Методы решение логарифмических или показательных уравнений

Как решать
показательные уравнения?

Решение уравнений – навык, который необходим каждому нацеленному на успешную сдачу ЕГЭ и ОГЭ школьнику. Это поможет решить задания №5, 13 и 15 из профильного уровня математики.

Одна из их разновидностей – степенные уравнения, которые иногда также называют показательными. Основная отличительная особенность – наличие переменной \(х\) не в основании степени, а в самом показателе. Как это выглядит:

Не бойтесь – это самый общий вид показательных уравнений. Реальные примеры выглядят как-то так:

Внимательно посмотрите на приведенные уравнения. В каждом из них присутствует, так называемая, показательная (степенная) функция. При решении необходимо помнить об основных свойствах степени, а также использовать особые правила, помогающие вычислить значение \(х\). Познакомиться с понятием степени и ее свойствами можно тут и тут.

И вам понадобится умение решать обыкновенные линейные и квадратные уравнения, те, что вы проходили в 7-8 классе. Вот такие:

И так, любое уравнение, в котором вы увидите показательную (степенную) функцию, называется показательным уравнением. Кроме самой показательной функции в уравнении могут быть любые другие математические конструкции – тригонометрические функции, логарифмы, корни, дроби и т.д. Если вы видите степень, значит перед вам показательное уравнение.

Ура! Теперь знаем, как выглядят показательные уравнения, но толку от этого не очень много. Было бы неплохо научиться их решать. Отличная новость – на наш взгляд показательные уравнения одни из самых простых типов уравнений, по сравнению с логарифмическими, тригонометрическими или иррациональными.

Простейшие показательные уравнения

Давайте начнем с самых простых типов уравнений и разберем сразу несколько примеров:

Что такое решить уравнение? Это значит, что нужно найти такое число, которое при подстановке в исходное уравнение вместо \(х\) даст верное равенство. В нашем примере нужно найти такое число, в которое нужно возвести двойку, чтобы получить восемь. Ну это просто:

Значит, если \(х=3\), то мы получим верное равенство, а значит мы решили уравнение.

Решим что-нибудь посложнее.

Такое уравнение выглядит сложнее. Попробуем преобразовать правую часть уравнения:

Мы применили свойство отрицательной степени по формуле:

Теперь наше уравнение будет выглядеть так:

Заметим, что слева и справа у нас стоят показательные функции, и там, и там основания одинаковые и равны \(3\), только вот степени разные – слева степень \((4х-1)\), а справа \((-2)\). Логично предположить, что если степени у такой конструкции будут равны, при условии, что основания одинаковые, то мы получим верное равенство. Так и поступим:

Такое мы решать умеем, ведь это обыкновенное линейное уравнение.

Поздравляю, мы нашли корень нашего показательного уравнения.

Попробуем поступить так, как в предыдущем примере – преобразуем левую и правую часть, чтобы слева и справа была показательная функция с одинаковым основанием. Как это сделать? Обращаем внимание, что \(125=5*5*5=5^3\), а \(25=5*5=5^2\), подставим:

Воспользуемся одним из свойств степеней \((a^n)^m=a^\):

И опять мы получили две показательные функции, у которых одинаковые основания и для того, чтобы равенство выполнялось, необходимо приравнять из степени:

И еще один пример:

Те, кто хорошо знает свойства степеней, знают, что показательная функция не может быть отрицательной. Действительно, попробуйте возводить \(2\) в различную степень, вы никогда не сможете получить отрицательное число.

Внимание! Показательная функция не может быть отрицательной, поэтому, когда вы встречаете примеры на подобии примера 4, то знайте, что такого быть не может. Здесь корней нет, потому что показательная функция всегда положительна.

Теперь давайте разработаем общий метод решения показательных уравнений. И научимся решать более сложные примеры.

Общий метод решения показательных уравнений

Пусть у нас есть вот такой пример:

Где \(a,b\) какие-то положительные числа. (\(a>0, \; b>0\).

Согласно разобранным выше примерам, логично предположить, что для того, чтобы решить данное уравнение, нужно его преобразовать к виду, где слева и справа стоят показательные функции с одинаковым основанием. Так и поступим.

Слева у нас уже стоит \(a^x\), с этим ничего делать не будем, а вот справа у нас стоит загадочное число \(b\), которое нужно попытаться представить в виде \(b=a^m\). Тогда уравнение принимает вид:

Раз основания одинаковые, то мы можем просто приравнять степени:

Вот и весь алгоритм решения. Просто нужно преобразовать исходное уравнение таким образом, чтобы слева и справа стояли показательные функции с одинаковыми основаниями, тогда приравниваем степени и вуаля – сложное показательное уравнение решено. Осталось только разобраться, как так преобразовывать. Опять разберем на примерах:

Замечаем, что \(16=2*2*2*2=2^4\) это степень двойки:

Основания одинаковые, значит можно приравнять степени:

$$x=4.$$
Пример 6 $$5^<-x>=125 \Rightarrow 5^<-x>=5*5*5 \Rightarrow 5^<-x>=5^3 \Rightarrow –x=3 \Rightarrow x=-3.$$
Пример 7 $$9^<4x>=81 \Rightarrow (3*3)^<4x>=3*3*3*3 \Rightarrow(3^2)^<4x>=3^4 \Rightarrow 3^<8x>=3^4 \Rightarrow 8x=4 \Rightarrow x=\frac<1><2>.$$

Здесь мы заметили, что \(9=3^2\) и \(81=3^4\) являются степенями \(3\).

Все здорово, но проблема в том, что такая схема решения показательных уравнений работает не всегда. Что делать, если привести к одинаковому основанию не получается. Например:

\(3\) и \(2\) привести к одинаковому основанию затруднительно. Но тем не менее мы должны это сделать. Воспользуемся следующей схемой преобразований: пусть есть некоторое положительное число \(b>0\), тогда его можно представить в виде степени любого, нужного вам, положительного числа не равного единице \(a>0, \; a \neq 1\):

Эта очень важная формула, рекомендуем ее выучить. Вернемся к нашему примеру и по формуле представим \(2\) в виде \(3\) в какой-то степени, где \(a=3\), а \(b=2\):

Подставим данное преобразование в наш пример:

Получили равенство двух показательных функций с одинаковым основанием, значит можем приравнять их степени:

Так в ответ и запишем. Никакой ошибки здесь нет, дело в том, что такие логарифмы можно посчитать только на калькуляторе, поэтому на ЕГЭ или в контрольной работе вы просто оставляете ответ в таком виде.

Кто забыл, что такое логарифм, можно посмотреть здесь.

Рассмотрим еще несколько аналогичных примеров.

Те, кто хорошо знает свойства логарифмов, могут поиграться с последней формулой и получить ответ в разном виде:

Все эти варианты ответа верные, их можно смело писать в ответ.

И так, мы с вами научились решать любые показательные уравнения вот такого вида: \(a^x=b\), где \(a>0; \; b>0\).

Но это еще далеко не все. Часто вы будете встречать показательные уравнения гораздо более сложного типа. В ЕГЭ по профильной математике это номер 15 из 2й части. Но бояться тут не нужно, все на первый взгляд сложные уравнения при помощи обычно не самых сложных преобразований сводятся к уравнениям типа \(a^x=b\), где \(a>0; \; b>0\). Рассмотрим типы сложных уравнений, которые могут попасться:

Решение показательных уравнений при помощи замены

Самое первое, что вы должны всегда делать, это пытаться привести все имеющиеся показательные функции к одинаковому основанию.

Здесь это сделать легко, замечаем, что \(9=3^2\), тогда \(9^x=(3^2)^x=3^<2x>=(3^x)^2\). Здесь мы воспользовались свойством степеней: \((a^n)^m=a^\). Подставим:

Обратим внимание, что во всем уравнении все \(х\) «входят» в одинаковую функцию — \(3^x\). Сделаем замену \(t=3^x, \; t>0\), так как показательная функция всегда положительна.

Квадратное уравнение, которое решается через дискриминант:

Оба корня больше нуля, значит оба нам подходят. Сделаем обратную замену и уравнение сводится к решению двух простых показательных уравнений:

И второй корень:

И еще один пример на замену:

Воспользуемся нашим правилом, что все нужно приводить к одинаковому основанию – а стоп, тут и так у всех показательных функций основание \(3\). Давайте еще внимательно посмотрим на наш пример, очень похоже на то, что он тоже делается через замену. Но у нас тут нет одинаковых показательных функций, основания то одинаковые, а вот степени отличаются. Но если быть внимательным, то можно заметить, что в первой степени можно разбить свободный член \(3=2+1\) и вынести общий множитель \(2\):

Подставим в исходное уравнение:

Теперь показательные функции одинаковы и можно сделать замену:

Обратная замена, и наше уравнение сводится к простейшему:

И второе значение \(t\):

Тут у нас две показательные функции с основаниями \(7\) и \(3\), и как сделать из них одинаковые основания непонятно. Этот пример решается при помощи деления. Давайте поделим все наша уравнение на \(3^x\):

Здесь нам придется воспользоваться свойствами степеней:

Разберем каждое слагаемое:

Теперь подставим получившееся преобразования в исходное уравнение:

Теперь видно, что в нашем уравнении есть одинаковая функция, которую можно убрать в замену \(t=(\frac<7><3>)^x\):

Сделаем обратную замену:

И последний пример на замену:

Первым делом нужно сделать так, чтобы все показательные функции были с одинаковым основанием и в идеале с одинаковой степенью. Для этого нам понадобятся формулы для степеней:

Разберем каждое слагаемое нашего уравнения:

Все десятичные дроби всегда разумно представить в виде обыкновенных дробей. И будьте внимательны — отрицательная степень не имеет никакого отношения к знаку показательной функции!

И последнее слагаемое со степенью:

Подставим все наши преобразования в исходное уравнение:

Теперь можно сделать замену \(t=2^x\) или можно обойтись без замены, просто приведя подобные слагаемые (вынести общий множитель \(2^x\)):

Особенно стоит подчеркнуть прием, который мы использовали при решении 13-го примера. Всегда старайтесь избавляться от десятичных дробей. Переводите их в обыкновенные дроби.

И другой тип степенных уравнений, где обычно не нужно делать замену, а необходимо отлично знать все свойства степеней, некоторые из них мы уже обсудили выше. Все про свойства степеней можно посмотреть тут

Вот такое уравнение, в котором у нас, во-первых, показательных функции перемножаются, а еще хуже то, что у них у всех разные основания. Катастрофа, а не пример. Но ничего, все не так страшно, как кажется. Внимательно посмотрите на основания: у нас есть в основании \(2\), \(5\) и \(10\). Очевидно, что \(10=2*5\). Воспользуемся этим и подставим в наше уравнение:

Воспользуемся формулой \((a*b)^n=a^n*b^n\):

И перекинем все показательные функции с основанием \(2\) влево, а с основанием \(5\) вправо:

Сокращаем и воспользуемся формулами \(a^n*a^m=a^\) и \(\frac=a^\):

Самая главная идея при решении показательных уравнений – это любыми доступными способами свести все имеющиеся степенные функции к одинаковому основанию. А еще лучше и к одинаковой степени. Вот почему необходимо знать все свойства степеней, без этого решить уравнения будет проблематично.

Как же понять, где какие преобразования использовать? Не бойтесь, это придет с опытом, чем больше примеров решите, тем увереннее будете себя чувствовать на контрольных в школе или на ЕГЭ по профильной математике. Сначала потренируйтесь на простых примерах и постепенно повышайте уровень сложности. Успехов в изучении математики!

Методы решения показательных и логарифмических уравнений и неравенств

Разработка обобщающего урока по теме «методы решения показательных и логарифмических уравнений и неравенств» , конспект + презентация.

Просмотр содержимого документа
«Рефлексия»

На уроке я работал

Своей работой на уроке я

доволен / не доволен

Урок для меня показался

не устал / устал

стало лучше / стало хуже

Материал урока мне был

понятен / не понятен

Домашнее задание мне кажется

интересно / не интересно

На уроке я работал

Своей работой на уроке я

доволен / не доволен

Урок для меня показался

не устал / устал

стало лучше / стало хуже

Материал урока мне был

понятен / не понятен

Домашнее задание мне кажется

интересно / не интересно

Просмотр содержимого документа
«диагностическая карта»

Этапы работы на уроке

1. Решение простейших логарифмических уравнений и неравенств

2. Теоретические сведения о решении логарифмических уравнений и неравенств

4. Работа в группах

Этапы работы на уроке

1. Решение простейших логарифмических уравнений и неравенств

2. Теоретические сведения о решении логарифмических уравнений и неравенств

4. Работа в группах

Этапы работы на уроке

1. Решение простейших логарифмических уравнений и неравенств

2. Теоретические сведения о решении логарифмических уравнений и неравенств

4. Работа в группах

Этапы работы на уроке

1. Решение простейших логарифмических уравнений и неравенств

2. Теоретические сведения о решении логарифмических уравнений и неравенств

4. Работа в группах

Этапы работы на уроке

1. Решение простейших логарифмических уравнений и неравенств

2. Теоретические сведения о решении логарифмических уравнений и неравенств

4. Работа в группах

Просмотр содержимого документа
«домашнее задание»

Просмотр содержимого документа
«конспект урока»

Тема урока: Методы решения показательных и логарифмических уравнений и неравенств.

Цели урока: урок обобщения и систематизации знаний и способов действий в сочетании с их комплексным применением.

создать условия для повторения и обобщения знаний учащихся по теме «Решение логарифмических уравнений и неравенств»;

активизировать деятельность учащихся по применению комплекса знаний и умений на практике;

подготовка к ЕГЭ.

развивать способности применять теоретические знания на практике;

развивать навыки работы с тестовыми заданиями;

развивать навыки самоконтроля , логическое мышление, память, внимание.

воспитывать ответственное отношение к изучению математики, трудолюбие, взаимопомощь, волю и настойчивость в достижении поставленной цели.

Оборудование урока: презентация, компьютер, проектор, интерактивная доска, карточки с тестовыми заданиями, диагностические карты.

Организация начала урока (Учащимся сообщается тема урока и цели, подчеркивается актуальность повторения данной темы для подготовки к ЕГЭ).

Девиз сегодняшнего урока: “Нельзя изучать математику глядя на то, как это делает сосед”.

Только свой труд в изучении математики может принести результаты. Перед нами стоит задача: повторить типы, методы и особенности решения показательных и логарифмических уравнений и неравенств и применить их на практике.

Наши знания должны работать и дать положительный результат на экзамене. Сегодня каждый из вас проведет диагностику своих знаний по данной теме, для этого у каждого диагностические карты, в которых вы оцените свои знания и возможности по каждому из разделов. В соответствии с этой оценкой на индивидуальных консультациях мы постараемся устранить имеющиеся пробелы.

Актуализация знаний учащихся

а) Показательные уравнения и неравенства и методы их решения (Приложение 1).

б) Логарифмические уравнения и неравенства и методы их решения (Приложение 2)

Комплексное применение знаний на практике.

1. Применение теоретического материала к решению задач.

Одновременно у доски работают двое учащихся. Один решает показательное уравнение и неравенство, второй логарифмическое уравнение и неравенство.

а)

б)

а) 49 x -8∙7 x + 7 = 0

б)

1. Тестовая работа

Оцените свои умения решать простейшие показательные и логарифмические уравнения и неравенства. У каждого из вас есть индивидуальная карточка с тестовыми заданиями. Шесть заданий этого теста взяты из открытого банка заданий по математике (http://mathege.ru) и являются прототипами задания В3 ЕГЭ. Ответы записывайте в специальных полях и обращайте внимание на образец написания цифр. На выполнение теста отводим 15 минут. По окончании вы в соответствии оцениваете свою работу и выставляете соответствующую отметку в диагностическую карту.

Критерии оценивания: 8 заданий – «5»; 6,7 заданий – «4»; 4, 5 заданий – «3» и менее 4 заданий –«2».

В1. Найдите корень уравнения

В2. найдите корень уравнения

В3. Найдите корень уравнения

В4. Найдите корень уравнения

В5 Найдите корень уравнения

В6. Решите уравнение . Если уравнение имеет более одного корня, в ответе укажите меньший из них

Решение показательных и логарифмических уравнений в классах с углублённым изучениАем математики.
методическая разработка по алгебре (11 класс) по теме

Алгоритм решения показательных и логарифмических уравнений.

Скачать:

ВложениеРазмер
reshenie_pokazatelnykh_i_logarifmicheskikh_uravneniy_2.doc202.5 КБ

Предварительный просмотр:

МОУ «Средняя общеобразовательная школа №22 с УИОП»

Решение показательных и логарифмических уравнений в классах с углубленным изучением математики.

Учитель математики Куликова Н.В.

Решению показательных и логарифмических уравнений в школьном курсе алгебры и начал математического анализа уделяется большое внимание, так как изучение этого вопроса открывает широкие возможности для четкого восприятия свойств функции, а также для повторения некоторых ранее изученных разделов алгебры (решение квадратных уравнений и т.д.)

Показательные уравнения принадлежат к классу уравнений, носящих название трансцендентных уравнений. Для этих уравнений нельзя указать общего способа решения. До окончательного решения трансцендентного уравнения неясно, сколько оно имеет корней. При решении показательных уравнений возможно получение посторонних корней, поэтому в тех случаях, где это необходимо, корни следует проверять подстановкой.

Показательные уравнения можно разбить на три типа, каждый из которых решается определённым способом.

К перовому типу можно отнести уравнения, в которых равные основания даны в неявном виде.

Исходное уравнение свелось к уравнению вида . Данное уравнение равносильно уравнению при условии, что и .

С учетом изложенного уравнение (*) равносильно уравнению

Необходимо сделать проверку, т.к. областью допустимых значений Х является не всё множество действительных чисел.

Можно разделить левую и правую части уравнения на произведение Это сделать можно, так как данное произведение не ровно 0 ни при каких Х.

Исходное уравнение свелось к уравнению . С учётом изложенного выше

Ко второму типу можно отнести уравнения, левая часть которых требует предварительного разложения на множители.

Степени равны, показатели степеней тоже равны при неравных основаниях, значит показатели степеней равны 0, т.е.

К третьему типу можно отнести уравнения, решение которых сводится к решению квадратного уравнения. При этом используется метод введения новой переменной с отбором корней на промежуточном этапе.

Если обозначить , ( по свойству показательных функций), то исходное уравнение сведётся к уравнению

не удовлетворяет условию .

В данном случае необходимости в проверке не существует.

Решение простейших логарифмических уравнений связано с определением логарифма и основным логарифмическим тождеством вида , где .

На основании определения логарифма решаются задачи, в которых по данным основаниям и числу определяется логарифм, по данному логарифму и основанию определятся число и по данному числу и логарифму определятся основание. Решения уравнений вышеприведенного характера обычно затруднений не вызывают. В школьной программе чаще всего встречаются уравнения, которые решаются либо непосредственным потенцированием, либо потенцированием с предварительным упрощением данного выражения, либо логарифмированием обеих частей уравнения.

Желательно, не приступая к решению уравнения, найти область допустимых значений функции, стоящей в левой части уравнения.

При наличии предварительного исследования проверку делать не обязательно. Если же исследование не проводится, то проверка решения необходима.

В данном случае

С учётом проведенного исследования проверка решения не нужна.

С учётом проведенных исследований возможно перейти к решению уравнения

Данное решение удовлетворяет ОДЗ, следовательно является корнем исходного уравнения.

Необходимо прологарифмировать обе части уравнения по основанию 10

Решив данное уравнение относительно , можно получить

С учётом ОДЗ является корнем исходного уравнения.

Логарифмирование обеих частей уравнения используется в основном для уравнений, в которых показатель степени содержит логарифмы.

Несколько примеров решения уравнений с усложнёнными условиями:

Естественно заметить, что , , . Используя определение логарифма, можно перейти к следующим равенствам:

Тогда с учетом новой переменной исходное уравнение примет вид

не удовлетворяет ОДЗ

Решив данное уравнение относительно , можно получить откуда

По теме: методические разработки, презентации и конспекты

Урок — семинар в 11 классе «Решение показательных и логарифмических уравнений с модулем»

Данный урок — семинар рекомендуется для работы в профильном классе, а также материал этого занятия можно использовать на факультативном занятии. Здесь предложен конспект урока, презентация, разадаточн.

Применение нестандартных способов при решении показательных и логарифмических уравнений и неравенств.

Разработка урока по теме «Применение нестандартных способов при решении показательных и логарифмических уравнений .

Урок алгебры в 11 классе с углубленным изучением математики по теме: «Решение показательных и логарифмических уравнений с переменным основанием. Введение сложной экспоненты».

Форма: урок-практикум.Задачи: путем введения сложной экспоненты научить решать показательные и логарифмические уравнения с переменным основанием.Цели урока:Образовательные: -.

Обобщающий урок по теме:»Решение показательных и логарифмических уравнений и неравенств» в 10 — 11 классе

Ребятам нравится практичесое приложение данного материала, спор двух очень сложных для решения и понимания функций (показательной и логарифмической).Решение большого количества различных заданий дает .

Урок алгебры в 11 классе «Решение показательных и логарифмических уравнений»

Презентация предназначена для проведения урока по алгебре (11 класс).Урок адресован:- учителям математики, работающим в выпускных классах, которым нужно не просто закрепить тему, но и подготовит.

Крупноблочное изучение тем : «Показательная логарифмическая функция», «Решение показательных и логарифмических уравнений и неравенств»

Данная методическая разработка поможеть учителю в планировании учебной деятельности.

Повторение 11 класс Решение показательных и логарифмических уравнений и неравенств

Рассматривается материал повторения решения показательных и логарифмических уравнений и неравенств.


источники:

http://demo.multiurok.ru/index.php/files/mietody-rieshieniia-pokazatiel-nykh-i-logharifmich.html

http://nsportal.ru/shkola/algebra/library/2014/06/17/reshenie-pokazatelnykh-i-logarifmicheskikh-uravneniy-v-klassakh-s