Методы решения нелинейных уравнений с примерами

Решение нелинейных уравнений

Уравнения, в которых содержатся неизвестные функции, произведенные в степень больше единицы, называются нелинейными.
Например, y=ax+b – линейное уравнение, х^3 – 0,2x^2 + 0,5x + 1,5 = 0 – нелинейное (в общем виде записывается как F(x)=0).

Системой нелинейных уравнений считается одновременное решение нескольких нелинейных уравнений с одной или несколькими переменными.

Существует множество методов решения нелинейных уравнений и систем нелинейных уравнений, которые принято относить в 3 группы: численные, графические и аналитические. Аналитические методы позволяют определить точные значения решения уравнений. Графические методы наименее точны, но позволяют в сложных уравнениях определить наиболее приближенные значения, с которых в дальнейшем можно начинать находить более точные решения уравнений. Численное решение нелинейных уравнений предполагает прохождения двух этапов: отделение корня и его уточнение до определенно заданной точности.
Отделение корней осуществляется различными способами: графически, при помощи различных специализированных компьютерных программ и др.

Рассмотрим несколько методов уточнения корней с определенно заданной точностью.

Методы численного решения нелинейных уравнений

Метод половинного деления.

Суть метода половинного деления заключается в делении интервала [a,b] пополам (с=(a+b)/2) и отбрасывании той части интервала, в которой отсутствует корень, т.е. условие F(a)xF(b)

Рис.1. Использование метода половинного деления при решении нелинейных уравнений.

Рассмотрим пример. Необходимо решить уравнение х^3 – 0,2x^2 + 0,5x + 1,5 = 0 с точностью до e 0, то начала отрезка a переносится в x (a=x), иначе, конец отрезка b переносится в точку x (b=x). Полученный отрезок делим опять пополам и т.д. Весь произведенный расчет отражен ниже в таблице.

Рис.2. Таблица результатов вычислений

В результате вычислений получаем значение с учетом требуемой точности, равной x=-0,946

При использовании метода хорд, задается отрезок [a,b], в котором есть только один корень с установленной точностью e. Через точки в отрезке a и b, которые имеют координаты (x(F(a);y(F(b)), проводится линия (хорда). Далее определяются точки пересечения этой линии с осью абсцисс (точка z).
Если F(a)xF(z)

Рис.3. Использование метода хорд при решении нелинейных уравнений.

Рассмотрим пример. Необходимо решить уравнение х^3 – 0,2x^2 + 0,5x + 1,5 = 0 с точностью до e 0;

Определим вторую производную F’’(x) = 6x-0,4.

F’’(-1)=-6,4 0 соблюдается, поэтому для определения корня уравнения воспользуемся формулой:


, где x0=b, F(a)=F(-1)=-0,2

Весь произведенный расчет отражен ниже в таблице.

Рис.4. Таблица результатов вычислений

В результате вычислений получаем значение с учетом требуемой точности, равной x=-0,946

Метод касательных (Ньютона)

Данный метод основывается на построении касательных к графику, которые проводятся на одном из концов интервала [a,b]. В точке пересечения с осью X (z1) строится новая касательная. Данная процедура продолжается до тех пор, пока полученное значение не будет сравним с нужным параметром точности e (F(zi)

Рис.5. Использование метода касательных (Ньютона) при решении нелинейных уравнений.

Рассмотрим пример. Необходимо решить уравнение х^3 – 0,2x^2 + 0,5x + 1,5 = 0 с точностью до e 0 выполняется, поэтому расчеты производим по формуле:

Весь произведенный расчет отражен ниже в таблице.

Рис.6. Таблица результатов вычислений

В результате вычислений получаем значение с учетом требуемой точности, равной x=-0,946

Если материал был полезен, вы можете отправить донат или поделиться данным материалом в социальных сетях:

Численные методы решения нелинейных уравнений

В этом разделе приведены примеры решенных задач по теме нахождения корней нелинейных уравнений численными методами. На первом этапе обычно происходит локализация (отделение) корней (графически или аналитически), на втором — уточнение (поиск) корней разными методами: Ньютона, Стеффенсена, секущих, хорд, касательных, простой итерации.

Примеры приближенных решений нелинейных уравнений онлайн

Задача 1. Методом бисекции найти решение нелинейного уравнения на отрезке $[a;b]$ с точностью $\varepsilon = 10^<-2>$. Выбрав полученное решение в качестве начального приближения, найти решение уравнения методом простой итерации с точностью $\varepsilon=10^<-4>$. Для метода простой итерации обосновать сходимость и оценить достаточное для достижения заданной точности число итераций.

Задача 2. Отделить корни нелинейного уравнения аналитически $2 arcctg x -x+3=0$.

Задача 3. Отделить корни нелинейного уравнения аналитически и уточнить один из них методом проб с точностью до 0,01. $$3x^4-8x^3-18x^2+2=0.$$

Задача 4. Отделить корни нелинейного уравнения графически (например, в среде EXCEL) уточнить один из них методом проб с точностью до 0,01. $$x^2-20 \sin x =0.$$

Задача 5. Отделите корни уравнения графически и уточните один из них методом хорд с точностью до 0,001. Уточните один из корней этого уравнения методом касательных с точностью до 0,001. $$ \sqrt — \cos 0.387 x =0.$$

Задача 6.Отделить корни уравнения графически и уточнить один из них методом итераций с точностью до 0,001. $$\sqrt=\frac<1>.$$

Задача 7. На отрезке $[0;2]$ методом Ньютона найти корень уравнения $-x^3-2x^2-4x+10=0$ с точностью 0,01.

Задача 8. Методом хорд найти отрицательный корень уравнения $x^3-2x^2-4x+7=0$ с точностью 0,0001. Требуется предварительное построение графика функции и отделение корней.

Задача 9. Решить нелинейные уравнения с точностью до 0.001. $$1)\, x^3-12x-5=0\, (x \gt 0), \, 2)\, \tan x -1/x=0. $$

Нелинейные системы и уравнения

В более общем случае мы имеем не одно уравнение (1), а систему нелинейных уравнений $$ \begin \tag <2>f_i(x_1, x_2, \ldots, x_n) = 0, \quad i = 1, 2, \ldots n. \end $$ Обозначим через \( \mathbf = (x_1, x_2, \ldots, x_n) \) вектор неизвестных и определим вектор-функцию \( \mathbf(\mathbf) = (f_1(\mathbf), f_2(\mathbf), \ldots, f_n(\mathbf)) \). Тогда система (2) записывается в виде $$ \begin \tag <3>\mathbf(\mathbf) = 0. \end $$ Частным случаем (3) является уравнение (1) (\( n = 1 \)). Второй пример (3) — система линейных алгебраических уравнений, когда \( \mathbf (\mathbf) = A \mathbf — \mathbf \).

Метод Ньютона

Решение нелинейных уравнений

При итерационном решении уравнений (1), (3) задается некоторое начальное приближение, достаточно близкое к искомому решению \( x^* \). В одношаговых итерационных методах новое приближение \( x_ \) определяется по предыдущему приближению \( x_k \). Говорят, что итерационный метод сходится с линейной скоростью, если \( x_ — x^* = O(x_k — x^*) \) и итерационный метод имеет квадратичную сходимость, если \( x_ — x^* = O(x_k — x^*)^2 \).

В итерационном методе Ньютона (методе касательных) для нового приближения имеем $$ \begin \tag <4>x_ = x_k + \frac, \quad k = 0, 1, \ldots, \end $$

Вычисления по (4) проводятся до тех пор, пока \( f(x_k) \) не станет близким к нулю. Более точно, до тех пор, пока \( |f_(x_k)| > \varepsilon \), где \( \varepsilon \) — малая величина.

Простейшая реализация метода Ньютона может выглядеть следующим образом:

Чтобы найти корень уравнения \( x^2 = 9 \) необходимо реализовать функции

Данная функция хорошо работает для приведенного примера. Однако, в общем случае могут возникать некоторые ошибки, которые нужно отлавливать. Например: пусть нужно решить уравнение \( \tanh(x) = 0 \), точное решение которого \( x = 0 \). Если \( |x_0| \leq 1.08 \), то метод сходится за шесть итераций.

Теперь зададим \( x_0 \) близким к \( 1.09 \). Возникнет переполнение

Возникнет деление на ноль, так как для \( x_7 = -126055892892.66042 \) значение \( \tanh(x_7) \) при машинном округлении равно \( 1.0 \) и поэтому \( f^\prime(x_7) = 1 — \tanh(x_7)^2 \) становится равной нулю в знаменателе.

Проблема заключается в том, что при таком начальном приближении метод Ньютона расходится.

Еще один недостаток функции naive_Newton заключается в том, что функция f(x) вызывается в два раза больше, чем необходимо.

Учитывая выше сказанное реализуем функцию с учетом следующего:

  1. обрабатывать деление на ноль
  2. задавать максимальное число итераций в случае расходимости метода
  3. убрать лишний вызов функции f(x)

Метод Ньютона сходится быстро, если начальное приближение близко к решению. Выбор начального приближение влияет не только на скорость сходимости, но и на сходимость вообще. Т.е. при неправильном выборе начального приближения метод Ньютона может расходиться. Неплохой стратегией в случае, когда начальное приближение далеко от точного решения, может быть использование нескольких итераций по методу бисекций, а затем использовать метод Ньютона.

При реализации метода Ньютона нужно знать аналитическое выражение для производной \( f^\prime(x) \). Python содержит пакет SymPy, который можно использовать для создания функции dfdx . Для нашей задачи это можно реализовать следующим образом:

Решение нелинейных систем

Идея метода Ньютона для приближенного решения системы (2) заключается в следующем: имея некоторое приближение \( \pmb^ <(k)>\), мы находим следующее приближение \( \pmb^ <(k+1)>\), аппроксимируя \( \pmb(\pmb^<(k+1)>) \) линейным оператором и решая систему линейных алгебраических уравнений. Аппроксимируем нелинейную задачу \( \pmb(\pmb^<(k+1)>) = 0 \) линейной $$ \begin \tag <5>\pmb(\pmb^<(k)>) + \pmb(\pmb^<(k)>)(\pmb^ <(k+1)>— \pmb^<(k)>) = 0, \end $$ где \( \pmb(\pmb^<(k)>) \) — матрица Якоби (якобиан): $$ \pmb<\nabla F>(\pmb^<(k)>) = \begin \frac<\partial f_1(\pmb^<(k)>)> <\partial x_1>& \frac<\partial f_1(\pmb^<(k)>)> <\partial x_2>& \ldots & \frac<\partial f_1(\pmb^<(k)>)> <\partial x_n>\\ \frac<\partial f_2(\pmb^<(k)>)> <\partial x_1>& \frac<\partial f_2(\pmb^<(k)>)> <\partial x_2>& \ldots & \frac<\partial f_2(\pmb^<(k)>)> <\partial x_n>\\ \vdots & \vdots & \ldots & \vdots \\ \frac<\partial f_n(\pmb^<(k)>)> <\partial x_1>& \frac<\partial f_n(\pmb^<(k)>)> <\partial x_2>& \ldots & \frac<\partial f_n(\pmb^<(k)>)> <\partial x_n>\\ \end $$ Уравнение (5) является линейной системой с матрицей коэффициентов \( \pmb \) и вектором правой части \( -\pmb(\pmb^<(k)>) \). Систему можно переписать в виде $$ \pmb(\pmb^<(k)>)\pmb <\delta>= — \pmb(\pmb^<(k)>), $$ где \( \pmb <\delta>= \pmb^ <(k+1)>— \pmb^ <(k)>\).

Таким образом, \( k \)-я итерация метода Ньютона состоит из двух стадий:

1. Решается система линейных уравнений (СЛАУ) \( \pmb(\pmb^<(k)>)\pmb <\delta>= -\pmb(\pmb^<(k)>) \) относительно \( \pmb <\delta>\).

2. Находится значение вектора на следующей итерации \( \pmb^ <(k+1)>= \pmb^ <(k)>+ \pmb <\delta>\).

Для решения СЛАУ можно использовать приближенные методы. Можно также использовать метод Гаусса. Пакет numpy содержит модуль linalg , основанный на известной библиотеке LAPACK, в которой реализованы методы линейной алгебры. Инструкция x = numpy.linalg.solve(A, b) решает систему \( Ax = b \) методом Гаусса, реализованным в библиотеке LAPACK.

Когда система нелинейных уравнений возникает при решении задач для нелинейных уравнений в частных производных, матрица Якоби часто бывает разреженной. В этом случае целесообразно использовать специальные методы для разреженных матриц или итерационные методы.

Можно также воспользоваться методами, реализованными для систем линейных уравнений.


источники:

http://www.matburo.ru/ex_cm.php?p1=cmnu

http://slemeshevsky.github.io/num-mmf/snes/html/._snes-FlatUI001.html