Методы решения нелинейных уравнений реферат

Реферат по математике на тему: «Основные методы решения систем нелинейных уравнений с двумя переменными»

РЕФЕРАТ ПО МАТЕМАТИКЕ.

«ОСНОВНЫЕ МЕТОДЫ РЕШЕНИЯ СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ С ДВУМЯ ПЕРЕМЕННЫМИ».

УЧЕНИК 9 КЛАССА «Б»

ГОУ ГОИНАЗИИ № 000

КЛАССНЫЙ РУКОВОДИТЕЛЬ 9 «Б» КЛАССА

БАТАЛОВА ВЕРА ИВАНОВНА.

ГОД РЕАЛИЗАЦИИ ИССЛЕДОВАНИЯ:

2) ГЛАВА 1: ОПРЕДЕЛЕНИЯ. ЧТО ЗАНЧИТ СИСТЕМА УРАВНЕНИЙ И ЕЁ РЕШЕНИЕ?

3) ГЛАВА 2: РАЗБОР МЕТОДОВ РЕШЕНИЯ СИСТЕМЫ НЕЛИНЕЙНЫХ УРАВНЕИЙ.

6) СПИСОК ЛИТЕРАТУРЫ.

Тема моего реферата «Решение систем уравнений с двумя переменными». Эта тема играет важную роль в курсе математики. Издавна применялось исключение неизвестных из линейных уравнений. В XVII — XVIII в. в. приемы исключения разрабатывали:

Пьер де Ферма( 17 августа 1января 1665, прожил 63 года) — французский математик, один из создателей аналитической геометрии, математического анализа, теории вероятностей и теории чисел. По профессии юрист, с 1631 года — советник парламента в Тулузе;

Исаак Ньютон( 25 декабря 1января 16марта 1марта 1727), прожил 84 года) — английский физик, математик и астроном, один из создателей классической физики;

Готфрид Вильгельм фон Лейбниц( 1 июля 1ноября 1716, прожил 70 лет) — немецкий философ, математик, юрист, дипломат;

Леонард Эйлерапреля 1сентября 1783, прожил 76 лет) — швейцарский, немецкий и российский математик, внёсший значительный вклад в развитие математики, а также механики, физики, астрономии и ряда прикладных наук;

Этьенн Безу( 31 марта 1сентября 1783, прожил 53 года) — французский математик, член Парижской академии наук (1758);

Жозеф Луи Лагранж(25 января 1апреля 1813, прожил 77 лет) — французский математик, астроном и механик итальянского происхождения. Наряду с Эйлером — лучший математик XVIII века.

Кроме этого данная тема имеет прикладной характер, т. к. многие задачи по физике, экономике и химии решаются с помощью систем нелинейных уравнений.

Системы линейных уравнений изучаются уже в 7-м классе, а в 8-м – на курсах геометрии решаются системы нелинейных уравнений. Однако уже в 9-м классе задачи по алгебре, физике, экономике и химии приводят к более сложным нелинейным системам, решение которых надо знать.

Эту тему я выбрал для того, чтобы изучить основные методы решения систем нелинейных уравнений. Реализировать мою цель я буду с помощью поставленных мною задач:

1) Изучить вопросы равносильности систем уравнений.

2) Изучить методы замены переменной и сложение.

3) Познакомиться с симметричными системами уравнений.

4) Разобрать метод почленного умножения и деления систем уравнений.

5) Познакомиться с решением однородных систем уравнений.

В результате изучения этой темы я составлю решебник систем нелинейных уравнений. Я надеюсь что, мой решебник сможет помочь учащимся 8-9 классов лучше подготовиться к выпускным экзаменам. А основные методы решения систем с параметром я буду изучать в 10-м классе.

2) ГЛАВА 1: ОПРЕДЕЛЕНИЯ. ЧТО ЗАНЧИТ СИСТЕМА УРАВНЕНИЙ И ЕЁ РЕШЕНИЕ?

В данной части моего реферата, я хотел бы рассказать вам, что же такое линейные функции с двумя переменными и их системы.

Для начало надо выяснить, что такое линейное уравнение.

Уравнение вида ax=b, где a и b – числа, а x – переменная, называется линейным уравнением с одной переменной. Если a ≠ 0, то уравнение имеет один корень:

Если a = 0, то в случае, когда b ≠ 0, уравнение не имеет корней; в случае, когда b = 0, корнем уравнения является любое число: , , «Сборник задач по алгебре 8-9» М.:»Просвещение», 1994 стрпункт).

Графиком линейного уравнения с двумя переменными, в котором a ≠ 0 или b ≠ 0, является прямая. Если a = 0 и b = 0, то в случае с = 0 графиком является вся координатная плоскость, а в случае c ≠ 0 уравнение не имеет решений.

На рисунке № 1 изображён график линейной функции. В данном случае a заменена на k, но по сути это одно и тоже. K – угловой коэффициент, от которого зависит угол наклона графика функции. На рисунке видно, что k – положительное число, следовательно угол а – острый. Если бы угловой коэффициент k был отрицательным числом, то а был бы тупым углом, как это показано на рисунке №2.

Возможен и третий случай, если k = 0, то y = b( см. рисунок № 3).

Решением системы уравнений с двумя переменными называется пара значений переменных, подставив которые в любую из данных уравнений системы, получим верное числовое равенство.

Решить систему уравнений значит найти эту пару значений переменных. Для примера возьмём простую систему уравнений, заодно посмотрим. Как же записывается система уравнений:

В ней уже сразу надо значение переменной x. Значит, подставив во второе уравнение это значение, можно найти значение переменной y, заодно рассмотрим решение системы уравнений с помощью метода подстановки:

Ответ: решением данной системы является пара чисел (5; 7): x = 5; y = 7, именно так расшифровывается запись в скобках.

Система двух линейных уравнений с двумя переменными может иметь единственное решение, бесконечно много решений и не иметь решений, что геометрически интерпретируется соответственно как пересечение, совпадение и параллельность прямых, являющихся графиками уравнений системы: там же. стр. 6 (пункт 9).

Теперь поговорим о равносильности систем уравнений.

Две системы называются равносильными, если множества их решений совпадают. Если обе системы не имеют решений, то они также считаются равносильными.

Решая системы уравнений, обычно заменяют данную систему другой, равносильной исходной, которую решать проще. При этом можно использовать следующие утверждения о равносильности систем уравнений:

1) если одно из уравнений системы заменить на равносильное уравнение, то получим систему. Равносильную исходной;

2) если одно из уравнений систем заменить суммой каких-либо двух уравнений данной системы, то получим систему, равносильную исходной;

3) если одно из уравнений системы выражает зависимость какой-либо переменной, например x, через другие переменные, то, заменив в каждом уравнении системы переменную x на её выражение через другие переменные, то получим систему, равносильную исходной: там же. стр. 107-108 (пункт 2, абзац 3-4).

3) ГЛАВА 2: РАЗБОР МЕТОДОВ РЕШЕНИЯ СИСТЕМЫ НЕЛИНЕЙНЫХ УРАВНЕИЙ.

Основная цель при решении систем линейных уравнений — решить эту систему, то есть найти все ее решения или доказать, что решений нет. Для решения системы уравнений с двумя переменными используются:

1) графический способ;

2) способ замены переменной и алгебраического сложения и вычитания;

3) способ почленного умножения и деления;

4) способ подстановки.

Все эти способы используются во всех предметах, где необходимы знания математики: алгебра, физика, химия, геометрия.

Рассмотрим способ № 1: Известно, что графиком линейного уравнения является прямая. Вопрос о числе решений системы двух линейных уравнений сводиться к определению числа общих точек прямых, являющимися графиками уравнений системы. Рассмотрим три случая расположения прямой.

Случай 1: Прямые, которые являются графиком функции, входящих в данную систему, пересекаются.

Решим эту систему:

Уравнениями у=-1,1х+12 и у=-6х+18 задаются линейные функции. Угловые коэффициенты прямых этих функций различны. Следовательно, эти прямые пересекаются, и система имеет единственное решение. Прировняв правые части уравнений, найдем точку пересечения. Данная система имеет единственное решение: пара чисел равная (1,2; 10,7).

Случай 2: Прямые, являющиеся графиками уравнений системы, параллельны.

Решим систему уравнений:

Прямые, являющиеся графиками линейных функций у=-0,4х+0,15 и у=-0,4х+3,2, параллельны, так как их угловые коэффициенты одинаковы, а точки пересечения с осью у различны. Отсюда следует, что данная система уравнений не имеет решений.

Случай 3: Прямые, являющиеся графиками уравнений системы, совпадают.

Очевидно, что графики уравнений совпадают. Это означает, что любая пара чисел (х; у), в которой х — произвольное число, а у = — 2,5х — 9, является решением системы. Система имеет бесконечно много решений.

Во время решения систем нелинейных уравнений данным способом вызывает у учащихся трудности по ряду причин:

1) не умение, выражать одну переменную через другую;

2) не правильное построение системы координат (различный единичный отрезок на осях ординат и абсцисс).

Рассмотрим способ № 2( замена переменной): Легче всего это сделать решив задачу, что мы сейчас и сделаем:

Условие задачи: Ученик задумал два числа. Первое число на 5 больше второго. Если от удвоенного первого числа вычесть утроенное второе число, то получится 25. Какие числа задумал ученик?

Решение: Пусть х — первое число, у — второе число. По условию задачи составим систему уравнений.

В первом уравнении выразим х через у: х=у+5.

Подставив во второе уравнение вместо переменной х выражение х = у + 7, получим систему

Очевидно, что получившееся второе уравнение является уравнением с одной переменной.

Подставив в первое уравнение системы вместо переменной у ее значение, равное 6, получим:

Ответ: ученик задумал числа равные -6 и -11, т. е. пара чисел (-6; -11) является решением данной системы.

Во время решения систем нелинейных уравнений данным способом вызывает у учащихся трудности по ряду причин:

1) не умение, выражать одну переменную через другую;

2) не умение, подставить уже полученную переменную (забывают или не видят).

Рассмотрим способ № 2( алгебраическое сложение): Как и в методе подстановки, мы переходим от данной системы к другой, равносильной ей системе, в которой одно из уравнений содержит только одну переменную.

Решим систему уравнений:

В уравнениях этой системы коэффициенты при у являются противоположными числами ( +3y и -3y). Сложив почленно левые и правые части уравнений, получим уравнение с одной переменной:

Заменим одно из данных нам уравнений системы, например первое, уравнением 2x = 18. Получим систему:

Полученная система равносильна данной системе. Решим полученную систему:

Из уравнения 2х=18 находим, что х=9. Подставив это значение х в уравнение 4х-3у=12, получим уравнение с переменной у.

Решим это уравнение:

Пара чисел (11; — 9) — решение полученной системы, а значит, и данной нам системы.

Воспользовавшись тем, что в уравнениях данной нам системы коэффициенты при у являются противоположными числами, мы свели ее решение к решению равносильной системы, в которой одно из уравнений содержит только одну переменную.

Геометрически равносильность систем означает, что графики уравнений 4x + 3y = 12 и -2x — — 3у=38 пересекаются.

Во время решения систем нелинейных уравнений данным способом вызывает у учащихся трудности только по одной причине:

1) не умение, подставить уже полученную переменную (забывают или не видят).

Рассмотрим способ № 3: Если при решении систем уравнений учащийся не может ни заменить переменную, ни алгебраически сложить, то можно прибегнуть к этому способу. Разберём на примере.

Решим систему уравнений:

Домножим верхнее уравнение на 3. Получим:

Очевидно, что и в первом и во втором уравнениях есть 3y, только с разными занками. Дальше решаем так же, как и прошлой системе ( см. 3 разбор).

В конце получаем, что пара чисел (4,2; -4,8) является решением данной нам системы.

Во время решения систем нелинейных уравнений данным способом вызывает у учащихся трудности только по ряду причине:

1) не видят, что и на сколько надо домножить;

2) не умение, подставить уже полученную переменную (забывают или не видят).

Рассмотрим способ подстановки: Этот метод или способ решения систем уравнений используется чаще всех. Грубо говоря, этот способ мы разобрали во всех остальных, т. к. заменяя одну систему на равносильную ей, мы находим одну переменную, а затем подставляем её значение в одно из уравнений данной нам системы. А следовательно, возникающие проблемы при решении систем уравнений этим способом такие же, как и у всех остальных методов:

1) не умения, выражать одну переменную через другую;

2) не умение, подставить уже полученную переменную;

Итак, из всего выше сказанного можно сделать вывод:

во время решения систем нелинейных уравнений у учащихся возникают проблемы по ряду двум причинам:

1) не умения, выражать одну переменную через другую;

2) не умение, подставить уже полученную переменную;

3) не видят, что и на сколько надо домножить.

В этой части реферата написан решебник на мою тему с целью помочь читающим попрактиковаться в решении систем уравнений с двумя переменными. Для каждого метода будет представлено по примера и решение одного из них, в качестве примера как их решать тем или иным методом.

1) Метод замены переменной и алгебраического сложения и вычитания:

Для начала метод алгебраического сложения.

Можно заметить, что в двум уравнениях присутствует одна и та же переменная: 3y, только с разными знаками. Следовательно, их можно алгебраически сложить и мы получим равносильную систему:

Итак, мы нашли значение первой переменной: x = 1. теперь подставляем это значение в любую из уравнений, чтобы найти значение второй переменной:

Метод алгебраического вычитания почти такой же как и метод алгебраического сложения, только вместо того, чтоб складывать уравнения, мы вычитаем одно из другого.

Теперь разберём последовательность решения методом замены переменной:

Вначале я перенёс одну переменную из уравнения 1 вправо и получил: x = 1 –y. Затем, я подтсавил полученное значение во второе уравнение и нашёл значение переменной y: y = 0. после этого. Я подставил это значение во второе уравнение и получил значение переменной x: x = 1.

Теперь потренируйтесь самостоятельно.

Пример №3 (метод алгебраического сложения):

У вас должен получиться ответ: (2; -0,(3) ).

Пример №4 (метод замены переменной):

2) Метод почленного умножения и деления:

Домножим первое уравнение на два и получим:

Теперь вычтем из первого уравнения второе (включаем в решение метод алгебраического вычитания). Затем решаем всё как и в прошлых примерах: находим значение одной переменной, затем второй и пишем ответ.

Метод почленного деления очень похож, но вместо умножения каждого члена уравнения на какое-либо число мы на него их делим.

Пример №2 (метод почленного деления):

Пример №3 (метод почленного умножения):

У вас должен получиться ответ: (3 -4) и (-3; 4).

Для начала перенесём переменную x в правую сторону, чтобы получить уравнение функции:

Теперь начертим графики полученных функций:

Теперь найдём их пересечение:

Теперь потренируйтесь сами.

У вас должен получиться ответ: (-2; -1) и (-1; 0).

Итак, я рассмотрел все методы решения систем уравнений с двумя переменными и составил решебник, который поможет тем, кто читает мой реферат, лучше усвоит каждый метод и попрактиковаться в решении систем уравнений с двумя переменными. Я надеюсь, что мой реферат был понятен каждому и помог разобраться во всём. Я надёюсь, что в 10-ом классе я изучу системы уравнений с тремя переменными и с методы их решения. Возможно, я напишу реферат именно на эту тему, чтобы поделиться моими знаниями с другими людьми.

6) СПИСОК ЛИТЕРАТУРЫ.

1. , , «АЛГЕБРА. Учебник для 9 класса с углублённым изучением математики» Москва 2006 год, 5-е издание — М.:Мнемозина, 439 страниц, иллюстрации.

2. , , «Сборник задач по алгебре 8-9 классы» Москва «Просвещение» 1994 год, 271 страница.

Реферат: Решение нелинейных уравнений

1. Теоретическая часть

2. Метод половинного деления

4. Метод Ньютона (касательных)

5. Метод простой итерации

Список использованных источников

Основной целью реферата является изучение и сравнительный анализ итерационных методов решения нелинейных алгебраических и трансцендентных уравнений; реализация этих методов в виде машинных программ на языке высокого уровня и практическое решение уравнений на ЭВМ.

При разработке алгоритмов, входящих в состав математического обеспечения САПР, часто возникает необходимость в решении нелинейных уравнений вида

где функция f(x) определена и непрерывна на некотором конечном или бесконечном интервале a 0. Тогда уравнение хорды, проходящей через точки A0 и B, имеет вид

.

Приближение корня x = x1, для которого y = 0, определяется как

.

Аналогично для хорды, проходящей через точки A1 и B, вычисляется следующее приближение корня

.

В общем случае формула метода хорд имеет вид:

. (2)

Если первая и вторая производные имеют разные знаки, т.е.

f ‘(x)f «(x) 0. Если справедливо неравенство f(a)f «(a) >0, то целесообразно применять формулу (3).

Итерационный процесс метода хорд продолжается до тех пор, пока не будет получен приближенный корень с заданной степенью точности. При оценке погрешности приближения можно пользоваться соотношением:

.

Тогда условие завершения вычислений записывается в виде:

, (4)

где e — заданная погрешность вычислений. Необходимо отметить, что при отыскании корня метод хорд нередко обеспечивает более быструю сходимость, чем метод половинного деления.

4. Метод Ньютона (касательных)

Пусть уравнение (1) имеет корень на отрезке [a, b], причем f ‘(x) и f «(x) непрерывны и сохраняют постоянные знаки на всем интервале [a, b].

Геометрический смысл метода Ньютона состоит в том, что дуга кривой y = f(x) заменяется касательной. Для этого выбирается некоторое начальное приближение корня x0 на интервале [a, b] и проводится касательная в точке C0(x0, f(x0)) к кривой y = f(x) до пересечения с осью абсцисс (рис. 3). Уравнение касательной в точке C0 имеет вид

y = f(x0) + f ‘(x0)×(x — x0).

Далее за приближение корня принимается абсцисса x1, для которой y = 0:

Затем проводится касательная через новую точку C1(x1, f(x1)) и определяется точка x2 ее пересечения с осью 0x и т.д. В общем случае формула метода касательных имеет вид:

В результате вычислений получается последовательность приближенных значений x1, x2, . xi, . каждый последующий член которой ближе к корню x*, чем предыдущий. Итерационный процесс обычно прекращается при выполнении условия (4).

Начальное приближение x0 должно удовлетворять условию:

В противном случае сходимость метода Ньютона не гарантируется, так как касательная будет пересекать ось абсцисс в точке, не принадлежащей отрезку [a, b]. На практике в качестве начального приближения корня x0, обычно выбирается одна из границ интервала [a, b], т.е. x0 = a или x0 = b, для которой знак функции совпадает со знаком второй производной.

Метод Ньютона обеспечивает высокую скорость сходимости при решении уравнений, для которых значение модуля производной ½f ¢(x)½вблизи корня достаточно велико, т.е. график функции y = f(x) в окрестности корня имеет большую крутизну. Если кривая y = f(x) в интервале [a, b] почти горизонтальна, то применять метод касательных не рекомендуется.

Существенным недостатком рассмотренного метода является необходимость вычисления производных функции для организации итерационного процесса. Если значение f ¢(x) мало изменяется на интервале [a, b], то для упрощения вычислений можно пользоваться формулой

, (7)

т.е. значение производной достаточно вычислить только один раз в начальной точке. Геометрически это означает, что касательные в точках Ci(xi, f(xi)), где i = 1, 2, . заменяется прямыми, параллельными касательной, проведенной к кривой y = f(x) в начальной точке C0(x0, f(x0)), как это показано на рис. 4.

В заключение необходимо отметить, что все изложенное справедливо в том случае, когда начальное приближение x0 выбрано достаточно близким к истинному корню x* уравнения. Однако это не всегда просто осуществимо. Поэтому метод Ньютона часто используется на завершающей стадии решения уравнений после работы какого-либо надежно сходящегося алгоритма, например, метода половинного деления.

5. Метод простой итерации

Чтобы применить этот метод для решения уравнения (1) необходимо преобразовать его к виду . Далее выбирается начальное приближение и вычисляется x1, затем x2 и т.д.:

x1 = j(x0); x2 = j(x1); …; xk = j(xk-1); .

нелинейный алгебраический уравнение корень

Полученная последовательность сходится к корню при выполнении следующих условий:

1) функция j(x) дифференцируема на интервале [a, b].

2) во всех точках этого интервала j¢(x) удовлетворяет неравенству:

0 £ q £ 1. (8)

При таких условиях скорость сходимости является линейной, а итерации следует выполнять до тех пор, пока не станет справедливым условие:

.

,

может использоваться только при 0 £ q £ ½. Иначе итерации заканчиваются преждевременно, не обеспечивая заданную точность. Если вычисление q затруднительно, то можно использовать критерий окончания вида

; .

Возможны различные способы преобразования уравнения (1) к виду . Следует выбирать такой, который удовлетворяет условию (8), что порождает сходящийся итерационный процесс, как, например, это показано на рис. 5, 6. В противном случае, в частности, при ½j¢(x)½>1, итерационный процесс расходится и не позволяет получить решение (рис. 7).

Рис. 5

Рис. 6

Рис. 7

Проблема повышения качества вычислений нелинейных уравнений при помощи разнообразных методов, как несоответствие между желаемым и действительным, существует и будет существовать в дальнейшем. Ее решению будет содействовать развитие информационных технологий, которое заключается как в совершенствовании методов организации информационных процессов, так и их реализации с помощью конкретных инструментов – сред и языков программирования.

Список использованных источников

1. Алексеев В. Е., Ваулин А.С., Петрова Г. Б. — Вычислительная техника и программирование. Практикум по программированию :Практ .пособие/ -М.: Высш. шк. , 1991. — 400 с.

2. Абрамов С.А., Зима Е.В. — Начала программирования на языке Паскаль. — М.: Наука, 1987. -112 с.

3. Вычислительная техника и программирование: Учеб. для техн. вузов/ А.В. Петров, В.Е. Алексеев, А.С. Ваулин и др. — М.: Высш. шк., 1990 — 479 с.

4. Гусев В.А., Мордкович А.Г. — Математика: Справ. материалы: Кн. для учащихся. — 2-е изд. — М.: Просвещение, 1990. — 416 с.

Методы решения нелинейных уравнений реферат

Глава I. Исследование метода итераций

.1 Нелинейные уравнения

.2 Метод итераций

.3 Геометрический смысл

.4 Решение нелинейного уравнения методом итераций

.5 Экономическое применение

Глава II. Разработка программы

.1 Автоматизация метода

Список использованных источников и литературы

Если законы функционирования модели нелинейны, а моделируемые процесс или система обладают одной степенью свободы (т.е. имеют одну независимую переменную), то такая модель, как правило, описывается одним нелинейным уравнением.

Необходимость отыскания корней нелинейных уравнений встречается в расчетах систем автоматического управления и регулирования, собственных колебаний машин и конструкций, в задачах кинематического анализа и синтеза, плоских и пространственных механизмов и других задачах.

Методы решения квадратных уравнений были известны еще древним грекам. Решение уравнений третьей и четвертой степеней были получены усилиями итальянских математиков Ш. Ферро, Н. Тартальи, Дж. Картано, Л. Феррари в эпоху Возрождения. Затем наступила пора поиска формул для нахождения корней уравнений пятой и более высоких степеней. Настойчивые, но безрезультатные попытки продолжались около 300 лет и завершились благодаря работам норвежского математика Н. Абеля. Он доказал, что общее уравне6ие пятой и более высоких степеней неразрешимы в радикалах. Решение общего уравнения n-ой степени

a 0 x n +a 1 x n-1 +…+a n-1 x+a n =0, a 0 ¹ 0

при n ³ 5 нельзя выразить через коэффициенты с помощью действий сложения, вычитания, умножения, деления, возведения в степень и извлечения корня.

Поэтому для решения линейных и нелинейных задач алгебры часто используют приближенные методы, позволяющие найти корни системы с заданной точностью. Эти методы представляют собой сходящийся итерационный процесс. Они не дают точного решения задачи, однако отличаются несколько большим быстродействием и порой из-за ошибок округления даже при использовании чисел с двойной точностью могут дать ответ точнее, нежели полученный прямыми методами.

Предмет: метод итераций. Этот метод отличается от других тем, что по сравнению с другими методами, он является одним из наиболее простых методов определения корней нелинейных уравнений.

Объект: нелинейные уравнения.

Цели: исследовать метод итераций, автоматизировать его с применением в среде Pascal.

Достижение поставленных целей потребовало решение следующих задач:

· Изучить метод итераций;

· Исследовать его применение;

· Разработать вычислительный алгоритм метода итераций;

· Составить программы решения систем нелинейных уравнений методом итераций в среде Turbo Pascal.

Глава I. Исследование метода итераций

1.1 Нелинейные уравнения

итерация нелинейный уравнение алгоритм

Одной из важнейших и наиболее распространённых задач прикладной математики является задача решения нелинейных уравнений, встречающихся в разных областях научных исследований. Любое уравнение в общем случае можно представить в виде

Нелинейные уравнения можно разделить на два класса — алгебраические и трансцендентные.

Алгебраическими уравнениями называются уравнения, содержащие только алгебраические функции (целые, рациональные, иррациональные). Алгебраическое уравнение в общем виде можно представить многочленом n-ой степени с действительными коэффициентами:

f (x) = а 0 x n + а 1 х n-1 +. + а n =0.

Например, х 3 + х 2 + 2х = 0.

Трансцендентными называются уравнения, содержащие другие функции (тригонометрические, показательные, логарифмические и т.д.), например: 2x-sin x = 0.

Доказано также, что нельзя построить формулу, по которой можно было бы решать произвольные алгебраические уравнения степени, выше четвертой.

Однако точное решение уравнения не всегда является необходимым. Задачу отыскания корней уравнения можно считать практически решенной, если мы сумеем найти корни уравнения с заданной степенью точности. Для этого используются приближенные (численные) методы решения.

Таким образом, уравнение типа или называется нелинейным. Решить уравнение — это значит найти такое x, при котором уравнение превращается в тождество. В общем случае уравнение может иметь 0; 1; 2;. корней. Рассмотрим нахождение корня нелинейного уравнения с помощью метода итераций на заданном интервале [a,b].

1.2 Метод итераций

Уравнение представим в виде: .

Далее на отрезке [a,b], где функция имеет корень, выбирается произвольная точка x0 и далее последовательно вычисляется:

Если на отрезке [a,b] выполнено условие |??(x)| ? q отделение корней, — т.е. определение интервалов изоляции [a,b], внутри которого лежит каждый корень уравнения;

· уточнение корней, — т.е. сужение интервала [a,b] до величины равной заданной степени точности ?.

1.3 Геометрический смысл

Будем предполагать, что функции ?(x) и j(x) являются непрерывными. На плоскости X0Y построим графики функции Y=x и Y=?(x). Каждый вещественный корень x* уравнения является абсциссой точки пересечения кривой Y= ?(x) с прямой Y=x. Начиная с некоторой точки A0(x0, ?(x0)), строим ломаные линии A0B1A1B2A2…(лестница), звенья которой попеременно параллельны оси 0X и оси 0Y, причем вершины A0,A1,A2… лежат на кривой Y=?(x). Общие абсциссы точек A1 и B1, A2 и B2 … представляют собой последовательные приближения x1, х2,…,хk,… корня x*, которые сходятся к нему монотонно и односторонне.

На рис. 1 представлен случай, когда 0 1, т.е. угол наклона касательной к кривой ?(x) превышает 450, то в этом случае итерации сходиться не будут (рис.3).

Если же |j(x)| (x) = (ln(x) + 1,8) = 1/x; (x) = 1/2 = 0,5;

f (x) = 1/3 = 0,3333333;

Как видим, условие сходимости итерационного процесса выполняется, т.е. f (x)

Из отрезка, на котором определен корень уравнения, выбираем произвольную точку x o = 2. Затем последовательно вычисляем x 1 , x 2 , x k , подставляя x o в формулу (1). Получим следующее:

x k F(x k+1 )22,4931471812,4931471812,713545842,713545842,7982562082,7982562082,828996442,828996442,8399220342,8399220342,8437765992,8437765992,8451329572,8451329572,84560982,84560982,8457773862,8457773862,8458362772,8458362772,845856972,845856972,8458642422,8458642422,8458667972,8458667972,8458676952,8458676952,8458680112,8458680112,8458681212,8458681212,845868162,845868162,8458681742,8458681742,8458681792,8458681792,845868181

По полученным данным построим график функции x = ln(x) + 1,8

Рис. 6. График функции

Далее сравниваем с точностью разность между значениями F(x k+1 ) и F(x k ) функции до тех пор, пока разность не будет меньше точности. При выполнении условия выводим корень уравнения F(x k+1 ).

Другие примеры в приложении 3.

1.5 Экономическое применение

Функции находят широкое применение в экономической теории и практике. Спектр используемых функций весьма широк: от простейших линейных до функций, получаемых по определенному алгоритму с помощью рекуррентных соотношений, связывающих состояния изучаемых объектов в разные периоды времени.

Производство не может создавать продукцию из ничего. Процесс производства связан с потреблением различных ресурсов. В число ресурсов входит все то, что необходимо для производственной деятельности, — и сырье, и энергия, и труд, и оборудование, и пространство. Для того чтобы описать поведение фирмы, необходимо знать, какое количество продукта она может произвести, используя ресурсы в тех или иных объемах. Мы будет исходить из допущения, что фирма производит однородный продукт, количество которого измеряется в натуральных единицах — тоннах, штуках, метрах и т. д. Зависимость количества продукта, которое может произвести фирма, от объемов затрат ресурсов получила название производственной функции.

Рассмотрение понятия «производственная функция» начнем с наиболее простого случая, когда производство обусловлено только одним фактором. В этом случае производственная функция — это функция, независимая переменная которой принимает значения используемого ресурса (фактора производства), а зависимая переменная — значения объемов выпускаемой продукции y=f(x).

В этой формуле y есть функция одной переменной x. В связи с этим производственная функция называется одноресурсной или однофакторной. Ее область определения — множество неотрицательных действительных чисел. Символ f является характеристикой производственной системы, преобразующей ресурс в выпуск.

Производственная функция нескольких переменных — это функция, независимые переменные которой принимают значения объемов затрачиваемых или используемых ресурсов (число переменных n равно числу ресурсов), а значение функции имеет смысл величин объемов выпуска:

В формуле у (у0) — скалярная, а х — векторная величина, x1,…,хn -координаты вектора х, то есть f(x1,…,хn) есть числовая функция нескольких переменных x1,…,хn. В связи с этим ПФ f(x1,…,хn) называют многоресурсной или многофакторной. Более правильной является такая символика f(x1,…,хn,а), где а — вектор параметров производственной функции.

Пример. Для моделирования отдельного региона или страны в целом (то есть для решения задач на макроэкономическом, а также на микроэкономическом уровне) часто используется производственная функция вида y= , где а0, а1, а2 — параметры производственной функции. Это положительные постоянные (часто а1 и а2 таковы, что а1+а2=1). производственная функция только что приведенного вида называется производственной функцией Кобба-Дугласа по имени двух американских экономистов, предложивших ее использовать в 1929 г.

Производственная функция Кобба-Дугласа активно применяется для решения разнообразных теоретических и прикладных задач благодаря своей структурной простоте. Производственная функция Кобба-Дугласа принадлежит к классу, так называемых, мультипликативных производственных функции. В приложениях х1=К равно объему используемого основного капитала (объему используемых основных фондов — в отечественной терминологии), — затратам живого труда, тогда Производственная функция Кобба-Дугласа приобретает вид, часто используемый в литературе:

Глава II. Разработка программы

2.1 Автоматизация метода

Программа на Pascal состоит из отдельных разделов или блоков, которые должны располагаться в следующем порядке:

раздел объявления переменных;

раздел объявления процедур и функций;

Заголовок программы состоит из зарезервированного слова PROGRAM и имени программы: PROGRAM MetodIteraccii;

Раздел объявления переменных начинается служебным словом VAR: VAR

x0, x1, e, a, b: real;, k:integer;

x0 и x1 — результативные переменные;

e — точность вычислений;

a и b — коэффициенты заданной функции;

k — номер заданной функции.

Объявление функции состоит из:

ключевого слова FUNCTION, имени функции, списка формальных параметров и типа возвращаемого значения:

раздела объявления локальных переменных или констант, если он требуется;

тела функции, заключенного в операторные скобки BEGIN END.

В функции помещаются формулы, по которым будут вычисляться приближенное значение. В своей программе я использовала формулы, содержащие стандартные функции: ln(x), cos(x) и sin(x):

function f(x:real; a, b:real):real;:=a*ln(x)+b;;c(x:real; a, b:real):real;:=a*cos(x)+b;;s(x:real; a, b:real):real;:=a*sin(x)+b;;

Тело программы начинается словом BEGIN и содержит различные команды:

Write (Writeln) — команда вывода текста на экран;

Read (Readln) — запрос данных;

If … then — краткая форма условного оператора;

Repeat … until — оператор цикла с постусловием;

Abs(x) — абсолютная величина (модуль).

Итак, определяем заданную функцию, приближенное значение X и точность вычисления:

BEGIN(‘1) x=a*ln(x)+b 2) x=a*cos(x)+b 3) x=a*sin(x)+b

Write (‘Введите a=’);(a);(‘Введите b=’);(b);rite (‘Введите приближённое значение X=’);(x1);(‘Введите точность e=’);

Для подсчета количества проведенных итераций требуется обнулить переменную i, которая заданы в разделе переменных, и организовать цикл, который будет проводить итерации и обеспечивать их подсчет:

i:=0;:=i+1;:=x1;k=1 then x1:=f(x0, a, b);k=2 then x1:=c(x0, a, b);k=3 then x1:=s(x0, a, b);(abs(x1-x0) Бахвалов Н. С., Численные методы. 4-е изд. — М.: БИНОМ. Лаборатория знаний, 2006. — 636 с.: ил.

. Вержбицкий В.М., Численные методы (математический анализ и обыкновенные дифференциальные уравнения): Учеб. пособие для вузов. — М.: Высш. шк., 2001. — 382 с.:ил.

. Волков Е. А., Численные методы: Учебное пособие. 4-е изд., стер. — СПб.: Издательство «Лань», 2007. — 256 с.: ил. — (Учебники для вузов. Специальная литература).

4. Калиткин, Н.Н. Численные методы. [Электронный ресурс] / Н.Н. Калиткин. — М.: Питер, 2001. С. 504.

5. Копченова Н. В., Марон И. А., Вычислительная математика в примерах и задачах: учебное пособие. 2-е изд., стер. — СПб.: Издательство «Лань», 2008. — 368 с. — (Учебники для вузов. Специальная литература).

. Лапчик, М.П. Численные методы: Учеб. пособие для студ. вузов / М.П.Лапчик, М.И.Рагулина, Е.К.Хеннер; Под ред. М.П.Лапчика. — 2-е изд., стер. — М.: Издательский центр «Академия», 2005. — 384 с.

VAR, x1, e, a, b:real;, k:integer;f(x:real; a, b:real):real;:=a*ln(x)+b;;c(x:real; a, b:real):real;:=a*cos(x)+b;;s(x:real; a, b:real):real;:=a*sin(x)+b;;(‘1) x=a*ln(x)+b 2) x=a*cos(x)+b 3) x=a*sin(x)+b Выберете функцию: ‘);(k);(‘Введите a=’);(a);(‘Введите b=’); (b);(‘Введите приближённое значение X=’);(x1);(‘Введите точность e=’);

Readln (e);:=0;:=i+1;:=x1;k=1 then x1:=f(x0, a, b);k=2 then x1:=c(x0, a, b);k=3 then x1:=s(x0, a, b);(abs(x1-x0) n , E

x n+1 = ln (x n ) + 1,8

условию сходимости |x n+1 — x n | ? E x n := x n+1

1) y = cos(x) — x + 5

x k F(x k+1 )-34,0100075034,0100075034,3539626874,3539626874,649199034,649199034,9368520934,9368520935,2225829765,2225829765,4883465465,4883465465,700399865,700399865,8349329155,8349329155,9012058765,9012058765,9279286055,9279286055,9375572315,9375572315,9408628545,9408628545,9419776155,9419776155,942351229

) y = 0.7 sin(x) -x + 2.7

x k F(x k+1 )13,2890296893,2890296892,5971675782,5971675783,062548463,062548462,7552733362,7552733362,9637470862,9637470862,8238366752,8238366752,9187049662,9187049662,8547327572,8547327572,8980592852,8980592852,8687932622,8687932622,8885998522,8885998522,8752118262,8752118262,8842691512,8842691512,8781451662,8781451662,8822874452,8822874452,8794863362,8794863362,8813808532,8813808532,8800996592,8800996592,880966156

Теги: Решение нелинейных уравнений методом итераций Реферат Математика


источники:

http://www.bestreferat.ru/referat-206896.html

http://dodiplom.ru/ready/129057

Название: Решение нелинейных уравнений
Раздел: Рефераты по информатике, программированию
Тип: реферат Добавлен 06:28:00 08 марта 2011 Похожие работы
Просмотров: 1278 Комментариев: 20 Оценило: 3 человек Средний балл: 4.7 Оценка: неизвестно Скачать