры. Количественно зависимость от этих парамет­ров определяется уравнением Нернста:

ЕOx/Red = Е 0 Ox/Red + (0,059/n) lg([Ox] a / [Red] b ),
где ЕOx/Red – окислительно-восстановительный потенциал пары Ox – Red, В;
Е 0 Ox/Red – стандартный окислительно-восстановительный потенциал пары Ox – Red, В;
([Ox] и [Red] – молярная концентрация окисленной и восстановленной форм соответственно, моль/л,
a и b – стехиометрические коэффициенты.

Если реакция протекает с участием молекул или ионов среды, то их концентрации также вводят в уравнение Нернста. Так для полуреакции MnO4 – + 8H + +5e – → Mn 2+ + 4H2O уравнение Нернста может быть записано следующим образом:
Е MnO4-/ Mn2+ = Е 0 MnO4-/ Mn2+ + (0,059/5) lg([MnO4 – ] · [H + ] 8 / [Mn 2+ ]).

Реальный потенциал редокс-пары титрантов окислителей должен иметь зна­чение потенциала на 0,4 – 0,5 В выше, чем потенциал редокс-пары титруемого вос­становителя [(Eокисл. – Е восст) > 0,4], только в таком случае выполняются требования к реакциям в Red-Ox-метрии. Для регулирования потенциала редокс-пар титранта и определяемого вещества используют изменение рН среды, комплексообразующие добавки, увеличение температуры и т.д.

Равновесный окислительно-восстановительный потенциал зависит от ряда факторов:

1) От рН среды. Стандартный окислительно-восстановительный потенциал для приведенной выше реакции Е 0 MnO4-/ Mn2+ = 1,51 B. С увеличением рН раствора окислительно-восстановительный потенциал этой пары будет уменьшаться.

2) От концентрации (активности) окисленной и восстановленной форм окислителя или восстановителя. С изменением концентраций (активностей) окис­ленной и восстановленной форм величина редокс-потенциала может изменяться. Например, для пары Fe 3+ /Fe 2+ при условии [Fe 3+ ] = [Fe 2+ ] стандартный окисли­тельно-восстановительный потенциал равен 0,77 В. Уравнение Нернста для полуре­акции Fe 3+ + 1e → Fe 2+ имеет вид:
Е Fe3+/Fe2+ = Е 0 Fe3+/Fe2+ + 0,059 lg ([Fe 3+ ] / [Fe 2+ ]).

Изменяя концентрации окисленной или восстановленной форм вещества можно изменить величину редокс-потенциала.

Пример 1. Если в раствор, содержащий ионы Fe 3+ и Fe 2+ добавить SnCl2, проявляющий восстановительные свойства, то в растворе в результате реакции
2Fe 3+ + Sn 2+ →2Fe 2+ + Sn 4+ уменьшится концентрация ионов Fe 3+ и увеличиться концентрация ионов Fe 2+ . При этом редокс-потенциал пары Fe 3+ /Fe 2+ уменьшится Е Fe3+/Fe2+ = Е 0 Fe3+/Fe2+.

Пример 2. При добавлении в раствор, содержащий ионы Fe 3+ и Fe 2+ раствора MnO4 – , имеющего свойства окислителя, в результате реакции 5Fe 2+ + 2MnO4 – + 8H + → 5Fe 3+ + 2Mn 2+ + 4H2O
произойдет уменьшение концентрации ионов Fe 2+ и увеличение концентрации ионов Fe 3+ . Следовательно, величина равновесного окислительно-восстановительного потенциала увеличиться Е Fe3+/Fe2+ > Е 0 Fe3+/Fe2+.
От процесса комплексообразования. Величина редокс-потенциала значительно изменяется, если окисленная или восстановленная форма вещества в анализируемом растворе участвует в процессе комплексообразования.
Потенциал редокс-пары, например, M 3+ /M 2+ в отсутствии комплексообразования будет при 25 °С равен:
Е M3+/M2+ = Е 0 M3+/M2+ – 0,059 lg([M 3+ ] / [M 2+ ]),

При комплексообразовании с лигандом L z – концентрация ионов M 3+ уменьшится:
M 3+ + L z – = ML 3- z
Константа устойчивости ML 3- z равна:
βML = [ML 3- z ] / ([M 3+ ] · [L z – ]).

Из данного выражения концентрация ионов M 3+
[M 3+ ] = [ML 3- z ] / ([L z – ] · βML),

Подставив ее в исходное уравнение Нернста, после ряда преобразований получим:
Е M3+/M2+ = Е 0 M3+/M2+ – 0,059 lg βML

Пример 3. В присутствии фторид-ионов, образующих с ионами Fe 3+ комплекс­ный ион FeF 2+ (lg β = 6,04) концентрация ионов Fe 3+ резко падает и потенциал пары Fe 3+ / Fe 2+ уменьшается:
E Fe3+ / Fe2+ = 0,77 – 0,059 · 6,04 = 0,41 B.

За счет изменения потенциала можно изменить направление протекания ре­акции. Так при добавлении к раствору хлорида железа (III) раствора иодида калия между ними протекает реакция: 2FeCl3 + 2KI → 2FeCl2 + I2 + 2KCl

Стандартные окислительно-восстановительные потенциалы пар составляют:
E 0 Fe3+ / Fe2+ = 0,77 B
E 0 I2 / 2I = 0,54 B
Тогда ЭДС = Eокисл. – Е восст = 0,77 – 0,54 = 0,23 В.
ЭДС > 0, реакция может протекать.

Если реакцию вести в присутствии фторид-ионов, то реакция протекать не будет, так как ЭДС – ≠

4) От образования малорастворимых веществ. В присутствии ионов, спо­собных образовывать малорастворимые соединения, потенциал окислительно-вос­становительной пары можно вычислить следующим образом:
Е 0 Me2+/MeX = Е Me2+/Me – 0,059/n lgПР(MeX) .

Пример 4. ЭДС реакции 2Cu 2+ – 4I – → 2CuI + I2 без учета образования малорастворимого иодида меди (I) CuI равна
ЭДС = E 0 окисл. – Е 0 восст = E 0 Cu2+ / Cu+ – E I2 / 2I = 0,159 – 0,54 = -0,399B, ЭДС 0 Cu2+ / CuI = 0,159 + 0,059 · 11,96 = 0,865 B
И ЭДС реакции 2Cu 2+ – 4I – → 2CuI + I2
ЭДС = E 0 Cu2+ / CuI – E 0 I2 / 2I- = 0,865 – 0,54 = 0,325 B.
Таким образом, для данной реакции ЭДС > 0, поэтому реакция осуществима.

Классификация методов Red-Ox-метрии и способы титрования

Окислительно-восстановительное титрование или редоксиметрия (от ла­тинского oxydatio – окисление и reductio – восстановление) основано на реакциях окисления-восстановления. Если титрант – окислитель, то титрование называют окислительным (оксидиметрия). Если титрант – восстановитель, то титрование вос­становительное (редуциометрия)

По типу применяемого титранта методы окислительно-восстановительного титрования делятся на следующие виды:
• Пермангатометрическое – титрант раствор KMnO4;
• Иодометрическое титрование – титранты растворы I2 и Na2S2O3;
• Броматометрическое – титрант раствор KBrO3;
• Бромометрическое – титрант раствор Br2 (KBrO3 + KBr);
• Хроматометрическое – титрант раствор K2Cr2O7 и т.д.

Редокс-титрование может быть выполнено различными способами: прямое титрование, обратное титрование и заместительное титрование.

Прямое титрование проводят при ЭДС ≥ 0,4 В, что обеспечивает необходимую полноту и скорость протекания реакции.

Прямым титрованием можно определить:

Обратное титрование – используют при медленно протекающих реакциях. При этом к титруемой смеси добавляют избыток реагента (титранта 1) и выдержи­вают определенное время для полноты протекания реакции. Затем избыток реа­гента (титранта 1) оттитровывают другим титрантом 2.

Пример 5. При определении сульфидов добавляют раствор I2 (титрант 1), из­быток которого затем оттитровывают раствором Na2S2O3 (титрант 2):
Na2S + I2 (изб.) + 2HCl = S + 2NaCl + 2HI
I2(ост) + 2Na2S2O3 = 2NaI + Na2S4O6
n(1/2 Na2S) = n (1/2 I2) – n (Na2S2O3)

Пример 6. Определение содержания свободного или связанного формальде­гида в разнообразных технических продуктах:
HCHO + H2O2 → HCOOH + H2O
HCOOH + NaOH(изб) → HCOONa + H2O
NaOH(ост) + HCl → NaCl + H2O
N (1/2 HCHO) = n (NaOH) – n (HCl)

Заместительное титрование – определяют заместитель – продукт реакции, выделяющийся в эквивалентном количестве при взаимодействии определяемого вещества с каким-либо реагентом.

Таким образом, например, можно определять вещества, не вступающие в окислительно-восстановительные реакции.

Окислительно-восстановительные индикаторы

Для определения точки эквивалентности в Red-Ox-метрии используют раз­личные индикаторы:

1) Окислительно-восстановительные индикаторы (редокс-индикаторы), из­меняющие цвет при изменении окислительно-восстановительного потенциала сис­темы.

2) Специфические индикаторы, изменяющие свой цвет при появлении из­бытка титранта или исчезновении определяемого вещества. Специфические инди­каторы применяют в некоторых случаях. Так крахмал – индикатор на присутствие свободного йода, вернее трииодид-ионов I – 3. В присутствии I – 3 крахмал при комнатной температуре синеет. Появление синей окраски крахмала связано с ад­сорбцией I – 3 на амилазе, входящей в состав крахмала.

Иногда в качестве индикатора используют тиоцианат аммония NH4SCN при титровании солей железа(III), катионы Fe 3+ с ионами SCN – образуют соединение красного цвета. В точке эквивалентности все ионы Fe 3+ восстанавливаются до Fe 2+ и титруемый раствор из красного становится бесцветным.

При титровании раствором перманганата калия сам титрант играет роль ин­дикатора. При малейшем избытке KMnO4 раствор окрашивается в розовый цвет.

Редокс-индикаторы делятся на: обратимые и необратимые.

Обратимые индикаторы – обратимо изменяют свой цвет при изменении по­тенциала системы. Необратимые индикаторы – подвергаются необратимому окис­лению или восстановлению, в результате чего цвет индикатора изменяется необратимо.

Редокс-индикаторы существуют в двух формах окисленной (Indoкисл) и восста­новленной (Indвосст.), причем цвет одной формы отличается от цвета другой.
Indoкисл + ne – ↔ Indвосст

Переход индикатора из одной формы в другую и изменение его окраски про­исходит при определенном потенциале системы (потенциале перехода). Потенциал индикатора определяется по уравнению Нернста:
EInd = E 0 Ind +0,059/n lg ([Indoкисл] / [Indвосст])

При равенстве концентраций окисленной и восстановленной форм индика­тора EInd = E 0 Ind. При этом половина молекул индикатора существует в окисленной форме, половина – в восстановленной форме. Интервал перехода индикатора (ИП) лежит в пределах отношений концентраций обеих форм индикатора от 1/10 до 10/1.

При проведении окислительно-восстановительного титрования необходимо подбирать индикатор таким образом, чтобы потенциал индикатора находился в пределах скачка потенциала на кривой титрования. Многие индикаторы окисли­тельно-восстановительного титрования обладают кислотными или основными свойствами и могут менять свое поведение в зависимости от рН среды.

Одним из наиболее известных и употребимых редокс-индикаторов является дифениламин (C6H5) 2NH.
Восстановленная форма индикатора бесцветная. Под действием окислителей дифениламин сначала необратимо переходит в бесцветный дифенилбензидин, ко­торый затем обратимо окисляется до сине-фиолетового дифенилбензидинфиолето­вого. EInd = 0,76 B.

Титрование индикаторным методом возможно, если для данной реакции ЭДС ≥ 0,4 В. При ЭДС = 0,4 – 0,2 В используют инструментальные индикаторы.

Кривые окислительно-восстановительного титрования

Кривую окислительно-восстановительного титрования представляют в виде зависимости потенциала E от количества добавленного титранта V (рис. 1 – А):
E = f (V)

Величина скачка в точке эквивалентности зависит от разности потенциалов двух окислительно-восстановительных пар, участвующих в процессе. Увеличение ЭДС приводит к возрастанию скачка титрования. Для увеличения ЭДС можно изме­нять концентрацию одного из компонентов редокспары. У окислителей можно по­высить реальный потенциал редокс-пары, связав в комплекс восстановленную форму. Потенциал восстановителя можно понизить, связав в комплекс его окислен­ную форму.

Рис. 1. Кривые окислительно-восстановительного титрования:
А – интегральная кривая; В – дифференциальная кривая.

Для нахождения точки эквивалентности часто строят дифференциальную кривую в координатах ∆E/∆V – V (рис. 1 – Б). На точку эквивалентности указывает максимум полученной кривой, а отсчет по оси абсцисс, соответствующий этому мак­симуму, дает объем титранта, израсходованного на титрование до точки эквива­лентности. Определение точки эквивалентности по дифференциальной кривой зна­чительно точнее, чем по простой зависимости E – V.

Перманганатометрия

В сильнокислой среде перманганат-ионы обладают высоким окислительно-восстановительным потенциалом, восстанавливаясь при этом до Mn(II). Поэтому перманганат калия применяют для определения многих восстановителей. Окисле­ние восстановителей можно проводить в различных средах. Перманганат калия в кислой среде восстанавливается до ионов Mn 2+ , в нейтральной – до марганца(IV) или диоксида марганца MnO2, в щелочной среде – до марганца(VI) или манганата калия K2MnO4.

В методе перманганатометрии титрование чаще проводят в кислой среде:
MnO4 – + 8H + + 5e – → Mn 2+ + 4H2O
E 0 = 1,51 B; M(1/5 KMnO4) = 31,608 г/моль

Реже используют титрование в нейтральной среде:
MnO4 – + 2H2O + 3e – → MnO2 + 4OH –
E 0 = 0,60 B; M (1/3 KMnO4) = 52,68 г/моль

При титровании перманганатом не применяют индикаторы, так как титрант сам окрашен и является чувствительным индикатором: 0,1 мл 0,01 М раствора KMnO4 окрашивает 100 мл воды в бледно-розовый цвет.

Приготовление 0,1 н. (0,05 н.) раствора перманганата калия

Титрованный раствор перманганата калия по точной навеске кристалличе­ского KMnO4 приготовить нельзя, так как в нем всегда содержится некоторое количество MnO2 и других продуктов разложения. Поэтому раствор перманганата калия относится к вторичным стандартным растворам. Первоначально готовят рас­твор KMnO4, концентрация которого приблизительно равна необходимой концен­трации. Навеску берут на технохимических весах несколько больше расчетной вели­чины. Так как KMnO4 является сильным окислителем и изменяет свою концентра­цию в присутствии различных восстановителей, то приготовленный раствор пер­манганата калия выдерживают 7–10 дней в темном месте для того, чтобы прошли все окислительно-восстановительные процессы с примесями, содержащимися в воде. Затем раствор фильтруют. Только после этого концентрация раствора стано­вится постоянной и его можно стандартизировать по щавелевой кислоте или по ок­салату аммония. Растворы KMnO4 следует хранить в бутылях из темного стекла. Приготовленный таким способом раствор перманганата калия с молярной концен­трацией эквивалента 0,05 моль/л и выше не изменяет свой титр довольно продол­жительное время.

Стандартизация раствора перманганата калия по щавелевой кислоте или оксалату аммония (натрия)

Способ определения основан на окислении щавелевой кислоты перманганат-ионами в кислой среде:
5H2C2O4 + 2KMnO4 + 3H2SO4 → 2MnSO4 + 10CO2 + K2SO4 + 8H2O

При этом полуреакции окисления и восстановления имеют вид:
H2C2O4 – 2e – = 2CO2 + 2H +
MnO2 – + 8H + + 5e – = Mn 2+ + 4H2O
Тогда fэкв (H2C2O4) = 1/2; fэкв (KMnO4) = 1/5

При комнатной температуре эта реакция протекает медленно. И даже при по­вышенной температуре скорость ее невелика, если она не катализирована ионами марганца(II). Нагревать кислоту выше 70-80 °С нельзя, так как при этом часть ки­слоты окисляется кислородом воздуха:

Реакция взаимодействия перманганата калия со щавелевой кислотой отно­сится к автокаталитическим реакциям. Реакция окисления щавелевой кислоты про­текает в несколько стадий. Первые капли перманганата калия даже в горячем рас­творе обесцвечиваются очень медленно. Для ее начала необходимо присутствие в растворе хотя бы следов Mn 2+ :

1. MnO4 – + MnC + O4 → MnO4 2- + MnC2O4 +
Образовавшийся манганат-ион MnO4 2- в кислом растворе быстро диспропор­ционирует:

2. Mn (VI) + Mn (II) = 2 Mn (IV)

3. Mn (IV) + Mn(II) = 2Mn (III)

Марганец (III) образует оксалатные комплексы состава [Mn(C2O4) n] (3-2 n )+ , где n = 1,2,3; эти комплексы медленно разлагаются с образова­нием Mn 2+ и CO2
Таким образом, пока в растворе не накопится в достаточных концентрациях марганец (II), реакция между MnO4 – и С2O4 2- протекает медленно. Когда концентра­ция марганца(II) достигает определенной величины, реакция начинает протекать с большой скоростью.
Интенсивная окраска раствора перманганата калия осложняет измерение объемов титранта в бюретке. На практике удобно за уровень отсчета принимать по­верхность жидкости, а не нижнюю часть мениска.

Оксалат аммония обладает некоторыми преимуществами по сравнению с дру­гими установочными веществами:
– хорошо кристаллизуется и легко растворяется в воде,
– имеет определенный химический состав и не изменяется при хранении,
– не взаимодействует с кислородом воздуха и СО2 .

Для установки концентрации (титра или молярной концентрации эквивален­тов) стандартного раствора перманганата калия рассчитывают навеску щавелевой кислоты H2С2O4 · 2H2O или оксалата аммония (NH4)2C2O4, необходимую для приготовления раствора с молярной концентрацией эквивалента 0,1 моль/л (или 0,05 н.). Рассчитанное количество кислоты (или соли) взвешивают на аналитических весах. Взвешенную массу кислоты (или соли) растворяют в воде в мерной колбе, раствор тщательно перемешивают. Затем титруют раствор KMnO4. Расчет концен­трации перманганата калия во всех случаях проводят на основании закона эквива­лентов:
N (1/2 H2C2O4) = n (1/5 KMnO4)
Тогда C (1/2 H2C2O4 · 2H2O) · V (H2C2O4 · 2H2O) = C (1/5 KMnO4) · V (KMnO4)

Поскольку ион MnO – 4 является сильным окислителем (особенно в кислой среде), то метод перманганатометрии применяется для определения различных восстановителей таких как: H2O2, Fe 2+ , NO – 2, некоторых органических веществ.

Выполнение эксперимента

В коническую колбу для титрования наливают мерным цилиндром 20 мл рас­твора H2SO4 (1:5) и нагревают до 80 – 90 °С.
Бюретку ополаскивают раствором KMnO4, доводят уровень жидкости до нулевой отметки по верхней границе раствора. Проверяют, нет ли воздушного пу­зыря в носике бюретки.

В горячий раствор кислоты пипеткой вносят 10,00 мл раствора щавелевой ки­слоты (оксалата натрия) и титруют раствор кислоты раствором перманганата ка­лия. В начале титрования прибавляют раствор KMnO4 из бюретки по 0,5 мл, дожида­ясь обесцвечивания раствора в колбе, перемешивая раствор кругообразными движениями. Для лучшего определения окраски под колбу помещают лист белой бумаги. Когда обесцвечивание раствора вследствие автокатализа будет проходить быстро, раствор титранта прибавляют по каплям. В точке эквивалентности от при­бавления одной капли титранта раствор приобретает бледно-розовую окраску ус­тойчивую в течение 30 секунд. Оттитровывают еще две пробы по той же методике. Результаты параллельных определений не должны отличаться более чем на 0,1 – 0,2 мл. Рассчитывают концентрацию и титр определяемого вещества в растворе, ис­пользуя среднее значение объема титранта, пошедшего на титрование.

Определение железа (II)
Титрование железа (II) основано на реакции:
10FeSO4 + 2KMnO4 + 8H2SO4 = 5 Fe2 (SO4) 3 + 2MnSO4 + K2SO4 + 8H2O

Титровать железо(II) перманганатом калия можно в сернокислой или соляно­кислой средах. В первом случае не наблюдается никаких осложнений. Присутствие в титруемом растворе хлорид-ионов приводит к перерасходу перманганата и получе­нию нечеткого конца титрования. Это вызвано тем, что реакция между железом(II) и перманганатом индуцирует реакцию между ионами MnO4 – и Cl –

MnO4 – + 10Cl – + 16H + → 2Mn 2+ + 5Cl2 + 8H2O

Причем в отсутствие ионов Fe 2+ эта реакция не идет. Реакции подобного типа, не идущие одна без другой, Н.А. Шилов назвал сопряженными или индуциро­ванными. Индуцированной реакции не возникает, если в растворе присутствуют в достаточных количествах фосфорная кислота и марганец (II). Поэтому перед титро­ванием в раствор добавляют смесь Рейнгарда-Циммермана, состоящую из серной, фосфорной кислот и сульфата марганца(II). Присутствие H2SO4 в этой смеси соз­дает требуемую концентрацию протонов в титруемом растворе. Присутствие H2PO4 необходимо для связывания железа (III) в бесцветный комплекс и образования фос­фатных комплексов марганца (III). Если железо не маскировать, то окраска его ком­плексных хлоридов будет затруднять наблюдение бледно-розовой окраски в конце титрования перманганатом калия. Железо(III) перед титрованием необходимо восстановить до железа(II).

Выполнение эксперимента. Раствор или навеску анализируемого вещества помещают в мерную колбу вместимостью 100 мл (Vk), добавляют примерно 50 мл 2 н. раствора серной кислоты и водой доводят объем содержимого колбы до метки, тщательно перемешивают. Аликвотную часть полученного раствора (Va 10,00 мл) осторожно переносят в коническую колбу для титрования вместимостью 250 мл, добавляют 5 мл смеси Рейнгарда-Циммермана, 100 мл воды и при интенсивном пе­ремешивании медленно оттитровывают раствором перманганата калия до появле­ния бледно-розовой окраски устойчивой в течение 30 с. Отмечают объем израсходо­ванного титранта (V1). Оттитровывают еще две пробы по той же методике. Резуль­таты параллельных определений не должны отличаться более чем на 0,1-0,2 мл. Вы­числяют содержание железа (II) в анализируемом растворе или навеске исследуе­мого вещества:

Схемы основных реакций, используемых в Red-Ox-метрии

Окислительно-восстановительное титрование

Титратор для окислительно-восстановительного титрования. GT-200.

Современные потенциометрические титраторы прекрасно подходят для автоматизации традиционных методик окислительно-восстановительного титрования. С помощью потенциометрического титрования возможно проведение анализа окрашенных и мутных растворов, сильных окислительных и неводных сред, процесс легко автоматизируется.

К универсальным титраторам, выполняющим различные виды титрования, относится потенциометрический титратор GT-200 производства «Mitsubishi — Nittoseiko» , стандартная комплектация которого включает:

установку для потенциометрического анализа;

магнитную мешалку (GT-200STR);

автоматическую бюретку (GT-200BRT);

дозировочную кассету для бюретки и держатель для смены кассет.

Подбор электродов для О-В титрование

Для решения определенной задачи необходимо правильно подобрать систему электродов. В случае потенциометрического титратора GT-200 производителем разработан гид для выбора электродов.

ОВ-электроды изготавливаются из благородных металлов (Pt, Au). Наиболее распространенными являются Pt-электроды.

Для окислительно-восстановительного титрования предлагается использование раздельной пары электродов, состоящей из: измерительного платинового (GTPT1B) и стеклянного хлорсеребряного электрода сравнения (GTRE10B), и комбинированных платиновых электродов (GTPR1B, GTPR1C).

Предусмотрена возможность подключения дополнительного оборудования: весов, автосамплера (GT-200SC), принтера, диспенсера растворителя (GT-200SD), фотометрического детектора (GTLDII).

Сущность окислительно-восстановительного титрования

Метод окислительно-восстановительного титрования (ОВ) основан на химической реакции между определяемым компонентом и стандартным раствором окислителя или восстановителя (титранта). Количественное содержание анализируемого вещества устанавливается с помощью измерения точных объемов растворов с известными концентрациями, взаимодействующих друг с другом. Возможность и степень прохождения реакции характеризуется окислительно-восстановительным потенциалом.

Для проведения ОВ титрования необходимо выполнение определенных требований:

титрант должен реагировать только с анализируемым компонентом, нацело и быстро;

простота и воспроизводимость обнаружения конечной точки титрования (КТТ).

Зависимость определяемой величины (потенциала) от объема титранта, представленная в виде графика, называется кривой титрования, построение которой нужно для нахождения точки эквивалентности (ТЭ).

Виды окислительно-восстановительного титрования

Различают прямое, обратное и заместительное титрование.

Анализ прямым способом проводят при значении ОВ потенциала ≥ 0,4 В, обратным – при низкой скорости реакции. При использовании заместительного способа – титруют эквивалентное количество продукта, образующегося при реакции реагента с анализируемым компонентом.

Классификация методов окислительно-восстановительного титрования проводится по названиям используемых титрантов.

Перманганатометрия. Основа метода – процесс окисления перманганатом калия (KMnO4), образующего ярко окрашенные растворы, являющиеся индикатором титрования. Находит применение для анализа неорганических и органических веществ.

Дихроматометрия. Основа метода – процесс окисления дихроматом калия, реагирующего с соединениями органической природы менее интенсивно, чем KMnO4, поэтому в основном не используется для их анализа. Для нахождения КТТ необходимы дополнительные индикаторы (дифениламин или др).

Применяется для определения неорганических и ряда органических веществ, химического потребления кислорода (ХПК) в воде.

Йодометрия. Основа метода – процесс окисления йодом (I2) или восстановления йодид-ионами. Недостатки — низкая растворимость I2 в воде.

Броматометрия. Основа метода – процесс окисления броматом калия (KBrO3).

Преимущества — возможность определения ненасыщенных, ароматических и гетероциклических соединений, устойчивость растворов KBrO3. Недостатки – побочные продукты, некоторые реакции проходят нестрого в стехиометрических соотношениях.

Цериметрия. Основа метода – процесс окисления сульфатом церия (IV). Преимущества — устойчивость реагентов, отсутствие побочных продуктов, возможность применения в присутствии соляной кислоты.

В представленной классификации описаны наиболее часто используемые окислительно-восстановительные реакции, применяемые в титровании.

Индикаторное и потенциометрическое титрование.

Индикаторное титрование основано на реакции индикатора с окислителем или восстановителем, который изменяет окраску раствора с приближением к ТЭ.

В потенциометрии установление ТЭ проводят по изменению потенциала электрода в процессе взаимодействия потенциалоопределяющего компонента и титранта.

Преимущества метода заключаются:

в получении более точных результатов, титрования веществ, для которых не подобраны индикаторы или если их применение невозможно;

в анализе нескольких компонентов в одном растворе;

в хорошей воспроизводимости, отсутствии индикаторной ошибки.

Индикаторы, используемые в окислительно-восстановительном титровании, делятся на 4 основные группы: специфические, редокс-индикаторы, комплексные соединения некоторых металлов, органические красители, окисляемые необратимо.

Титрование, проводимое с помощью фотометрического датчика, позволяет определять ТЭ по изменению оптических свойств титруемого раствора (оптической плотности, величин пропускания и поглощения, спектральных характеристик). К преимуществам данного метода относится возможность проведения реакций, в которых визуально невозможно определить КТТ из-за неярко выраженного изменения окраски, а также возможность автоматизации методик индикаторного титрования для нормативных документов, в которых не описана потенциометрия.

Применение окислительно-восстановительного титрования

ОВ титрование находит применение в различных областях для решения задач количественного анализа.

В нефтехимии – для установления в нефти, продуктах ее переработки, смазочных материалах, различных видах топлива и др.: бромного числа и индекса (ГОСТ 8997, UOP 304, ASTM 1159 и 2710); йодного числа, непредельных углеводородов (ГОСТ 2070-82).

В экологии — для анализа содержания цианидов в почве (ISO 11262) и определения в питьевой воде, природных и сточных водах: перманганатной окисляемости (ГОСТ Р 55684-2013, ГОСТ 23268.12); ХПК (ISO 6060 и 15705); жесткости (ГОСТ Р 52407, ГОСТ 31954, ASTM D1126);

В медицине – для анализа лекарств (например, содержание фенола в гормональных препаратах, определение витамина С и др.) (Фармакопея XI. Выпуск 2.).

В пищевой промышленности — для определения витамина С в соках (ГОСТ 24556-89), йодного числа в маслах растительного и животного происхождения, жирах (ГОСТ 5475-69, ГОСТ Р ИСО 3961-2010), пероксидов в растительных маслах (ГОСТ 26593-85, ГОСТ Р 51487-99).

Титриметрический анализ

Лабораторная работа № 8

Цель работы: ознакомиться с основами титриметрического анализа, изучить основные методы и приёмы титрования.

1. Сущность титриметрического анализа. Основные понятия.

Титриметрический (объёмный) анализ является одним из важнейших видов количественного анализа. Его основными достоинствами являются точность, быстрота исполнения и возможность применения для определения самых разнообразных веществ. Определение содержания вещества в титриметрическом анализе осуществляется в результате проведения реакции точно известного количества одного вещества с неизвестным количеством другого, с последующим расчётом количества определяемого вещества по уравнению реакции. Реакция, которая при этом протекает должна быть стехиометрической, т. е. вещества должны реагировать строго количественно, согласно коэффициентам в уравнении. Только при соблюдении этого условия реакция может быть использована для количественного анализа.

Основной операцией титриметрического анализа является титрование – постепенное смешивание веществ до полного окончания реакции. Обычно в титриметрическом анализе используются растворы веществ. В ходе титрования раствор одного вещества постепенно приливается к раствору другого вещества до тех пор, пока вещества полностью не прореагируют. Раствор, который приливают, называется титрантом, раствор, к которому приливается титрант, называется титруемым раствором. Объём титруемого раствора, который подвергается титрованию, называется аликвотной частью или аликвотным объёмом.

Точкой эквивалентности называется момент, наступающий в ходе титрования, когда реагирующие вещества полностью прореагировали. В этот момент они находятся в эквивалентных количествах, т. е. достаточных для полного, без остатка, протекания реакции.

Для титрования применяются растворы с точно известной концентрацией, которые называются стандартными или титрованными. Различают несколько типов стандартных растворов.

Первичным стандартом называется раствор с точно известной концентрацией, приготовленный по точной навеске вещества. Вещество для приготовления первичного стандарта должно иметь определённый состав и быть определённой степени чистоты. Содержание в нём примесей не должно превышать установленных норм. Зачастую для приготовления стандартных растворов вещество подвергается дополнительной очистке. Перед взвешиванием вещество высушивается в эксикаторе над осушающим веществом или выдерживается при повышенной температуре. Навеску взвешивают на аналитических весах и растворяют в определённом объёме растворителя. Полученный стандартный раствор не должен изменять своих свойств при хранении. Стандартные растворы хранят в плотно закрытой посуде. При необходимости их предохраняют от попадания прямых солнечных лучей и воздействия высокой температуры. Стандартные растворы многих веществ (HCl, H2SO4, Na2B4O7 и др.) могут храниться годами без изменения концентрации.

Ввиду того, что подготовка вещества для приготовления стандартного раствора является длительным и трудоёмким процессом, химической промышленностью выпускаются т. наз. фиксаналы. Фиксанал представляет собой стеклянную ампулу, в которой запаяна определённая навеска вещества. Ампулу разбивают, и вещество количественно переносят в мерную колбу, доводя затем объём жидкости до метки. Применение фиксаналов значительно облегчает процесс и сокращает время приготовления стандартного раствора.

Некоторые вещества трудно получить в химически чистом виде (например, KMnO4). Из-за содержания примесей взять точную навеску вещества часто бывает невозможно. Кроме этого, растворы многих веществ при хранении изменяют свои свойства. Например, растворы щелочей способны поглощать углекислый газ из воздуха, в результате чего их концентрация со временем меняется. В этих случаях используют вторичные стандарты.

Вторичным стандартом называется раствор вещества с точно известной концентрацией, которая устанавливается по первичному стандарту. Вторичные стандарты (например, растворы KMnO4, NaOH и т. д.) хранятся при тех же условиях, что и первичные стандарты, но их концентрацию периодически проверяют по стандартным растворам так называемых установочных веществ.

2. Способы и виды титрования.

В процессе титрования аликвотная часть раствора отбирается обычно в колбу, затем к ней из бюретки малыми порциями приливается раствор титранта, до достижения точки эквивалентности. В точке эквивалентности измеряется объём титранта, израсходовавшийся на титрование раствора. Титрование может осуществляться несколькими способами.

Прямое титрование заключается в том, что раствор определяемого вещества А титруют стандартным раствором титранта В. Способом прямого титрования титруют растворы кислот, оснований, карбонатов и т. д.

При реверсивном титровании аликвотную часть стандартного раствора В титруют раствором определяемого вещества А. Реверсивное титрование применяется в том случае, если определяемое вещество неустойчиво при тех условиях, в которых производится титрование. Например, окисление нитритов перманганатом калия происходит в кислой среде.

NO2- + MnO2- + 6H+ ® NO3- + Mn2+ + 3H2O

Но сами нитриты в кислой среде неустойчивы.

2NaNO2 + H2SO4 ® Na2SO4 + 2HNO2

Поэтому стандартный раствор перманганата, подкисленный серной кислотой, титруют раствором нитрита, концентрацию которого хотят определить.

Обратное титрование применяют в тех случаях, когда прямое титрование не применимо: например, из-за очень низкого содержания определяемого вещества, невозможности определить точку эквивалентности, при медленном протекании реакции и т. д. В ходе обратного титрования к аликвотной части определяемого вещества А приливают точно измеренный объём стандартного раствора вещества В, взятый в избытке. Непрореагировавший избыток вещества В определяют титрованием стандартным раствором вспомогательного вещества С. По разности исходного количества вещества В и его количества, оставшегося после протекания реакции, определяют количество вещества В, вступившее в реакцию с веществом А, исходя из которого и рассчитывают содержание вещества А.

Косвенное титрование или титрование по заместителю. Основано на том, что титруют не само определяемое вещество, а продукт его реакции со вспомогательным веществом С.

Вещество D должно образовываться строго количественно по отношению к веществу А. Определив cодержание продукта реакции D титрованием стандартным раствором вещества В, по уравнению реакции рассчитывают содержание определяемого вещества А.

Реакции, которые используются в титриметрическом анализе, должны быть строго стехиометрическими, протекать достаточно быстро и по возможности при комнатной температуре. В зависимости от типа протекающей реакции различают:

Кислотно-основное титрование, в основе которого лежит реакция нейтрализации.

Окислительно-восстановительное титрование, основанное на окисчлительно-восстановительных реакциях.

Комплексонометрическое титрование, основанное на реакциях комплексообразования.

3. Кислотно-основное титрование.

В основе кислотно-основного титрования лежит реакция нейтрализации между кислотой и основанием. В результате реакции нейтрализации образуется соль и вода.

HAn + KtOH ® KtAn + H2O

Реакция нейтрализации протекает при комнатной температуре практически мгновенно. Кислотно-основное титрование применяется для определения кислот, оснований, а также многих солей слабых кислот: карбонатов, боратов, сульфитов, и т. д. При помощи данного метода можно титровать смеси различных кислот или оснований, определяя содержание каждого компонента в отдельности.

При титровании кислоты основанием или наоборот, происходит постепенное изменение кислотности среды, которое выражается водородным показателем рН. Вода представляет собой слабый электролит, который диссоциирует согласно уравнению.

Произведение концентрации ионов водорода на концентрацию ионов гидроксила есть величина постоянная, и называется ионное произведение воды.

(1)

В нейтральной среде концентрации водородных ионов и гидроксид-ионов равны и составляют 10-7м/л. Ионное произведение воды остаётся постоянным при добавлении в воду кислоты или основания. При добавлении кислоты увеличивается концентрация ионов водорода, что приводит к сдвигу равновесия диссоциации воды влево, в результате чего концентрация гидроксид-ионов уменьшается. Например, если [H+] = 10-3м./л., то [OH-] = 10-11м./л. Ионное произведение воды останется постоянным.

Если увеличить концентрацию щёлочи, то концентрация гидроксид-ионов увеличится, а концентрация ионов водорода уменьшится, ионное произведение воды также останется постоянным. Например, [OH-] = 10-2, [H+] = 10-12

Водородным показателем рН называется отрицательный десятичный логарифм концентрации ионов водорода.

Исходя из уравнения (1) можно заключить, что в нейтральной среде рН = 7.

В кислой среде рН 7. Аналогично выводится формула для рОН из уравнения (1).

pОН = — lg [OH-] = 14 – pH. (3)

В ходе кислотно-основного титования с каждой порцией приливаемого титранта изменяется рН раствора. В точке эквивалентности рН достигает определённого значения. В этот момент времени титрование необходимо прекратить и измерить объём титранта, пошедший на титрование. Для определения рН в точке эквивалентности строят кривую титрования – график зависимости рН раствора от объёма прибавляемого титранта. Кривую титрования можно построить экспериментально, измеряя рН в различные моменты титрования, или рассчитать теоретически, используя формулы (2) или (3). Для примера рассмотрим титрование сильной кислоты HCl сильным основанием NaOH.

Таблица 1. Титрование 100мл 0,1М раствора HCl 0,1М раствором NaOH.

nHCl (моль) вступившее в реакцию.

nHCl остающееся в растворе (моль)

По мере прибавления щёлочи к раствору кислоты, происходит уменьшение количества кислоты и рН раствора увеличивается. В точке эквивалентности кислота полностью нейтрализована щёлочью и рН = 7. Реакция раствора нейтральная. При дальнейшем добавлении щёлочи рН раствора определяется избыточным количеством NaOH. При добавлении 101 и 110мл. раствора NaOH избыток щёлочи составляет соответственно 1 и 10 мл. Kоличество NaOH в этих двух точках, исходя из формулы молярной концентрации раствора равно соответственно моль и 1 10-3моль

Исходя из формулы (3) для титруемого раствора с избытком щёлочи 1 и 10 мл. имеем значения рН соответственно 10 и 11. По рассчитанным значениям рН строим кривую титрования.

По кривой титрования видно, что в начале титрования рН раствора определяется присутствием в растворе соляной кислоты и слабо изменяется при добавлении раствора щёлочи. Вблизи точки эквивалентности происходит резкий скачок рН при добавлении очень малого количества щёлочи. В точке эквивалентности в растворе присутствует только соль и вода. Соль сильного основания и сильной кислоты гидролизу не подвергается и поэтому реакция раствора нейтральная рН = 7. Дальнейшее прибавление щёлочи приводит к увеличению рН раствора, которое также незначительно изменяется от объёма приливаемого титранта, как и в начале титрования. В случае титрования сильных кислот сильными основаниями и наоборот, точка эквивалентности совпадает с точкой нейтральности раствора.

При титровании слабой кислоты сильным основанием наблюдается несколько иная картина. Слабые кислоты в растворах диссоциируют не полностью и в растворе устанавливается равновесие..

Константа этого равновесия называется константой диссоциации кислоты.

(4)

Поскольку слабая кислота диссоциирует не полностью, то концентрацию ионов водорода нельзя свести к общей концентрации кислоты в растворе как это было в случае титрования сильной кислоты. (6)

При добавлении раствора щёлочи к раствору слабой кислоты в растворе образуется соль слабой кислоты. Растворы, содержащие слабый электролит и его соль называются буферными растворами. Их кислотность зависит не только от концентрации слабого электролита, но и от концентрации соли. По формуле (5) можно рассчитать рН буферных растворов.

(5)

СKtAn – концентрация соли в буферном растворе.

KD – константа диссоциации слабого электролита

СHАn – концентрация слабого электролита в растворе.

Буферные растворы обладают свойством сохранять определённое значение рН при добавлении кислоты или основания (отсюда происходит их название). Добавление сильной кислоты к буферному раствору приводит к вытеснению слабой кислоты из её соли и следовательно, к связыванию ионов водорода:

KtAn + H+ ® Kt+ + HAn

При добавление сильного основания, последнее сразу нейтрализуется присутствующей в растворе слабой кислотой с образованием соли,

HAn + OH-® HOH + An-

что также приводит к стабилизации рН буферного раствора. Буферные растворы широко применяются в лабораторной практике в тех случаях, когда требуется создать среду с постоянным значением рН.

В качестве примера рассмотрим титрование 100 мл. 0,1М. раствора уксусной кислоты СН3СООН, 0,1М. раствором NaOH.

При добавлении щёлочи к раствору уксусной кислоты происходит реакция.

СН3СООН + NaOH ® СН3СООNa + H2O

Из уравнения реакции видно, что СН3СООН и NaOH вступают в реакцию в соотношении 1:1, следовательно количество вступившей в реакцию кислоты равно количеству щёлочи, содержащемуся в прилитом титранте. Количество образующегося ацетата натрия СН3СООNa также равно количеству щёлочи поступившему в раствор в ходе титрования.

В точке эквивалентности уксусная кислота полностью нейтрализована и в растворе присутствует ацетат натрия. Однако реакция раствора в точке эквивалентности не является нейтральной, поскольку ацетат натрия как соль слабой кислоты подвергается гидролизу по аниону.

СН3СОО — + Н+ОН- ® СН3СООН + ОН-.

Можно показать, что концентрация ионов водорода в растворе соли слабой кислоты и сильного основания может быть рассчитана по формуле.

рН = — lg 1,4 ×10-9 = 8,85.

После точки эквивалентности рН раствора определяется избытком приливаемой щёлочи. Если прилито 101 и 110 мл рН раствора составляет соответственно 11 и 12(см. табл. 1).

Таблица 2 Титрование 0,1М раствора СН3СООН, 0,1М раствором NaOH.

CH3COOH вступившее в реакцию.

CH3COOН остающееся в растворе

По полученным данным строим кривую титрования слабой кислоты сильным основанием.

По кривой титрования видно, что точка эквивалентности при титровании слабой кислоты сильным основанием не совпадает с точкой нейтральности и лежит в области щелочной реакции раствора.

Кривые титрования позволяют точно определить рН раствора в точке эквивалентности, что является важным для определения конечной точки титрования. Определение точки эквивалентности можно производить инструментальным методом, непосредственно измеряя рН раствора при помощи прибора рН–метра, но чаще для этих целей используют кислотно-основные индикаторы. Индикаторы по своей природе являются органическими веществами, которые изменяют свою окраску в зависимости от рН среды. Сами по себе индикаторы являются слабыми кислотами или основаниями, которые обратимо диссоциируют согласно уравнению:

Молекулярная и ионная формы индикатора имеют различную окраску и переходят друг в друга при определённом значении рН. Пределы рН, в которых индикатор меняет свою окраску, называются интервалом перехода индикатора. Для каждого индикатора интервал перехода является строго индивидуальным. Например, индикатор метиловый красный меняет окраску в интервале рН = 4.4 – 6,2. При рН 6,2, в жёлтый. Фенолфталеин в кислой среде бесцветен, в интервале рН = 8 – 10 он приобретает малиновую окраску. Для того, чтобы правильно выбрать индикатор, необходимо сопоставить его интервал перехода со скачком рН на кривой титрования. Интервал перехода индикатора должен по возможности совпадать со скачком рН. Например, при титровании сильной кислоты сильным основанием скачок рН наблюдается в интервале 4-10. В данный промежуток попадают интервалы перехода таких индикаторов как метиловый красный (4,4 – 6,2), фенолфталеин (8 – 10), лакмус (5 – 8). Все эти индикаторы пригодны для установления точки эквивалентности в данном виде титрования. Такие индикаторы как ализариновый желтый (10 – 12), тимоловый голубой (1,2 – 2,8) в данном случае совершенно непригодны. Их использование даст совершенно неверные результаты анализа.

При выборе индикатора желательно, чтобы изменение окраски было наиболее контрастным и резким. С этой целью иногда применяют смеси различных индикаторов или смеси индикаторов с красителями.

3. Окислительно – восстановительное титрование.

К окислительно-восстановительным, относят обширную группу методов титриметрического анализа, основанных на протекании окислительно-восстановительных реакций. В окислительно-восстановительном титровании используются различные окислители и восстановители. При этом возможно определение восстановителей титрованием стандартными растворами окислителей и наоборот, определение окислителей стандартными растворами восстановителей. Благодаря большому разнообразию окислительно-восстановительных реакций этот метод позволяет определять большое количество самых разнообразных веществ, в том числе и тех которые непосредственно не проявляют окислительно-восстановительных свойств. В последнем случае используется обратное титрование. Например, при определении кальция его ионы осаждают оксалат – ионом

Ca2+ + C2O42- ® CaC2O4¯

Избыток оксалата затем оттитровывают перманганатом калия.

Окислительно-восстановительное титрование имеет ещё ряд достоинств. Окислительно-восстановительные реакции протекают достаточно быстро, что позволяет проводить титрование всего за несколько минут. Многие из них протекают в кислой, нейтральной и щелочной средах, что значительно расширяет возможности применения данного метода. Во многих случаях фиксирование точки эквивалентности возможно без применения индикаторов, поскольку применяемые растворы титрантов окрашены (KMnO4, K2Cr2O7) и в точке эквивалентности окраска титруемого раствора изменяется от одной капли титранта. Основные виды окислительно-восстановительного титрования различают по окислителю, используемому в реакции.

В данном методе окислительно-восстановительного титрования окислителем служит перманганат калия KMnO4. Перманганат калия сильный окислитель. Он способен вступать в реакции в кислой, нейтральной и щелочной средах. о различных средах окислительная способность перманганата калия неодинакова. Наиболее сильно она выражена в кислой среде.

MnO4- + 8H+ +5e ® Mn+ + 4H2O

MnO4- + 2H2O + 3e ® MnO2¯ + 4OH-

Перманганатометрическим методом можно определять самые разнообразные вещества: Fe2+, Cr2+, Mn2+, Cl-, Br-, SO32-, S2O32-, NO2,- Fe3+, Ce4+, Cr2O72+, MnO2, NO3-, ClO3-.и т. д. Многие органические вещества: фенолы, аминосахара, альдегиды, щавелевую кислоту и т. д.

Перманганатометрия имеет много достоинств.

1. Перманганат калия является дешёвым и легкодоступным веществом.

2. Растворы перманганата окрашены в малиновый цвет, поэтому точку эквивалентности можно установить без применения индикаторов.

3. Перманганат калия сильный окислитель и поэтому пригоден для определения многих веществ, которые не окисляются другими окислителями.

4. Титрование перманганатом можно проводить при различной реакции среды.

Перманганатометрия имеет и некоторые недостатки.

1. Перманганат калия трудно получить в химически чистом виде. Поэтому приготовить стандартный раствор по точной навеске вещества затруднительно. Для титрования используют вторичные стандарты перманганата, концентрация которых устанавливается по стандартным растворам других веществ: (NH4)2C2O4, K4[Fe(CN)6], H2C2O4 и др. которые называются установочными веществами.

2. Растворы перманганата неустойчивы и при длительном хранении меняют свою концентрацию, которую необходимо периодически проверять по растворам установочных веществ.

3. Окисление перманганатом многих веществ при комнатной температуре протекает медленно и для проведения реакции требуется нагревание раствора.

В йодометрическом титровании окислителем является йод. Йод окисляет многие восстановители: SO32-, S2O32-, S2-, N2O4, Cr2+, и т. д. Но окислительная способность у йода значительно меньше, чем у перманганата. Йод плохо растворим в воде, поэтому обычно его растворяют в растворе KI. Концентрацию стандартного раствора йода устанавливают стандартным раствором тиосульфата натрия Na2S2O3.

2S2O32- + I2 ® S4O62- + 2I-

При йодометрическом определении используются различные способы титрования. Вещества, легко окисляемые йодом, титруют непосредственно стандартным раствором йода. Так определяют: CN-, SO32-, S2O32-, и др.

Вещества, которые труднее окисляются йодом, титруют методом обратного титрования: к раствору определяемого вещества приливают избыток раствора йода. После окончания реакции избыточный йод отитровывают стандартным раствором тиосульфата. Индикатором в йодометрическом титровании служит обычно крахмал, который даёт с йодом характерное синее окрашивание, по появлению которого можно судить о присутствии в растворе свободного йода.

Методом косвенного йодометрического титрования определяют многие окислители: к раствору окислителя приливают определённый объём стандартного раствора йодида калия, при этом выделяется свободный йод, который затем отитровывается стандартным раствором тиосульфата. Методом косвенного титрования определяют Cl2, Br2, O3 KMnO4, BrO32- и т. д.

Достоинства йодометрического метода.

1. Йодометрический метод является очень точным и превосходит по точности другие методы окислительно-восстановительного титрования.

2. Растворы йода окрашены, что позволяет в некоторых случаях определять точку эквивалентности без применения индикаторов.

3. Йод хорошо растворим в органических растворителях, что позволяет использовать его для титрования неводных растворов.

Йодометрия имеет и некоторые недостатки.

1. Йод является летучим веществом и при титровании возможны его потери за счёт испарения. Поэтому йодометрическое титрование нужно проводить быстро и по возможности на холоду.

2. Йодид ионы окисляются кислородом воздуха, по этой причине йодометрическое титрование необходимо проводить быстро.

3. В щелочной среде йод диспропорционирует: I2 + OH — ® I — + HI+1O3 По этой причине йодометрическое титрование нельзя проводить в щелочной среде.

4. Реакции с участием йода протекают медленно.

5. Стандартные растворы йода и тиосульфата неустойчивы, при хранении их концентрацию необходимо проверять.

В хроматометрическом титровании окислителем служит стандартный раствор бихромата калия K2Cr2O7 или, реже хромата калия K2CrO4. Бихромат калия является сильным окислителем в кислой среде.

Cr2O72- + 14H+ + 6e ® Cr3+ + 7H2O

Бихромат калия используется для определения различных восстановителей U4+, Fe2+, Ti3+, NO2-, SO32-, а также окислителей, которые предварительно восстанавливаются до низших степеней окисления: Fe3+, Ce4+, MoO42+, V5+.

Достоинства этого метода следующие:

1. Бихромат калия легко получить в химически чистом состоянии.

2. Стандартные растворы бихромата готовят по точной навеске вещества.

3. Растворы бихромата очень устойчивы и не изменяются под действием света, кислорода воздуха, углекислого газа.

4. Бихромат калия является менее сильным окислителем чем перманганат, поэтому его растворы менее чувствительны к загрязнению органическими и неорганическими восстановителями, попадающими в дистиллированную воду.

1. Бихромат калия со многими веществами реагирует медленно, поэтому прямое титрование не всегда возможно. В этом случае применяют обратное титрование.

2. Конечную точку титрования по изменению окраски раствора, вызванному избытком титранта зачастую трудно установить, поэтому в этих случаях применяют индикаторный или инструментальный метод.

3. Бихромат калия менее сильный окислитель, чем перманганат, поэтому бихроматометрия применяется реже, чем перманганатометрия.

Существуют и другие методы окислительно- восстановительного титрования — цериметрия, основанная на окислительной способности ионов церия

Ванадометрия, основанная на окислительной способности соединений ванадия

меркуриметрия и т. д.

Процесс окислительно-восстановительного титрования можно представить графически. Кривая окислительно-восстановительного титрования отражает зависимость окислительно-восстановительного потенциала системы от объёма прибавляемого титранта. Окислительно-восстановительный потенциал системы рассчитывают по уравнению Нернста.

(1)

Е0 – стандандартный элетродный потенциал системы.

2,3 – коэффициент перехода от десятичных логарифмов к натуральным.

R – универсальная газовая постоянная.

Т – абсолютная температура.

Z – число электронов, переходящих от окислителя к восстановителю.

[Ox] – концентрация окисленной формы в растворе.

[Red] – концентрация восстановленной формы в растворе.

а, в – стехиометрические коэффициенты в уравнении реакции.

F – константа Фарадея 96500 Кл.

Рассмотрим титрование 100мл. 0,1М. раствора сульфата железа (2) FeSO4 0,1М. раствором сульфата церия (4) Ce(SO4)2. ионы Fe2+ окисляются ионами Се+4 по уравнению.

Fe2+ + Се+4 ® Fe3+ + Се+3

До точки эквивалентности потенциал определяется ионами Fe3+/ Fe2+. По мере увеличения концентрации ионов церия потенциал системы постепенно возрастает. B точке эквивалентности, когда прибавлено 100 мл раствора Ce(SO4)2, сульфат железа (2) полностью окислен в сульфат железа (3). Потенциал в точке эквивалентности рассчитывается по формуле:

После точки эквивалентности потенциал определяется избыточным количеством ионов церия.

Таблица 4. Титрование 100 мл. раствора FeSO4 0,1 М раствором Ce(SO4)2.

Объём 0,1Mраствора Ce(SO4)2

Соотношение концентраций ионов.

По данным таблицы 4 строим кривую титрования.

В точке эквивалентности наблюдается резкий скачок потенциала. Кривая титрования позволяет точно определить значение потенциала в точке эквивалентности и объём титранта, необходимый для её достижения.

Фиксирование точки эквивалентности в окислительно-восстановительном титровании может осуществляться различными способами. Как уже упоминалось, в некоторых случаях возможно безиндикаторное определение точки эквивалентности по окраске раствора от избытка титранта. Точку эквивалентности можно определять инструментальным способом, напрямую измеряя потенциал системы потенциометром. И, наконец, фиксирование точки эквивалентности осуществляется при помощи окислительно-восстановительных индикаторов.

Окислительно-восстановительные индикаторы представляют собой органические соединения, окисляющиеся при определённом значении потенциала.

Indвосст. ± ne ® Indокисл.

Окисленная и восстановленная формы индикаторов обладают различной окраской, изменение которой обнаруживается невооружённым глазом. Окислительно-восстановительные индикаторы можно разделить на три группы:

1. Обратимо окисляющиеся и восстанавливающиеся при определённом значении потенциала вещества (ферроин 1,060 -–1,140В).

2. Индикаторы, необратимо окисляющиеся при определённом значении потенциала и при этом изменяющие свою окраску. К числу таких индикаторов относятся метиловый оранжевый, метиловый красный и некоторые другие.

3. Индикаторы, реагирующие с окислителем или восстановителем с образованием специфически окрашенных соединений. Например, при йодометрии используется крахмал, дающий с йодом характерное синее окрашивание. Роданид-ион даёт характерное окрашивание с ионом железа Fe3+.

4. Комплексонометрическое титрование.

Метод комплексонометрического титрования основан на реакциях комплексообразования определяемых веществ с комплексонами. Комплексоны – большей частью органические вещества, выступающие в роли полидентантных лигандов и образующие с определяемыми веществами хелатные комплексы. Большинство комплексонов относится к аминокарбоновым кислотам и их производным. Наибольшее применение в комплексонометрии находит этилендиаминтетрауксусная кислота и её натриевая соль (ЭДТА).

1 O-C — H2C CН2-С-O — 4

2 — N-CH2-CH2-N — 5

3 — O-C — H2C CH2-C-O — 6

Натриевая соль ЭДТА лучше растворима в воде, чем сама кислота, поэтому она более удобна для приготовления стандартных растворов и применяется чаще. Комплексонометрическое титрование применяется для определения содержания катионов металлов. Косвенными методами можно определять также анионы. ЭДТА образует с катионами металлов чрезвычайно устойчивые комплексы. Константа устойчивости их настолько велика, что ионы металлов не обнаруживаются в растворах комплексов с ЭДТА обычными аналитическими реакциями. Реакции с ЭДТА протекают строго стехиометрически, что позволяет широко использовать этот метод для определения различных металлов. Если обозначить натриевую соль ЭДТА как Na2H2Y, то реакции с ионами металлов будут следующими:

Сa2+ + H2Y2- ® CaY2- + 2H+

Al3+ + H2Y2- ® AlY — + 2H+

Ti4+ + H2Y2- ® TiY + 2H+

Из приведённых уравнений видно, что 1моль ЭДТА связывает 1 моль ионов металла независимо от их степени окисления.

В растворах ЭДТА за счёт комплексообразования растворяются такие малорастворимые соединения как BaSO4, PbSO4, CaCO3, и т. д. Поэтому комплексонометрическим титрованием можно определять содержание ионов металла и в малорастворимых соединениях.

Концентрация стандартного раствора ЭДТА обычно устанавливается по стандартным растворам солей ZnSO4, ZnCl2, MgSO4. Возможно приготовление стандартного раствора по точной навеске вещества. Промышленностью выпускаются также фиксаналы ЭДТА.

Для титрования растворами комплексонов используются различные приёмы. Методы прямого титрования используются для определения Cu2+, Cd2+, Pb2+, Ni2+, Fe3+, Zn2+ .и др. В ходе прямого титрования аликвотную часть исследуемого раствора титруют при соответствующих условиях стандартным раствором ЭДТА. В точке эквивалентности концентрация ионов металла равна нулю. При обратном титровании к исследуемому раствору приливают определённый объём стандартного раствора ЭДТА. После связывания определяемых ионов, избыток ЭДТА отитровывают стандартным раствором ZnSO4, или MgSO4. Метод косвенного титрования основан на том, что к исследуемому раствору приливают раствор комплекса магния с ЭДТА. Магний образует с ЭДТА менее устойчивые комплексы, чем другие металлы. В растворе происходит реакция обмена.

Мех+ + MgY2- ® MeY + Mg2+

Выделившиеся свободные ионы магния титруют стандартным раствором ЭДТА. В связи с тем, что при образовании комплексов в раствор выделяется эквивалентное количество ионов водорода, определение можно провести отитровав последние методами кислотно-основного титрования с применением соответствующих кислотно-основных индикаторов. Выделение ионов водорода приводит к изменению рН среды, что может повлиять на устойчивость комплексов и привести к искажению результатов анализа. Чтобы избежать этого рН стабилизируют добавлением буферных растворов или определение ведут в щелочной среде.

Для установки точки эквивалентности в комплексонометрическом титровании применяют специальные металл-индикаторы. Металл-индикаторы представляют собой комплексоны, которые образуют с определяемым ионом комплексы, менее устойчивые, чем комплексы с ЭДТА. Индикатор и его комплекс с металлом имеют различную окраску.

Мех+ + Ind ® МеInd

При титровании раствором ЭДТА комплекс индикатора с металлом разрушается, так как ионы металла связываются в более устойчивый комплекс с ЭДТА.

МеInd + H2Y2- ® МеH2Y + 2H+ + Ind

В точке эквивалентности все катионы оказываются связанными с ЭДТА, при этом индикатор меняет окраску. В комплексонометрическом титровании используют индикаторы: ксиленоловый оранжевый (переход от красной окраски к желтой), ПАН (пиридил-2-азонафтол), эриохром чёрный Т (переход синий-оранжевый) и другие.

5. Техника эксперимента.

При проведении следует выполнять ряд общих правил, несоблюдение которых повлечёт за собой ошибки в результатах анализа.

Вся посуда, используемая в эксперименте, должна быть тщательно вымыта – вода должна равномерно смачивать стенки посуды, не оставляя капель. Мерная посуда: (колбы, пипетки, бюретки) должна быть предварительно откалибрована, поскольку реальная ёмкость посуды часто отличается от той, которая обозначена на маркировке. Для калибровки посуду взвешивают на аналитических весах, затем заполняют дистиллированной водой и снова взвешивают. По массе воды определяют реальную ёмкость посуды.

Мерные колбы и пипетки нельзя брать за расширенные части т. к. от тепла рук происходит расширение стекла, и объём посуды может измениться. Набирают жидкость в пипетки, обычно засасывая её ртом. Однако этого нельзя делать в случае ядовитых или едких жидкостей. В этом случае используют различные приспособления: резиновые груши, дозаторы и т. д. Но при работе следует придерживаться какого-либо одного способа заполнения пипеток. Поверхность жидкости в пипетках и мерных колбах имеет вогнутую форму. Отсчёт объёма производится по нижнему краю мениска жидкости в случае прозрачных растворов и по верхнему краю в случае непрозрачных или сильно окрашенных.

Взятие аликвотных частей является ответственной операцией в титриметрическом анализе. Набрав пипеткой определённый объём жидкости дают ему свободно вытечь в колбу. Затем на несколько секунд прикасаются кончиком пипетки к стенке колбы. Выдувать остаток раствора, который всегда остаётся в пипетке не следует. Все растворы должны иметь одинаковую температуру примерно 200С. После взятия аликвотной части добавляют, если это необходимо индикатор. Поскольку индикатор не является нейтральным веществом, добавлять его нужно ровно столько, сколько предусмотрено методикой.

Рабочее место должно быть хорошо освещено. Под колбу, в которой производят титрование, подкладывают лист белой бумаги. Бюретка должна быть укреплена строго вертикально. Перед заполнением её 2-3 раза ополаскивают раствором титранта. Раствор в бюретку наливают при помощи воронки. Сначала наливают раствора несколько больше нулевого деления, после чего необходимо удалить воздух из кончика бюретки. Если бюретка с краном, то, открыв его, выливают некоторое количество раствора. Если бюретка снабжена резиновой трубкой, то необходимо, отогнув её вверх, выпустить воздух из кончика бюретки. После этого устанавливают уровень жидкости на ноль и обязательно вынимают воронку. Последнее необходимо делать потому, что на воронке всегда остаётся какое-то количество раствора, которое может попасть в бюретку и исказить объём, пошедший на титрование.

После того как произведены предварительные приготовления, приступают к титрованию. Колбу с титруемым раствором вносят под бюретку и начинают приливать титрант малыми порциями, перемешивая раствор круговыми движениями колбы. От момента начала титрования и до его окончания выносить колбу из-под бюретки нельзя, т. к. при этом часть раствора может пролиться мимо колбы, что приведёт к потерям и искажению результатов анализа. Приливать титрант из бюрентки следует таким образом, чтобы он непосредственно попадал в раствор, находящийся в колбе, а не стекал по стенке.

Вблизи точки эквивалентности окраска раствора начинает изменяться. В этот момент раствор нужно прибавлять по каплям. В точке эквивалентности происходит резкое изменение окраски титруемого раствора от одной капли титранта. В момент изменения окраски индикатора титрование следует прекратить и измерить объём титранта по бюретке. Иногда переход окраски индикатора бывает недостаточно резким, и установить точку эквивалентности бывает достаточно трудно. В этом случае используют т. наз. «свидетеля». «Свидетель» — раствор, имеющий концентрацию веществ, соответствующую точке эквивалентности, к которому прибавлено такое же количество индикатора, что и к титруемому раствору. «Свидетель» служит эталоном окраски, с которым сравнивают окраску титруемого раствора.

Если возникают сомнения в правильности определения точки эквивалентности, то нужно записать объём титранта, а затем прилить некоторое количество титранта в колбу. Если наблюдается резкое изменение окраски раствора, то записанный объём титранта считается объёмом, пошедшим на титрование. Если окраска не изменилась, продолжают приливать титрант по каплям.

Титрование проводят несколько раз. Первое титрование является приближённым. Оно ставит своей целью примерно определить объём титранта. При последующих титрованиях в целях экономии времени можно сразу вылить некоторое количество титранта и только вблизи точки эквивалентности титровать медленно по каплям. Титрование проводят обычно до получения не менее трёх сходящихся результатов.

Опыт 1 Кислотно-основное титрование. Определение концентрации раствора щелочи.

Концентрацию раствора щелочи определяют методом прямого титрования стандартным раствором кислоты в присутствии индикатора метилового красного или метилового оранжевого.

Оборудование и реактивы: бюретки. колба коническая, пипетки, фиксанал соляной кислоты, метиловый красный индикатор.

Приготовить стандартный раствор соляной кислоты из фиксанала. В мерную колбу на 1л. вставьте чистую воронку. В воронку вставьте стеклянный боек. Ампулу тщательно вымойте водопроводной, а затем дистиллированной водой. Аккуратно разбейте ампулу с одного конца о боек, вставленный в воронку. Другим бойком, не вынимая ампулы из воронки, разбейте ее сверху. Смойте содержимое ампулы в колбу дистиллированной водой: тщательно ополосните ампулу изнутри и снаружи, а также ополосните стенки воронки. Доведите объем дистиллированной водой до метки. Данный раствор является первичным стандартом.

В коническую колбу поместите аликвотную часть раствора щелочи. Прибавьте 4-5 капель индикатора метилового красного. Бюретку заполните стандартным раствором кислоты и титруйте раствор щелочи до изменения желтой окраски в оранжево-желтую.

Титруют 3-4 пробы, находят средний объем раствора титранта.

Молярную концентрацию раствора щелочи рассчитывают исходя из того, что растворы одинаковой молярной концентрации реагируют в объемах пропорциональных стехиометрическим коэффициентам в уравнении реакции.

NaOH + HCl = NaCl + H2O

Опыт 2 Окислительно-восстановительное титрование. Определение нитритов перманганатометрическим методом.

При перманганатометрическом определении нитритов используют метод реверсивного титрования, т. е. стандартный раствор перманганата калия титруют анализируемым раствором нитрита. Связано это с тем, что нитриты разлагаются кислотой с образованием оксидов азота: 2NO2- + H+ → 2HNO2 → NO + NO2 + H2O.

Реакцию окисления нитрита раствором перманганата калия в ионной форме можно записать:

5NO2- + 2MnO4- + 6H+ → 5NO3- + 2Mn2+ + 3H2O.

Исследуемый раствор, содержащий NaNO2, в мерной колбе разбавляют дистиллированной водой до метки и тщательно перемешивают. Этим раствором заполняют бюретку. В коническую колбу для титрования на 250мл переносят аликвотную часть стандартного раствора перманганата калия. Прибавляют 10мл. 2н раствора серной кислоты и 100мл. дистиллированной воды. Слегка подогрев колбу, титруют его раствором нитрита натрия до обесцвечивания розовой окраски раствора от одной капли титранта.

Oкисление нитрита натрия перманганатом калия в кислой среде идет по реакции:

5NaNO2 + 2KMnO4 + 3H2SO4 = 5NaNO3 + 2MnSO4 + K2SO4 + 3H2O.

Соотношение нормальных концентраций реагирующих веществ обратно пропорционально соотношению объемов:

Из данного соотношения находим концентрацию нитрита натрия в титранте:

Опыт 3 Комплексонометрическое титрование. Определение алюминия комплексонометрическим методом.

Комплексонометрическое определение алюминия основано на обратном титровании избытка ЭДТА сульфатом цинка с использованием в качестве индикаторов ксиленолового оранжевого или ПАН. При этом протекают реакции:

Al3+ + ЭДТАизбыток. ® АlЭДТА- + ЭДТА.

ЭДТАост + М2+ ® МЭДТА2- + 2Н+.

Реактивы: раствор ЭДТА 0,025М, раствор сульфата цинка 0,025М, раствор ацетата натрия 0,2М, соляная кислота 1М, ксиленоловый оранжевый индикатор: смесь с нитратом калия в соотношении 1:100.

Выполнение работы

Анализируемый раствор в мерной колбе на 100мл. доводят до метки дистиллированной водой и тщательно перемешивают. В коническую колбу для титрования переносят аликвотную часть раствора (10мл), добавляют 20мл. 0,025М раствора ЭДТА, 2мл 1М раствора НСl, нагревают до кипения и оставляют на кипящей водяной бане 10мин. После охлаждения раствора устанавливают рН=5 добавлением 0,2М раствора ацетата натрия. Добавляют на кончике шпателя индикатор ксиленоловый оранжевый и после полного растворения индикатора титруют раствором сульфата цинка до изменения окраски раствора от желтой к красной. Титрование повторяют до получения не менее трех сходящихся результатов.

Реакция ионов алюминия с ЭДТА происходит по уравнению:

Al3+ + ЭДТА2- ® [AlЭДТА]- + 2H+

при этом из 20 мл., прибавленного нами раствора ЭДТА расходуется только часть Vизр. Другая часть раствора ЭДТА является избыточной Vизб. и оттитровывается сульфатом цинка. Реакция с ионами цинка идет по уравнению:

Zn2+ + ЭДТА2- ® [ZnЭДТА]2- + 2H+.

Поскольку растворы сульфата цинка и ЭДТА взяты одинаковой молярной концентрации, то по уравнению реакции объем раствора сульфата цинка равен избыточному объему ЭДТА:

По уравнению реакции число молей ЭДТА равно числу молей ионов алюминия:

1. На каком принципе основано определение веществ в титриметрическом анализе?

2. Какие существуют способы титрования? Приведите примеры из лабораторной работы.

3. Дайте определения понятиям: первичный стандарт, вторичный стандарт, титрант, аликвотный объём, титрование.

4. Какие существуют виды титриметрического анализа, на чём основана их классификация?

5. Перечислите основные виды окислительно-восстановительного титрования. Дайте краткую характеристику перманганатометрии и йодометрии.

6. Что называется точкой эквивалентности? Какие существуют способы её установления, и какие из них использовались в данной лабораторной работе?

7. Для чего предназначены кривые титрования? Каковы принципы их построения в кислотно-основном и окислительно-восстановительном титровании?


источники:

http://electrochemistry.ru/methods/titrimetricheskiy-analiz/okislitelno-vosstanovitelnoe-titrovanie/

http://pandia.ru/text/78/441/14976.php