Методы при решение логарифмических уравнений

Методика решения логарифмических уравнений

Разделы: Математика

Введение

Увеличение умственной нагрузки на уроках математики заставляет задуматься над тем как поддержать у студентов интерес к изучаемому материалу, их активность на протяжении всего урока. В связи с этим ведутся поиски новых эффективных методов обучения и таких методических приемов, которые активизировали бы мысль студентов, стимулировали бы их к самостоятельному приобретению знаний.

Возникновение интереса к математике у значительного числа студентов зависит в большей степени от методики ее преподавания, от того, на сколько умело будет построена учебная работа. Вовремя обращая внимание студентов на то, что математика изучает общие свойства объектов и явлений окружающего мира, имеет дело не с предметами, а с отвлеченными абстрактными понятиями, можно добиться понимания того, что математика не нарушает связи с действительностью, а, напротив, дает возможность изучить ее глубже, сделать обобщенные теоретические выводы, которые широко применяются в практике.

Участвуя в фестивале педагогических идей «Открытый урок» 2004-2005 учебного года, я представила урок-лекцию по теме «Логарифмическая функция» (диплом № 204044). Считаю этот метод наиболее удачным в данном конкретном случае. В результате изучения у студентов имеется подробный конспект и краткая схема по теме, что облегчит им подготовку к следующим урокам. В частности, по теме «Решение логарифмических уравнений», которая полностью опирается на изучение логарифмической функции и ее свойств.

При формировании основополагающих математических понятий важно создать у студентов представление о целесообразности введения каждого из них и возможности их применения. Для этого необходимо, чтобы при формулировке определения некоторого понятия, работе над его логической структурой, рассматривались вопросы об истории возникновения данного понятия. Такой подход поможет студентам осознать, что новое понятие служит обобщением фактов реальной действительности.

История возникновения логарифмов подробно представлена в работе прошлого года.

Учитывая важность преемственности при обучении математике в среднем специальном учебном заведении и в вузе и необходимость соблюдения единых требований к студентам считаю целесообразным следующую методику ознакомления студентов с решением логарифмических уравнений.

Уравнения, содержащие переменную под знаком логарифма (в частности, в основании логарифма), называются логарифмическими. Рассмотрим логарифмические уравнения вида:

(1)

Решение этих уравнений основано на следующей теореме.

Теорема 1. Уравнение равносильно системе

(2)

Для решения уравнения (1) достаточно решить уравнение

(3)

и его решения подставить в систему неравенств

(4),

задающую область определения уравнения (1).

Корнями уравнения (1) будут только те решения уравнения (3), которые удовлетворяют системе (4), т.е. принадлежат области определения уравнения (1).

При решения логарифмических уравнений может произойти расширение области определения (приобретение посторонних корней) или сужение (потеря корней). Поэтому подстановка корней уравнения (3) в систему (4), т.е. проверка решения, обязательна.

Пример 1: Решить уравнение

Оба значения х удовлетворяют условиям системы.

Ответ:

Рассмотрим уравнения вида:

(5)

Их решение основано на следующей теореме

Теорема 2: Уравнение (5) равносильно системе

(6)

Корнями уравнения (5) будут только те корни уравнения , которые

принадлежат области определения, задаваемой условиями .

Логарифмическое уравнение вида (5) можно решить различными способами. Рассмотрим основные из них.

1. ПОТЕНЦИНИРОВАНИЕ (применение свойств логарифма).

Пример 2: Решить уравнение

Решение: В силу теоремы 2 данное уравнение равносильно системе:

Всем условиям системы удовлетворяет лишь один корень. Ответ:

2. ИСПОЛЬЗОВАНИЕ ОПРЕДЕЛЕНИЯ ЛОГАРИФМА .

Пример 3: Найти х, если

Значение х = 3 принадлежит области определения уравнения. Ответ х = 3

3. ПРИВЕДЕНИЕ К КВАДРАТНОМУ УРАВНЕНИЮ.

Пример 4: Решить уравнение

Оба значения х являются корнями уравнения.

Ответ:

Пример 5: Решить уравнение

Решение: Прологарифмируем обе части уравнения по основанию 10 и применим свойство «логарифм степени».

Оба корня принадлежат области допустимых значений логарифмической функции.

Ответ: х = 0,1; х = 100

5. ПРИВЕДЕНИЕ К ОДНОМУ ОСНОВАНИЮ.

Пример 6: Решить уравнение

Воспользуемся формулой и перейдем во всех слагаемых к логарифму по основанию 2:

Тогда данное уравнение примет вид:

Так как , то это корень уравнения.

Ответ: х = 16

6. ВВЕДЕНИЕ ВСПОМОГАТЕЛЬНОЙ ПЕРЕМЕННОЙ.

Решим способом введения вспомогательной переменной уравнение, заданное в примере 6.

Пусть ; тогда

Учитывая, что

После проверки, проведенной устно, легко убеждаемся в правильности найденного ответа.

Многие уравнения, содержащие переменную не только под знаком логарифма или в показателе степени, удобно решать графически.

Графически решением уравнения являются абсциссы точек пересечения графиков функций, заданных в уравнении.

Пример 7: Решить уравнение

Решение: Построим графики функций и y = x

Графики функций не пересекаются, и, значит, уравнение не имеет корней (см. рисунок).

Ответ: корней нет

Пример 8: Найти х, если

Решение: С помощью рассмотренных выше способов корни уравнения найти не удается. Найдем какой-нибудь корень методом подбора.

Пусть, например, х = 10. Проверкой убедимся в том, что 10 — корень уравнения. Действительно,

истинно

Докажем, что других корней данное уравнение не имеет.

Эти корни следует искать во множестве значений х.

Допустимые значения х находятся в промежутке

На этом промежутке функция убывает, а функция возрастает. И, значит, если уравнение имеет решение, то оно единственное.

Логарифмические уравнения и системы

п.1. Методы решения логарифмических уравнений

При решении логарифмических уравнений используются следующие основные методы:
1) переход от логарифмического уравнения к равносильному уравнению \(f(x)=g(x)\) с системой неравенств, описывающих ОДЗ;
2) графический метод;
3) замена переменной.

п.2. Решение уравнений вида \(\log_a f(x)=\log_a g(x)\)

Неравенства \( \begin f(x)\gt 0\\ g(x)\gt 0 \end \) в системе соответствуют ограничению ОДЗ для аргумента логарифмической функции.

Решать логарифмическое уравнение принято в таком порядке:
1) решить систему неравенств и получить промежутки допустимых значений для \(x\) в явном виде;
2) решить уравнение \(f(x)=g(x)\);
3) из полученных корней выбрать те, что входят в промежутки допустимых значений. Записать ответ.

Однако, если выражения \(f(x)\) и \(g(x)\) слишком сложны для явного решения, возможен другой порядок действий:
1) решить уравнение \(f(x)=g(x)\);
2) провести подстановку: полученные корни подставить в выражения для \(f(x)\) и \(g(x)\), и проверить, получатся ли положительные значения для этих функций;
3) из корней выбрать те, для которых подстановка оказалась успешной. Записать ответ.

Например:
Решим уравнение \(\lg(2x+3)+\lg(x+4)=\lg(1-2x)\)
Найдем ОДЗ в явном виде:
\( \begin 2x+3\gt 0\\ x+4\gt 0\\ 1-2x\gt 0 \end \Rightarrow \begin x\gt-\frac32\\ x\gt-4\\ x\lt\frac12 \end \Rightarrow -\frac32\lt x\lt\frac12\Rightarrow x\in\left(-\frac32;\frac12\right) \)
Решаем уравнение:
\(\lg\left((2x+3)(x+4)\right)=\lg(1-2x)\)
\((2x+3)(x+4)=1-2x\)
\(2x^2+11x+12-1+2x=0\)
\(2x^2+13x+11=0\)
\((2x+11)(x+1)=0\)
\( \left[ \begin x_1=-5,5\\ x_2=-1 \end \right. \)
Корень \(x_1=-5,5\notin \left(-\frac32;\frac12\right),\) т.е. не подходит.
Корень \(x_2=-1\in \left(-\frac32;\frac12\right)\) — искомое решение.
Ответ: -1

п.3. Решение уравнений вида \(\log_ f(x)=\log_ g(x)\)

Как и в предыдущем случае, можно сначала найти ОДЗ, а потом решать уравнение.
Или же, можно решить уравнение, а потом проверить требования ОДЗ прямой подстановкой полученных корней.

Например:
Решим уравнение \(\log_(x^2-4)=\log_(2-x)\)
Найдем ОДЗ в явном виде:
\( \begin x^2-4\gt 0\\ 2-x\gt 0\\ x+5\gt 0\\ x+5\ne 1 \end \Rightarrow \begin x\lt -2\cup x\gt 2\\ x\lt 2\\ x\gt -5\\ x\ne -4 \end \Rightarrow \begin -5\lt x\lt -2\\ x\ne -4 \end \Rightarrow x\in (-5;-4)\cup(-4;-2) \)
Решаем уравнение:
\(x^2-4=2-x\)
\(x^2+x-6=0\)
\((x+3)(x-2)=0\)
\( \left[ \begin x_1=-3\\ x_2=2 — \ \text <не подходит>\end \right. \)
Ответ: -3

В логарифмическом уравнении перед отбрасыванием логарифмов основания обязательно должны быть равны. Не забывайте это проверять!

Например:
Решим уравнение \(\log_<2>(x+1)=\log_<4>(x+3)\)
Основания \(2\ne 4\), и нельзя сразу написать \(x+1=x+3\).
Нужно привести к одному основанию, преобразовав левую часть:
\(\log_2(x+1)=\log_<2^2>(x+1)^2=\log_4(x+1)^2\)
Тогда исходное уравнение примет вид: \(\log_4(x+1)^2=\log_4(x+3)\)
И теперь: \((x+1)^2=x+3\)
\(x^2+x-2=0\)
\((x+2)(x-1)=0\)
\( \left[ \begin x_1=-2\\ x_2=1 \end \right. \)
Что касается ОДЗ, то её нужно искать для исходного уравнения:
\( \begin x+1\gt 0\\ x+3\gt 0 \end \Rightarrow \begin x\gt -1\\ x\gt -3 \end \Rightarrow x\gt -1 \)
Корень \(x_1=-2\lt -1\) — не подходит.
Ответ: 1

Преобразования могут расширить первоначальную область допустимых значений (например, при возведении в квадрат), и вы включите в решение лишние корни.
Преобразования также могут сузить ОДЗ (например, при взятии корня), и некоторые решения окажутся потеряны.
Поэтому ОДЗ определяется для исходного уравнения (выражения, неравенства), а не того, которое получено после преобразований.

п.4. Примеры

Пример 1. Решите уравнения:
a) \( \log_2(x+1)-\log_2(x-1)=1 \)
ОДЗ: \( \begin x+1\gt 0\\ x-1\gt 0 \end \Rightarrow \begin x\gt -1\\ x\gt 1 \end \Rightarrow x\gt 1 \)
\(\log_2\left((x+1)(x-1)\right)=\log_22\)
\(x^2-1=2\Rightarrow x^2 =3\)
\( \left[ \begin x_1=-\sqrt<3>\lt 2 — \text<не подходит>\\ x_2=\sqrt <3>\end \right. \)
Ответ: \(\sqrt<3>\)

б) \( 2\log_5(x-1)=\log_5(1,5x+1) \)
ОДЗ: \( \begin x-1\gt 0\\ 1,5x+1\gt 0 \end \Rightarrow \begin x\gt 1\\ x\gt-\frac23 \end \Rightarrow x\gt 1 \)
Преобразуем: \(2\log_5(x-1)=\log_5(x-1)^2\)
Получаем: \(\log_5(x-1)^2=\log_5(1,5x+1)\)
\((x-1)^2=1,5x+1\)
\(x^2-2x+1-1,5x-1=0\Rightarrow x^2-3,5x=0\Rightarrow x(x-3,5)=0\)
\( \left[ \begin x_1=0\lt 1 — \text<не подходит>\\ x_2=3,5 \end \right. \)
Ответ: 3,5

в) \( \log_3(3-x)+\log_3(4-x)=1+2\log_3 2 \)
ОДЗ: \( \begin 3-x\gt 0\\ 4-x\gt 0 \end \Rightarrow \begin x\lt 3\\ x\lt 4 \end \Rightarrow x\lt 3 \)
Преобразуем: \(1+2\log_3 2=\log_3 3+\log_3 2^2=\log_3(3\cdot 4)=\log_3 12\)
Получаем: \(\log_3\left((3-x)(4-x)\right)=\log_3 12\)
\((3-x)(4-x)=12\Rightarrow 12-7x+x^2=12\Rightarrow x(x-7)=0\)
\( \left[ \begin x_1=0\\ x_2=7\gt 3 — \text <не подходит>\end \right. \)
Ответ: 0

г) \( \log_2^2x+\log_2 x^2+1=0 \)
ОДЗ: \(x\gt 0\)
\(\log_2x^2=2\log_2x\)
Получаем: \(\log_2^2x+2\log_2x+1=0\)
Замена: \(t=\log_2 x\)
\(t^2+2t+1=0\Rightarrow(t+1)^2=0\Rightarrow t=-1\)
Возвращаемся к исходной переменной: \(\log_2x=-1\)
\(x=2^<-1>=\frac12\)
Ответ: \(\frac12\)

д) \( x^<\lg x>=10 \)
ОДЗ: \(x\gt 0\)
Замена: \(t=\lg ⁡x\). Тогда \(x=10^t\)
Подставляем:
\((10^t)^t=10\Rightarrow 10^=10^1\Rightarrow t^2=1\Rightarrow t=\pm 1\)
Возвращаемся к исходной переменной:
\( \left[ \begin \lg x=-1\\ \lg x=1 \end \right. \Rightarrow \left[ \begin x=10^<-1>\\ x=10 \end \right. \Rightarrow \left[ \begin x_1=0,1\\ x_2=10 \end \right. \)
Оба корня подходят.
Ответ:

e) \( \sqrt\cdot \log_5(x+3)=0 \)
ОДЗ: \( \begin x\geq 0\\ x+3\gt 0 \end \Rightarrow \begin x\geq 0\\ x\gt -3 \end \Rightarrow x\geq 0 \)
\( \left[ \begin \sqrt=0\\ \log_5(x+3)=0 \end \right. \Rightarrow \left[ \begin x=0\\ x+3=5^0=1 \end \right. \Rightarrow \left[ \begin x_1=0\\ x_2=-2\lt 0 — \text <не подходит>\end \right. \)
Ответ: 0

ж) \( \log_<5x-2>2+2\log_<5x-2>x=\log_<5x-2>(x+1) \)
ОДЗ: \( \begin x\gt 0\\ x+1\gt 0\\ 5x-2\gt 0\\ 5x-2\ne 1 \end \Rightarrow \begin x\gt 0\\ x\gt -1\\ x\gt\frac25\\ x\ne\frac35 \end \Rightarrow \begin x\gt\frac25\\ x\ne\frac35 \end \)
Преобразуем: \(\log_<5x-2>2+2\log_<5x-2>x=\log_<5x-2>(2x^2)\)
Подставляем: \(\log_<5x-2>(2x^2)=\log_<5x-2>(x+1)\)
\( 2x^2=x+1\Rightarrow 2x^2-x-1=0\Rightarrow (2x+1)(x-1)=0 \Rightarrow \left[ \begin x_1=-\frac12 — \text<не подходит>\\ x_2=1 \end \right. \)
Ответ: 1

Пример 2*. Решите уравнения:
a) \( \log_4\log_2\log_3(2x-1)=\frac12 \)
ОДЗ: \( \begin 2x-1\gt 0\\ \log_3(2x-1)\gt 0\\ \log_2\log_3(2x-1)\gt 0 \end \Rightarrow \begin x\gt\frac12\\ 2x-1\gt 3^0\\ \log_3(2x-1)\gt 2^0 \end \Rightarrow \begin x\gt\frac12\\ x\gt 1\\ 2x-1\gt 3^1 \end \Rightarrow \)
\( \Rightarrow \begin x\gt\frac12\\ x\gt 1\\ x\gt 2 \end \Rightarrow x\gt 2 \)
Решаем:
\(\log_2\log_3(2x-1)=4^<1/2>=2\)
\(\log_3(2x-1)=2^2=4\)
\(2x-1=3^4=81\)
\(2x=82\)
\(x=41\)
Ответ: 41

б) \( \log_2(9-2^x)=25^<\log_5\sqrt<3-x>> \)
ОДЗ: \( \begin 9-2x\gt 0\\ 3-x\gt 0 \end \Rightarrow \begin 2^x\lt 9\\ x\lt 3 \end \Rightarrow \begin x\lt\log_2 9\\ x\lt 3 \end \Rightarrow x\lt 3 \)
Преобразуем: \(25^<\log_5\sqrt<3-x>>=25^<\log_<5^2>(\sqrt<3-x>)^2>=25^<\log_<25>(3-x)>=3-x\)
Подставляем: \(\log_2(9-2^x)=3-x\)
\(9-2^x=2^<3-x>\)
\(9-2^x-\frac<8><2^x>=0\)
Замена: \(t=2^x\gt 0\)
\( 9-t-\frac8t=0\Rightarrow \frac<-t^2+9t-8>=0\Rightarrow \begin t^2-9t+8\gt 0\\ t\ne 0 \end \Rightarrow \begin (t-1)(t-8)=0\\ t\ne 0 \end \Rightarrow \left[ \begin t_1=1\\ t_2=8 \end \right. \)
Возвращаемся к исходной переменной:
\( \left[ \begin 2^x=1\\ 2^x=8 \end \right. \Rightarrow \left[ \begin 2^x=2^0\\ 2^x=2^3 \end \right. \Rightarrow \left[ \begin x_1=0\\ x_2=3 \end \right. \)
По ОДЗ \(x\lt 3\), второй корень не подходит.
Ответ: 0

в) \( \lg\sqrt+\lg\sqrt<2x-3>+1=\lg 30 \)
ОДЗ: \( \begin x-5\gt 0\\ 2x-3\gt 0 \end \Rightarrow \begin x\gt 5\\ x\gt\frac32 \end \Rightarrow x\gt 5 \)
Преобразуем: \(\lg 30-1=\lg 30-\lg 10=\lg\frac<30><10>=\lg 3\)
Подставляем: \(\lg\sqrt+\lg\sqrt<2x-3>=\lg 3\)
\(\frac12\lg(x-5)+\frac12\lg(2x-3)=\lg 3\ |\cdot 2\)
\(\lg(x-4)+\lg(2x-3)=2\lg 3\)
\(\lg\left((x-5)(2x-3)\right)=\lg 3^2\)
\((x-5)(2x-3)=9\Rightarrow 2x^2-13x+15-9=0 \Rightarrow 2x^2-13x+6=0\)
\( (2x-1)(x-6)=0\Rightarrow \left[ \begin x_1=\frac12\lt 5 — \ \text<не подходит>\\ x_2=6 \end \right. \)
Ответ: 6

г) \( \frac<1><\lg x>+\frac<1><\lg 10x>+\frac<3><\lg 100x>=0 \)
ОДЗ: \( \begin x\gt 0\\ \lg x\ne 0\\ \lg 10x\ne 0\\ \lg 100x\ne 0 \end \Rightarrow \begin x\gt 0\\ x\ne 1\\ 10x\ne 1\\ 100x\ne 1 \end \Rightarrow \begin x\gt 0\\ x\ne\left\<\frac<1><100>;\frac<1><10>;1\right\> \end \)
Преобразуем: \(\lg 10x=\lg 10+\lg x=1+\lg 10\)
\(\lg 100x=\lg 100+\lg x=2+\lg x\)
Подставляем: \(\frac<1><\lg x>+\frac<1><1+\lg x>+\frac<3><2+\lg x>=0\)
Замена: \(t=\lg x\)
\begin \frac1t+\frac<1><1+t>+\frac<3><2+t>=0\Rightarrow \frac1t+\frac<1><1+t>=-\frac<3><2+t>\Rightarrow \frac<1+t+t>=-\frac<3><2+t>\Rightarrow (1+2t)(2+t)=(1+t)\\ 2_5t+2t^2=-3t-3t^2\Rightarrow 5t^2+8t+2=0\\ D=8^2-4\cdot 5\cdot 2=24,\ \ t=\frac<-8\pm 2\sqrt<6>><10>=\frac<-4\pm \sqrt<6>> <5>\end Возвращаемся к исходной переменной:
$$ \left[ \begin \lg x=\frac<-4- \sqrt<6>><5>\\ \lg x=\frac<-4+ \sqrt<6>> <5>\end \right. \Rightarrow \left[ \begin x=10\frac<-4- \sqrt<6>><5>\\ x=10\frac<-4+ \sqrt<6>> <5>\end \right. $$ Оба корня подходят.
Ответ: \(\left\<10\frac<-4\pm\sqrt<6>><5>\right\>\)

e) \( x^<\frac<\lg x+7><4>>=10^ <\lg x+1>\)
ОДЗ: \(x\gt 0\)
Замена: \(t=\lg x.\) Тогда \(x=10^t\)
Подставляем: \begin (10^t)^<\frac<4>>=10^\\ \frac<4>=t+1\Rightarrow t(t+7)=4(t+1)\Rightarrow t^2+7t-4t-4=0\\ t^2+3t-4=0\Rightarrow (t+4)(t-1)=0\Rightarrow \left[ \begin t_1=-4\\ t_2=1 \end \right. \end Возвращаемся к исходной переменной:
$$ \left[ \begin \lg x=-4\\ \lg x=1 \end \right. \Rightarrow \left[ \begin x=10^<-4>\\ x=10 \end \right. \Rightarrow \left[ \begin x_1=0,0001\\ x_2=10 \end \right. $$ Оба корня подходят.
Ответ: \(\left\<0,0001;\ 10\right\>\)

ж) \( 4^<\log_3(1-x)>=(2x^2+2x+5)^ <\log_3 2>\)
ОДЗ: \( \begin 1-x\gt 0\\ 2x^2+2x+5\gt 0 \end \Rightarrow \begin x\lt 1\\ D\lt 0,\ x\in\mathbb \end \Rightarrow x\lt 1 \)
По условию: \begin \log_3(1-x)=\log_4\left((2x^2+2x+5)^<\log_32>\right)\\ \log_3(1-x)=\log_32\cdot\log_4(2x^2+2x+5) \end Перейдем к другому основанию: $$ \frac<\lg(1-x)><\lg 3>=\frac<\lg 2><\lg 3>\cdot\frac<\lg(2x^2+2x+5)><\lg 4>\ |\cdot\ \lg 3 $$ \(\frac<\lg 2><\lg 4>=\frac<\lg 2><\lg 2^2>=\frac<\lg 2><2\lg 2>=\frac12\) \begin \lg(1-x)=\frac12\cdot\lg(2x^2+2x+5)\ |\cdot 2\\ 2\lg(1-x)=\lg(2x^2+2x+5)\\ \lg(1-x)^2=\lg(2x^2+2x+5)\\ (1-x)^2=2x^2+2x+5\\ 1-2x+x^2=2x^2+2x+5\\ x^2+4x+4=0\\ (x+2)^2=0\\ x=-2 \end Ответ: -2

Пример 3. Решите систему уравнений:
a) \( \begin \lg x+\lg y=\lg 2\\ x^2+y^2=5 \end \)
ОДЗ: \( \begin x\gt 0\\ y\gt 0 \end \)
Из первого уравнения: \(\lg(xy)=\lg 2\Rightarrow xy=2\)
Получаем: \( \begin xy=2\\ x^2+y^2=5 \end \Rightarrow \begin y=\frac2x\\ x^2+\left(\frac2x\right)^2-5=0 \end \)
Решаем биквадратное уравнение: \begin x^2+\frac<4>-5=0\Rightarrow\frac=0\Rightarrow \begin x^4-5x^2+4=0\\ x\ne 0 \end \\ (x^2-4)(x^2-1)=0\Rightarrow \left[ \begin x^2=4\\ x^2=1 \end \right. \Rightarrow \left[ \begin x=\pm 2\\ x=\pm 1 \end \right. \end Согласно ОДЗ, оставляем только положительные корни.
Получаем две пары решений: \( \left[ \begin \begin x=1\\ y=\frac2x=2 \end \\ \begin x=2\\ y=\frac22=1 \end \end \right. \)
Ответ: \(\left\<(1;2),(2,1)\right\>\)

б) \( \begin x^=27\\ x^<2y-5>=\frac13 \end \)
ОДЗ: \(x\gt 0,\ x\ne 1\)
Логарифмируем: \( \begin y+1=\log_x27=\log_x3^3=3\log_x3\\ 2y-5=\log_x\frac13=\log_x3^<-1>=-\log_x3 \end \)
Замена: \(z=\log_x3\) \begin \begin y+1=3z\\ 2y-5=-z\ |\cdot 3 \end \Rightarrow \begin y+1=3z\\ 6y-15=-3z \end \Rightarrow \begin 7y-14=0\\ z=5-2y \end \Rightarrow \begin y=2\\ z=1 \end \end Возвращаемся к исходной переменной: $$ \begin y=2\\ \log_x3=1 \end \Rightarrow \begin x^1=3\\ y=2 \end \Rightarrow \begin x=3\\ y=2 \end $$
Ответ: (3;2)

в*) \( \begin 3(\log_y x-\log_x y)=8\\ xy=16 \end \)
ОДЗ: \( \begin x\gt 0,\ x\ne 1\\ y\gt 0,\ y\ne 1 \end \)
Сделаем замену \(t=\log_x y\). Тогда \(\log_y x=\frac<1><\log_x y>=\frac1t\)
Подставим в первое уравнение и решим его: \begin 3\left(\frac1t-t\right)=8\Rightarrow\frac<1-t^2>=\frac83\Rightarrow \begin 3(1-t^2)=8t\\ t\ne 0 \end\\ 3t^2+8t-3=0\Rightarrow (3t-1)(t+3)=0\Rightarrow \left[ \begin t_1=\frac13\\ t_2=-3 \end \right. \end Прологарифмируем второе уравнение по \(x\): $$ \log_x(xy)=\log_x16\Rightarrow 1+\log_x y=\log_x16\Rightarrow 1+t=\log_x 16 $$ Получаем: \begin \left[ \begin \begin t=\frac13\\ \log_x16=1+t=\frac43 \end \\ \begin t=-3\\ \log_x16=1+t=-2 \end \end \right. \Rightarrow \left[ \begin \begin t=\frac13\\ x^<\frac43>=16 \end \\ \begin t=-3\\ x^<-2>=16 \end \end \right. \Rightarrow \left[ \begin \begin t=\frac13\\ x=(2^4)^<\frac34>=2^3=8 \end \\ \begin t=-3\\ x=(16)^<-\frac12>=\frac14 \end \end \right. \end Возвращаемся к исходной переменной: \begin \left[ \begin \begin x=8\\ \log_x y=\frac13 \end \\ \begin x=\frac14\\ \log_x y=-3 \end \end \right. \Rightarrow \left[ \begin \begin x=8\\ y=8^<\frac13>=2 \end \\ \begin x=\frac14\\ y=\left(\frac14\right)^<-3>=64 \end \end \right. \end
Ответ: \(\left\<(8;2),\left(\frac14; 64\right)\right\>\)

г*) \( \begin (x+y)\cdot 3^=\frac<5><27>\\ 3\log_5(x+y)=x-y \end \)
ОДЗ: \(x+y\gt 0\)
Прологарифмируем первое уравнение по 3: \begin \log_3\left((x+y)\cdot 3^\right)=\log_3\frac<5><27>\\ \log_3(x+y)+(y-x)=\log_3\frac<5><27>\\ \log_3(x+y)-\log_3\frac<5><27>=x-y \end Получаем:\(x-y=3\log_5(x+y)=\log_3(x+y)-\log_3\frac<5><27>\)
Решим последнее уравнение относительно \(t=x+y\) \begin 3\log_5 t=\log_3 t-\log_3\frac<5><27>\\ 3\cdot\frac<\log_3t><\log_35>-\log_3t=-\log_3\frac<5><27>\\ \log_3t\cdot\left(\frac<3><\log_35>-1\right)=-\log_3\frac<5><27>\\ \log_3t=-\frac<\log_3\frac<5><27>><\frac<3><\log_35>-1>=-\frac<(\log_35-3)\log_35><3-\log_35>=\log_35\\ t=5 \end Тогда: \(x-y=3\log_5t=3\log_55=3\)
Получаем систему линейных уравнений: \begin \begin x+y=5\\ x-y=3 \end \Rightarrow \begin 2x=5+3\\ 2y=5-3 \end \Rightarrow \begin x=4\\ y=1 \end \end Требование ОДЗ \(x+y=4+1\gt 0\) выполняется.
Ответ: (4;1)

Алгебра

План урока:

Задание. Укажите корень логарифмического уравнения

Задание. Решите урав-ние

В чуть более сложных случаях под знаком логарифма может стоять не сама переменная х, а выражение с переменной. То есть урав-ние имеет вид

Задание. Найдите решение логарифмического уравнения

Задание. Решите урав-ние

Задание. Решите урав-ние

Получили показательное уравнение. Показатели степеней можно приравнять, если равны их основания:

Уравнения вида logaf(x) = logag(x)

Порою логарифм стоит в обеих частях равенства, то есть и слева, и справа от знака «равно». Если основания логарифмов совпадают, то должны совпадать и аргументы логарифмов.

Задание. Решите урав-ние

Задание. Найдите корень урав-ния

Ситуация несколько усложняется в том случае, когда, под знаком логарифма в обоих частях равенства стоят выражения с переменными, то есть оно имеет вид

С одной стороны, очевидно, что должно выполняться равенство f(x) = g(x). Но этого мало, ведь под знаком логарифма не должно стоять отрицательное число. Поэтому после получения корней следует подставить их в урав-ние и убедиться, что они не являются посторонними корнями.

Задание. Решите урав-ние

Получили квадратное уравнение, которое решаем с помощью дискриминанта:

Получили два корня, (– 3) и 4. Однако теперь подставим их в исходное урав-ние и посмотрим, что у нас получится. При х = – 3 имеем:

Это верное равенство, поэтому х = – 3 действительно является корнем урав-ния. Теперь проверяем х = 4:

Хотя выражения и справа, и слева одинаковы, равенство верным считать нельзя, ведь выражение log3 (– 1) не имеет смысла! Действительно, нельзя вычислять логарифм от отрицательного числа. Поэтому корень х = 4 оказывается посторонним, и у нас остается только один настоящий корень – число (– 3).

Уравнения, требующие предварительных преобразований

Естественно, не всегда в обоих частях логарифмических уравнений и неравенств стоят только логарифмы с совпадающими основаниями. Часто требуется выполнить некоторые предварительные преобразования, чтобы привести урав-ние к виду logaf(x) = logag(x).

Задание. Решите урав-ние

с помощью которой любой множитель можно внести под знак логарифма. Сделаем это и в нашем случае:

Теперь в обеих частях равенства не стоит ничего, кроме логарифмов с одинаковыми основаниями. Поэтому мы можем приравнять их аргументы:

Задание. Решите урав-ние

Снова проверяем каждый из корней, подставляя его в исходное ур-ние. Прих = –1 получаем

Задание. Решите урав-ние

Решение. В правой части снова стоит сумма, но на этот раз не логарифмов. Однако число 1 можно представить как log5 5. Тогда урав-ние можно преобразовать:

Задание. Решите урав-ние

Решение. Данный пример похож на простейшее логарифмическое уравнение, однако переменная находится в основании логарифма, а не в аргументе. По определению логарифма мы можем записать, что

Первый вариант придется отбросить, так как основание логарифма, (а в данном случае это выражение х – 5) не может быть отрицательным числом. Получается, что

Задание. Решите урав-ние

Решение. Здесь ситуация осложняется тем, что основания логарифмов разные. Поэтому один из них необходимо привести к новому основанию. Попробуем привести log25x 4 к основанию 5, используя известную нам формулу

Мы добились того, что у логарифмов одинаковые основания, а потому мы можем приравнять их аргументы:

Логарифмические уравнения с заменой переменных

Иногда приходится делать некоторые замены, чтобы уравнение приняло более привычный вид.

Задание. Решите уравнение методом замены переменной

Задание. Найдите решение уравнения методом замены переменной

Решение. Для начала напомним, что символ lg означает десятичный логарифм. Отдельно знаменатель дроби в правой части:

Логарифмирование уравнений

Ясно, что если от равных величин взять логарифмы по одному и тому же основанию, то тогда эти логарифмы окажутся также равными. Если подобный прием применяют при решении урав-ния, то, говорят, что производится логарифмирование уравнения. Иногда оно позволяет решить некоторые особо сложные примеры.

Задание. Укажите корни урав-ния

Здесь переменная величина находится одновременно и в основании степени, и в ее показателе. Возьмем от правой и левой части урав-ния логарифм по основанию 5:

Возвращаемся от переменной t к переменной х:

Переход от логарифмических неравенств к нелогарифмическим

Рассмотрим график логарифмической функции у = logax при условии а > 1. Она является возрастающей функцией. Если на оси Ох отложить два числа tи s так, чтобы t располагалось левее s (то есть t 1). Но это не совсем так. Дело в том, что надо учесть ещё и тот факт, что под знаком логарифма может стоять исключительно положительное число. Получается, что от простейшего логарифмического неравенства

Естественно, вместо величин t и s могут стоять как числа, так и выражения с переменными.

Задание. Найдите решение логарифмического неравенства

Ответ можно оставить и в такой форме, однако всё же принято записывать его в виде промежутка. Очевидно, что нерав-во 0 logas:

Но, снова-таки, мы должны учесть, числа t может быть лишь положительным (тогда s, которое больше t, автоматически также окажется положительным). Получается, что при 0 loga s можно перейти к двойному нерав-ву 0 2 – 45х + 200 имеет решение

Однако в системе (5) есть ещё два неравенства, х > 0 и 45 >x. Их решениями являются промежутки (0; + ∞) и (– ∞; 45). Чтобы определить решение всей системы, отметим на одной прямой решения каждого отдельного нерав-ва и найдем область их пересечения:

Видно, что решениями нерав-ва будут являться промежутки (0; 5) и (40; 45), на которых справедливы все три нерав-ва, входящих в систему (5).


источники:

http://reshator.com/sprav/algebra/10-11-klass/logarifmicheskie-uravneniya-i-sistemy/

http://100urokov.ru/predmety/urok-9-uravneniya-logarifmicheskie