Методы решения логарифмических уравнений примеры

Методика решения логарифмических уравнений

Разделы: Математика

Введение

Увеличение умственной нагрузки на уроках математики заставляет задуматься над тем как поддержать у студентов интерес к изучаемому материалу, их активность на протяжении всего урока. В связи с этим ведутся поиски новых эффективных методов обучения и таких методических приемов, которые активизировали бы мысль студентов, стимулировали бы их к самостоятельному приобретению знаний.

Возникновение интереса к математике у значительного числа студентов зависит в большей степени от методики ее преподавания, от того, на сколько умело будет построена учебная работа. Вовремя обращая внимание студентов на то, что математика изучает общие свойства объектов и явлений окружающего мира, имеет дело не с предметами, а с отвлеченными абстрактными понятиями, можно добиться понимания того, что математика не нарушает связи с действительностью, а, напротив, дает возможность изучить ее глубже, сделать обобщенные теоретические выводы, которые широко применяются в практике.

Участвуя в фестивале педагогических идей «Открытый урок» 2004-2005 учебного года, я представила урок-лекцию по теме «Логарифмическая функция» (диплом № 204044). Считаю этот метод наиболее удачным в данном конкретном случае. В результате изучения у студентов имеется подробный конспект и краткая схема по теме, что облегчит им подготовку к следующим урокам. В частности, по теме «Решение логарифмических уравнений», которая полностью опирается на изучение логарифмической функции и ее свойств.

При формировании основополагающих математических понятий важно создать у студентов представление о целесообразности введения каждого из них и возможности их применения. Для этого необходимо, чтобы при формулировке определения некоторого понятия, работе над его логической структурой, рассматривались вопросы об истории возникновения данного понятия. Такой подход поможет студентам осознать, что новое понятие служит обобщением фактов реальной действительности.

История возникновения логарифмов подробно представлена в работе прошлого года.

Учитывая важность преемственности при обучении математике в среднем специальном учебном заведении и в вузе и необходимость соблюдения единых требований к студентам считаю целесообразным следующую методику ознакомления студентов с решением логарифмических уравнений.

Уравнения, содержащие переменную под знаком логарифма (в частности, в основании логарифма), называются логарифмическими. Рассмотрим логарифмические уравнения вида:

(1)

Решение этих уравнений основано на следующей теореме.

Теорема 1. Уравнение равносильно системе

(2)

Для решения уравнения (1) достаточно решить уравнение

(3)

и его решения подставить в систему неравенств

(4),

задающую область определения уравнения (1).

Корнями уравнения (1) будут только те решения уравнения (3), которые удовлетворяют системе (4), т.е. принадлежат области определения уравнения (1).

При решения логарифмических уравнений может произойти расширение области определения (приобретение посторонних корней) или сужение (потеря корней). Поэтому подстановка корней уравнения (3) в систему (4), т.е. проверка решения, обязательна.

Пример 1: Решить уравнение

Оба значения х удовлетворяют условиям системы.

Ответ:

Рассмотрим уравнения вида:

(5)

Их решение основано на следующей теореме

Теорема 2: Уравнение (5) равносильно системе

(6)

Корнями уравнения (5) будут только те корни уравнения , которые

принадлежат области определения, задаваемой условиями .

Логарифмическое уравнение вида (5) можно решить различными способами. Рассмотрим основные из них.

1. ПОТЕНЦИНИРОВАНИЕ (применение свойств логарифма).

Пример 2: Решить уравнение

Решение: В силу теоремы 2 данное уравнение равносильно системе:

Всем условиям системы удовлетворяет лишь один корень. Ответ:

2. ИСПОЛЬЗОВАНИЕ ОПРЕДЕЛЕНИЯ ЛОГАРИФМА .

Пример 3: Найти х, если

Значение х = 3 принадлежит области определения уравнения. Ответ х = 3

3. ПРИВЕДЕНИЕ К КВАДРАТНОМУ УРАВНЕНИЮ.

Пример 4: Решить уравнение

Оба значения х являются корнями уравнения.

Ответ:

Пример 5: Решить уравнение

Решение: Прологарифмируем обе части уравнения по основанию 10 и применим свойство «логарифм степени».

Оба корня принадлежат области допустимых значений логарифмической функции.

Ответ: х = 0,1; х = 100

5. ПРИВЕДЕНИЕ К ОДНОМУ ОСНОВАНИЮ.

Пример 6: Решить уравнение

Воспользуемся формулой и перейдем во всех слагаемых к логарифму по основанию 2:

Тогда данное уравнение примет вид:

Так как , то это корень уравнения.

Ответ: х = 16

6. ВВЕДЕНИЕ ВСПОМОГАТЕЛЬНОЙ ПЕРЕМЕННОЙ.

Решим способом введения вспомогательной переменной уравнение, заданное в примере 6.

Пусть ; тогда

Учитывая, что

После проверки, проведенной устно, легко убеждаемся в правильности найденного ответа.

Многие уравнения, содержащие переменную не только под знаком логарифма или в показателе степени, удобно решать графически.

Графически решением уравнения являются абсциссы точек пересечения графиков функций, заданных в уравнении.

Пример 7: Решить уравнение

Решение: Построим графики функций и y = x

Графики функций не пересекаются, и, значит, уравнение не имеет корней (см. рисунок).

Ответ: корней нет

Пример 8: Найти х, если

Решение: С помощью рассмотренных выше способов корни уравнения найти не удается. Найдем какой-нибудь корень методом подбора.

Пусть, например, х = 10. Проверкой убедимся в том, что 10 — корень уравнения. Действительно,

истинно

Докажем, что других корней данное уравнение не имеет.

Эти корни следует искать во множестве значений х.

Допустимые значения х находятся в промежутке

На этом промежутке функция убывает, а функция возрастает. И, значит, если уравнение имеет решение, то оно единственное.

Логарифмическое уравнение: решение на примерах

Как решить логарифмическое уравнение? Этим вопросом задаются многие школьники, особенно в преддверии сдачи ЕГЭ по математике. Ведь в задании С1 профильного ЕГЭ могут встретиться именно логарифмические уравнения.

Уравнение, в котором неизвестное находится внутри логарифмов, называется логарифмическим. Причем неизвестное может находится как в аргументе логарифма, так и в его основании.

Способов решения таких уравнений существует несколько. В этой статье мы разберем способ, который легко понять и запомнить.

Как решать уравнения с логарифмами: 2 способа с примерами

Решить логарифмическое уравнение можно разными способами. Чаще всего в школе учат решать логарифмическое уравнение с помощью определения логарифма. То есть мы имеем уравнение вида:Вспоминаем определение логарифма и получаем следующее:Таким образом мы получаем простое уравнение, которое сможем легко решить.

При решении логарифмических уравнений важно помнить об области определения логарифма, т.к. аргумент f(x) должен быть больше ноля. Поэтому после решения логарифмического уравнения мы всегда делаем проверку!

Давайте посмотрим, как это работает на примере:

Воспользуемся определением логарифма и получим:

Теперь перед нами простейшее уравнение, решить которое не составит труда:

Сделаем проверку. Подставим найденный Х в исходное уравнение:Так как 3 2 = 9, то последнее выражение верно. Следовательно, х = 3 является корнем уравнения.

Основной минус данного метода решения логарифмических уравнений в том, что многие ребята путают, что именно нужно возводить в степень. То есть при преобразовании logaf(x) = b, многие возводят не a в степень b, а наоборот b в степень a. Такая досадная ошибка может лишить вас драгоценных баллов на ЕГЭ.

Поэтому мы покажем еще один способ решения логарифмических уравнений.

Чтобы решить логарифмическое уравнение, нам нужно привести его к такому виду, когда и в правой, и в левой части уравнения будут стоять логарифмы с одинаковыми основаниями. Это выглядит вот так:

Когда уравнение приведено к такому виду, то мы можем «зачеркнуть» логарифмы и решить простое уравнение. Давайте разбираться на примере.

Решим еще раз то же самое уравнение, но теперь этим способом:В левой части у нас логарифм с основанием 2. Следовательно, правую часть логарифма нам нужно преобразовать так, чтобы она тоже содержала логарифм с основанием 2.

Для этого вспоминаем свойства логарифмов. Первое свойство, которое нам здесь понадобится – это логарифмическая единица. Напомним его:То есть в нашем случае:Возьмем правую часть нашего уравнения и начнем ее преобразовывать:Теперь нам нужно 2 тоже внести в логарифмическое выражение. Для этого вспоминаем еще одно свойство логарифма:

Воспользуемся этим свойством в нашем случае, получим:Мы преобразовали правую часть нашего уравнения в тот вид, который нам был нужен и получили:Теперь в левой и в правой частях уравнения у нас стоят логарифмы с одинаковыми основаниями, поэтому мы можем их зачеркнуть. В результате, получим такое уравнение:

Да, действий в этом способе больше, чем при решении с помощью определения логарифма. Но все действия логичны и последовательны, в результате чего шансов ошибиться меньше. К тому же данный способ дает больше возможностей для решения более сложных логарифмических уравнений.

Разберем другой пример:Итак, как и в предыдущем примере применяем свойства логарифмов и преобразовываем правую часть уравнения следующим образом:После преобразования правой части наше уравнение принимает следующий вид:Теперь можно зачеркнуть логарифмы и тогда получим:Вспоминаем свойства степеней:

Теперь делаем проверку:то последнее выражение верно. Следовательно, х = 3 является корнем уравнения.

Еще один пример решения логарифмического уравнения:Преобразуем сначала левую часть нашего уравнения. Здесь мы видим сумму логарифмов с одинаковыми основаниями. Воспользуемся свойством суммы логарифмов и получим:Теперь преобразуем правую часть уравнения:Выполнив преобразования правой и левой частей уравнения, мы получили:Теперь мы можем зачеркнуть логарифмы:

Решим данное квадратное уравнение, найдем дискриминант:

Сделаем проверку, подставим х1 = 1 в исходное уравнение:Верно, следовательно, х1 = 1 является корнем уравнения.

Теперь подставим х2 = -5 в исходное уравнение:Так как аргумент логарифма должен быть положительным, выражение не является верным. Следовательно, х2 = -5 – посторонний корень.

Пример решения логарифмического уравнения с разными основаниями

Выше мы решали логарифмические уравнения, в которых участвовали логарифмы с одинаковыми основаниями. А что же делать, если основания у логарифмов разные? Например,

Правильно, нужно привести логарифмы в правой и левой части к одному основанию!

Итак, разберем наш пример:Преобразуем правую часть нашего уравнения:

Мы знаем, что 1/3 = 3 -1 . Еще мы знаем свойство логарифма, а именно вынесение показателя степени из логарифма:Применяем эти знания и получаем:Но пока у нас есть знак «-» перед логарифмом в правой части уравнения, зачеркивать мы их не имеем права. Необходимо внести знак «-» в логарифмическое выражение. Для этого воспользуемся еще одним свойством логарифма:

Тогда получим:Вот теперь в правой и левой части уравнения у нас стоят логарифмы с одинаковыми основаниями и мы можем их зачеркнуть:Делаем проверку:Если мы преобразуем правую часть, воспользовавшись свойствами логарифма, то получим:Верно, следовательно, х = 4 является корнем уравнения.

Пример решения логарифмического уравнения с переменными основаниями

Выше мы разобрали примеры решения логарифмических уравнений, основания которых были постоянными, т.е. определенным значением – 2, 3, ½ … Но в основании логарифма может содержаться Х, тогда такое основание будет называться переменным. Например, logx+1(х 2 +5х-5) = 2. Мы видим, что основание логарифма в данном уравнении – х+1. Как же решать уравнение такого вида? Решать мы его будем по тому же принципу, что и предыдущие. Т.е. мы будем преобразовывать наше уравнение таким образом, чтобы слева и справа были логарифмы с одинаковым основанием.Преобразуем правую часть уравнения:Теперь логарифм в правой части уравнения имеет такое же основание, как и логарифм в левой части:Теперь мы можем зачеркнуть логарифмы:Но данное уравнение неравносильно исходному уравнению, так как не учтена область определения. Запишем все требования, относящиеся к логарифму:

1. Аргумент логарифма должен быть больше ноля, следовательно:

2. Основание логарифма должно быть больше 0 и не должно равняться единице, следовательно:

Сведем все требования в систему:

Данную систему требований мы можем упростить. Смотрите х 2 +5х-5 больше ноля, при этом оно приравнивается к (х + 1) 2 , которую в свою очередь так же больше ноля. Следовательно, требование х 2 +5х-5 > 0 выполняется автоматически и мы можем его не решать. Тогда наша система будет сведена к следующему:Перепишем нашу систему:Следовательно, наша система примет следующий вид:Теперь решаем наше уравнение:Справа у нас квадрат суммы:Данный корень удовлетворяет наши требования, так как 2 больше -1 и не равно 0. Следовательно, х = 2 – корень нашего уравнения.

Для полной уверенности можем выполнить проверку, подставим х = 2 в исходное уравнение:

Т.к. 3 2 =9, то последнее выражение верно.

Как сделать проверку

Еще раз обращаем ваше внимание, что при решении логарифмических уравнений необходимо учитывать область допустимых значений. Так, основание логарифма должно быть больше ноля и не должно равняться единице. А его аргумент должен быть положительным, т.е. больше ноля.

Если наше уравнение имеет вид loga (f(x)) = loga (g(x)), то должны выполняться следующие ограничения:

После решения логарифмического уравнения нужно обязательно сделать проверку. Для этого вам необходимо подставить получившееся значения в исходное уравнение и посчитать его. Времени это займет немного, зато позволит не записать в ответ посторонние корни. Ведь так обидно правильно решить уравнение и при этом неправильно записать ответ!

Итак, теперь вы знаете, как решить логарифмическое уравнение с помощью определения логарифма и с помощью преобразования уравнения, когда в обеих его частях стоят логарифмы с одинаковыми основаниями, которые мы можем «зачеркнуть». Отличное знание свойств логарифма, учет области определения, выполнение проверки – залог успеха при решении логарифмических уравнений.

Методическая разработка «Методы решение логарифмических уравнений»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Выберите документ из архива для просмотра:

Выбранный для просмотра документ Методы решения логарифмических уравнений.docx

Процесс решения любого логарифмического уравнения заключается в переходе от уравнения с логарифмами к уравнению без них

И это решение состоит из двух равноценных частей:

1) нахождение области допустимых значений (ОДЗ),

2) решение самого уравнения.

Эти части решаются независимо друг от друга. Главное — в самом конце не забыть результаты сопоставить, лишнее выбросить.

ОДЗ — это те значения х , которые разрешены для исходного примера . А как искать ОДЗ? Внимательно осматриваем пример и ищем опасные места. Места, в которых возможны запретные действия . Таких запретных действий в математике очень мало. ( Нельзя делить на ноль, в корнях чётной степени подкоренное выражение должно быть неотрицательным, выражение стоящее под логарифмом должно быть неотрицательным и основание логарифма а >0 и а ≠1.)

П ростейшие логарифмические уравнения

Умение решать простейшие логарифмические уравнения — это очень важно. Дело в том, что даже самые злые и замороченные уравнения обязательно сводятся к простейшим! Собственно, простейшие уравнения — это финишная часть решения любых уравнений.

Уравнения вида log а f(х) = log а g(х)

Простейшее уравнение log а f(х) = log а g(х) решается методом потенцирования. Под потенцированием понимается переход от равенства, содержащего логарифмы, к равенству, не содержащему их:
log а f(х) = log а g(х) f(х) = g(х) , при f(х)>0, g(х)>0 , а > 0, а≠ 1. т.е. если равны логарифмы по одному и тому же основанию, то и равны логарифмируемые выражения. В виде равносильного перехода:

Ликвидировать логарифмы безо всяких опасений можно, если у них:

а) одинаковые числовые основания

в) логарифмы слева-справа чистые (безо всяких коэффициентов) и находятся в гордом одиночестве

-В уравнении log 3 х = 2log 3 (3х-1) убирать логарифмы нельзя. Двойка справа не позволяет . Коэффициент.

— В примере log 3 х+log 3 (х+1) = log 3 (3+х) тоже нельзя потенцировать уравнение. В левой части нет одинокого логарифма. Их там два .

Короче, убирать логарифмы можно, если уравнение выглядит так и только так: log а (. ) = log а (. )

В скобках, где многоточие, могут быть какие угодно выражения. Простые, суперсложные, всякие. Какие угодно. Важно то, что после ликвидации логарифмов у нас остаётся более простое уравнение

Пример 1. Решите уравнение:

Решение: способ 1 . В область допустимых значений (ОДЗ) входят только те x , при которых выражение, находящееся под знаком логарифма, больше нуля. Эти значения определяются следующей системой неравенств:

Видим логарифмы по одному и тому же основанию равны, значит, равны и логарифмируемые выражения .

В область допустимых значений входит только первый корень. Ответ: 7. ОДЗ можно было не решать, а просто записать. В конце каждый корень подставить в ОДЗ. Если с каждым неравенством ОДЗ получится верное числовое неравенство, то он идет в Решение: способ 2 . Если это уравнение решим путем равносильных переходов , то ОДЗ нашли бы без всяких квадратных неравенств и пересечений. Итак

Уравнение х 2 — 5х – 14 = 0 имеет корни х 1 = 7, х 2 = -2. В область допустимых значений входит только первый корень. Ответ: x = 7.

Пример 2 . Решите уравнение

Решение. Решим методом равносильных переходов . Тогда уравнение равносильно системе

Корни уравнения -2 и 5. Только -2 ϵ ОДЗ . Ответ: -2

Итак уравнения такого вида решили 2-мя способами: 1) отдельно найдя ОДЗ и отдельно решив само уравнение; 2) используя равносильные переходы. Какой способ вам по душе?

Уравнение log a f ( x ) = b п ростейшее логарифмическое уравнение, где а и b — числа; а >0, a ≠1. Переменная х присутствует только внутри аргумента.

1 ) Применение определения логарифма

Решение уравнений применением определения логарифма

Решение уравнения
основано на применении определения логарифма и в решении равносильного уравнения

Для уравнений log a f ( x ) = b записывать область определения не нужно ( f ( x ) >0 ) , потому что она будет выполняться автоматически . Так как в какую бы степень мы бы не возводили положительное число а , на выходе мы все равно получим положительное число, т.е. если а > 0, то a b > 0 всегда => f ( x ) = a b > 0.

Пример 1 . Решите уравнение log 5 ( x – 2) = 1

Решение: Переменная х встречается лишь в одном log и стоит в его аргументе, значит находить ОДЗ не надо. log 5 ( x – 2) = 1  x – 2 = 5 1  x – 2 = 5  x = 7. Ответ: 7.

Пример 2 . Решите уравнение

Решение: Три раза выполним переход: log a f ( x ) = b f ( x ) = a b

2). Решение простейшего логарифмического уравнения log a f ( x ) = b представлением числа в виде логарифма b = log a a b (методом потенцирования).

Пример 3 . Решите уравнение:

Решение: Это простейшее логарифмическое уравнение, поэтому нет необходимости найти ОДЗ, потому что 3х – 1>0 будет выполняться автоматически. Слева у нас стоит выражение с логарифмом, а справа – число . Что делать? Нужно сделать так, чтобы справа тоже было выражение с логарифмом по основанию 0,5 а затем просто сбросить логарифмы. Так как −3 = −3*1 = -3* log 0,5 0,5= log 0,5 0,5 −3 тогда уравнение примет вид: log 0,5 (3 x − 1) = log 0,5 0,5 −3

Все десятичные дроби переводите в обычные, когда вы решаете логарифмическое уравнение.

Заметим что 0,5 -3 = (1/2) −3 = (2 -1 ) -3 = 2 3 = 8 и получим

Пример 4 . Решите уравнение

Решение: Это простое логарифмическое уравнение, поэтому можно не найти ОДЗ. Первый шаг- дробь справа представим в виде логарифма. Получим:

Учитывая, что 16 1/4 = (2 4 ) 1/4 = 2

избавляемся от знака логарифма и получаем обычное иррациональное уравнение: где надо будет учесть ОДЗ.

, решим равносильным переходом к системе:

Из полученных корней нас устраивает только первый, так как второй корень меньше нуля. Единственным ответом будет число 9. Ответ: 9 .

Уравнения, решаемые применением свойств логарифмов

Схема решения не простых логарифмических уравнений

1. Привести уравнение с помощью свойств логарифмов к виду:

2. Решить равносильное уравнение

f ( x ) = a b или f ( x ) = g ( x ) по их алгоритму .

Пример 1. Решите уравнение

Если lg ( x – 1) переведем в правую часть уравнения, то получим уравнение вида log а f(х) = log а g(х).

Если неравенства неудобные, ОДЗ можно не решать. Достаточно подставить результаты уравнения в записанные условия ОДЗ и проверить, какие решения проходят. Их и взять за ответы

Пример 2 . Решите уравнение

Если в уравнении содержатся логарифмы с разными основаниями, то, прежде всего, следует свести все логарифмы к одному основанию, используя формулы перехода , и

Пример 3 . Решите уравнение

Решение. ОДЗ: х > 0. Сразу видно, что у логарифмов основания разные. Используя формулу придем к одинаковому основанию

Уравнения, решаемые введением новой переменной

Если, в уравнение неоднократно, встречается некоторое определенное выражение, то оно решается введением новой переменной

Пример 1 . Решите уравнение

ОДЗ: x > 0. Введем новую переменную тогда получим квадратное уравнение:

Пример 2 . Решите уравнение

Оба корня удовлетворяют ОДЗ нашего уравнения.

Пример 3. Решите уравнение 4 log 25 5x + log 2 5 x – 5 = 0; ОДЗ: x > 0.

Тут 2 основания, выполним переход к основанию 5, используя формулу

2(log 5 5 + log 5 x) + log 2 5 x – 5 = 0.

2(1 + log 5 x) + log 2 5 x – 5 = 0.

Пусть log 5 x = t, тогда 2(1 + t) + t 2 – 5 = 0;

t = – 3 или t = 1; Обратно переходим на обозначение log 5 x = t:

x = 1/125. Оба корня удовлетворяют ОДЗ. Ответ:

Пример 4. Решите уравнение Решение: Область допустимых значений:

Решать систему необходимости нет. Пусть log 2 (5x – 1) = t, тогда

Уравнения, содержащие неизвестное и в основании и в аргументе.

Уравнение log f ( x ) g ( x ) = b похож е простейшему у равнению log a f ( x ) = b Сходство: в обеих уравнениях в левой части log , в правой число b . Отличие в том, что в первой переменная х присутствует не только внутри аргумента, но и в основании логарифма .

Но мы должны учесть определенные требования. 1) аргумент каждого из логарифмов должен быть больше 0: 2) осн о вание должно быть не только больше 0, но и отлично от 1

1 ) Применение определения логарифма

2 )Представление числа в виде логарифма

По определению логарифма х 2 – 5х + 10 = (х — 1) 2 х 2 – 5х + 10 = :х 2 – 2х + 1, -3х = -9 х = 3

Проверим принадлежность х = 3 ОДЗ: 3 2 – 5*3 + 10 > 0 верно, 3 – 1 > 0 верно 3 – 1 ≠ 1 верно

Пример 2 . Решите уравнение log х+1 (2 x 2 +1)=2 Решение: Решим методом равносильных переходов. Заменяем 2 на так как 2=2*1=2* log х + 1 (х+1)= log х + 1 (х+1) 2 тогда получим: log х+1 (2x 2 +1)= log х+1 (x+1) 2

Наше уравнение содержит неизвестное и в основании и в аргументе. Поэтому 1) аргумент каждого из логарифмов должен быть больше 0. 2) основание должно быть не только больше 0, но и ≠ 1 . В итоге получим систему:

Решим уравнение 2х 2 +1=(х+1) 2 , 2х 2 + 1 = х 2 + 2х + 1 х 2 — 2x = 0  x ( x — 2) = 0  x=2 или x=0. х=0 не соответствует системе. Ответ: 2.

Способ 2. ОДЗ: по определению логарифма получим : 2х 2 +1 = (х+1) 2 , 2х 2 +1 = х 2 + 2х + 1, х 2 – 2х = 0  x ( x – 2) = 0  x = 0, x = 2. Корень х = 0 не удовлетворяет третьему неравенству ОДЗ.

Показательно – логарифмические уравнения

При решении уравнений, содержащих переменную и в основании, и в показателе степени, используется метод логарифмирования. Если при этом в показателе степени содержится логарифм, то обе части уравнения надо прологарифмировать по основанию этого логарифма.

Пример 1. Решить уравнение : х 1 – lgx = 0.01. Решение: ОДЗ: x > 0, x ≠ 1. Прологарифмировав обе части уравнения по основанию 10, получим уравнение:

Положив t = lg x , придем к уравнению t 2 t – 2 = 0 , откуда t 1 = -1, t 2 = 2. Таким образом, задача свелась к решению следующей совокупности уравнений:

Оба найденных значения входят в ОДЗ. Ответ: 0,1; 100

Пример 2 . Решить уравнение 3 2log 4 x +2 =16 x 2 .

Решение . Область определения x >0. Прологарифмируем обе части по основанию 4.

Используя свойства логарифмов, получим

Функционально – графический метод .

В одной и той же системе координат строим графики функции у= log 2 x и у = 3 – x

Ответ: 2.

Обычно графически метод применяется, если трудно найти других методов. Графически метод менее точный . Целесообразно его использовать, если стоит вопрос «Сколько корней имеет уравнение».

Метод использования монотонности функции

Есть способ, позволяющий не строить графики. Он заключается в следующем: если одна из функции y = f ( x ) возрастает, а другая y = g ( x ) убывает на промежутке Х, то уравнение f ( x ) = g ( x ) имеет не более одного корня на промежутке Х.

Если корень имеется, то его можно угадать.

Пример 1. Решить уравнение: l og 3 x = 4- x Решение: ОДЗ х > 0. Так как функция у= log 3 х возрастающая, а функция у = 4-х убывающая на (0; + ∞ ), то заданное уравнение на этом интервале имеет один корень. Подбором определяем х = 3. Ответ: 3 .

Пример 2 . Решите уравнение : log 3 ( x + 1) + log 4 (5 x + 6) = 3. ОДЗ: х > -1

Решение: у = log 3 ( x + 1) – возрастающая функция, y = log 3 ( x + 1) – тоже возрастающая. Сумма двух возрастающих функции дает возрастающую функцию. В правой части постоянная функция у = 3. Значит уравнение имеет не более одного корня. Подбором определяем х = 2. Ответ: 2.


источники:

http://yourrepetitor.ru/kak-reshit-logarifmicheskoe-uravnenie/

http://infourok.ru/metodicheskaya-razrabotka-metody-reshenie-logarifmicheskih-uravnenij-4110454.html