Методы решения полного квадратного уравнения

Методы решения полного квадратного уравнения

    Главная
  • Список секций
  • Математика
  • Основные способы решения полных квадратных уравнений

Основные способы решения полных квадратных уравнений

Автор работы награжден дипломом победителя III степени

Актуальность выбранной темы продиктована желанием показать разнообразие способов решения квадратных уравнений. Необходимость решать уравнения первой, но и второй степени ещё в древности была вызвана потребностью решать задачи, связанные с нахождением площади земельного участка и с земляными работами военного характера, а также с развитием астрономии и самой математики.

Начиная с 8 класса, умение решать квадратные уравнения является основополагающим, так как они находят широкое применение в решении тригонометрических, логарифмических, иррациональных, показательных и других видов уравнений. Квадратное уравнение широко распространено: во многих строительных и архитектурных расчётах, сооружениях, спорте, описании траектории движения планет. Поэтому исследование способов решения полных квадратных уравнений считаю актуальным.

Проблема: какие существуют способы решения полных квадратных уравнений?

Цель работы: изучить и систематизировать способы решения полных квадратных уравнений.

Изучить литературу по теме исследования.

Выбрать и изучить способы решения полных квадратных уравнений.

Объект исследования: полные квадратные уравнения.

Методы исследования: теоретический (изучение литературы), математический (построение графиков, вычисления).

Рассмотрим основные способы решения таких уравнений в нашей работе.

2.1 Квадратное уравнение: определение, виды, способы решения

Квадратным уравнением называется уравнение вида ax ² + bx + c =0, где х-переменная, a , b и c – некоторые числа, причём а¹0. Коэффициенты имеют свои названия: а – первый или старший коэффициент, в – второй коэффициент, с – свободный член. Если а=1, то уравнение называется приведённым. Если в=0 или с=0, то квадратное уравнение называют неполным (рис.1).

Рис.1 Виды квадратных уравнений

Примеры полных квадратных уравнений: 3x 2 -5x+2=0, x 2 -16x+24=0;

неполные: x 2 + 3x=0, 2x 2 — 128=0, 62x 2 = 0.

Корнями квадратного уравнения называются значения переменной, при которых уравнение обращается в верное равенство. Квадратное уравнение может иметь два, один или ни одного корня. [1]

В школьном курсе математики изучается несколько способов решения полных квадратных уравнений. Однако имеются и другие способы, которые позволяют очень быстро и рационально решать многие уравнения, всего насчитывается более десятка способов. Рассмотрим основные: решение квадратных уравнений по формуле, решение уравнения выделением полного квадрата, решение уравнения путём разложения левой части на множители, решение с помощью теоремы Виета и графический способ. Но сначала обратимся к историческим сведениям: как давно возникли квадратные уравнения и как их решали раньше?

2.2 Из истории квадратных уравнений

Квадратные уравнения в Индии.

Задачи на квадратные уравнения встречаются уже в астрономическом тракте «Ариабхаттиам», составленном в 499г. индийским математиком и астрономом Ариабахаттой. Другой индийский ученый, Брахмагупта ( VII в.), изложил общее правило решения квадратных уравнений, приведенных к единой канонической форме:

ах 2 + b х = с, а > 0

В уравнении все коэффициенты, кроме а, могут быть отрицательными. Правило Брахмагупта (приложение 1) по существу совпадает с ныне существующими.

Квадратные уравнения в Древнем Вавилоне

Квадратные уравнения умели решать около 2000 лет до н.э. вавилоняне. Если применить современную алгебраическую запись, то в их клинописных текстах можно встретить неполные и полные квадратные уравнения, например:

х 2 + х = , х 2 – х = 14

Правило решения этих уравнений, изложенное в вавилонских текстах, совпадает по существу с современным, однако неизвестно, каким образом дошли вавилоняне до этого правила. Почти все найденные до сих пор клинописные тексты приводят только задачи с решениями, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены. [5]

Квадратные уравнения в Европе XIII XVII вв.

Формулы решения квадратных уравнений по образцу аль-Хорезми (приложение 1) в Европе были впервые изложены в «Книге абака», написанной в 1202г. итальянским математиком Леонардо Фибоначчи. Этот объемный труд, в котором отражено влияние математики как стран ислама, так и Древней Греции, отличается и полнотой, и ясностью изложения. Автор разработал самостоятельно некоторые новые алгебраические примеры решения задач и первый в Европе подошёл к введению отрицательных чисел. Его книга способствовала распространению алгебраических знаний не только в Италии, но и в Германии, Франции и других странах Европы. Многие задачи из «Книги абака» переходили почти во все европейские учебники XVI — XVII вв. и частично XVIII век.

Общее правило решения квадратных уравнений, приведённых к единому каноническому виду

при всевозможных комбинациях знаков коэффициентов b и с было сформулировано в Европе лишь в 1544г. М.Штифелем.

Вывод формулы решения квадратного уравнения в общем виде имеется у Виета, однако Виет признавал только положительные корни. Итальянские математики Тарталья, Кардано, Бомбелли среди первых в XVI в. учитывают, кроме положительных, и отрицательные корни. Лишь в XVII в. благодаря трудам Жирара, Декарта, Ньютона и других учёных способ решения квадратных уравнений принимает современный вид. [3]

2.3 Решение квадратных уравнений по формуле

Решение квадратных уравнений сводится к нахождению дискриминанта, чтобы определить количество корней: D=b 2 — 4aс.

Если D>0, то уравнение имеет два корня и находим эти корни по формуле:

Если D=0, то уравнение имеет один корень

Рассмотрим пример 1: нужно найти корни уравнения 3x 2 — 2x — 16=0.

Записываем сначала, чему равны числовые коэффициенты a, b и c:

a=3,b= -2,c= -16. Находим дискриминант: D=b 2 -4ac = (-2) 2 -4∙2∙(-16)=4+192=196

Дискриминант больше нуля, следовательно, у нас два корня, найдем их:

Х1= (2 – 14) /6 = -2 Х2 = (2 + 14) /6 = 8/3

Рассмотрим пример 2: найти корни уравнения x 2 — 6x + 11=0.

a=1,b= -6,c= 11. Находим дискриминант: D=b 2 -4ac = (-6) 2 -4∙1∙11= 36 — 44= — 8

Дискриминант меньше нуля, следовательно, корней нет.

Ответ: корней нет.

Рассмотрим пример 3: найти корни уравнения 4x 2 — 12x + 9=0.

a=4,b= -12,c= 9. Находим дискриминант: D=b 2 -4ac = (-12) 2 -4∙4∙9= 144 -144= 0

Дискриминант равен нулю, следовательно, у нас один корень:

2.4 Решение квадратных уравнений методом выделения полного квадрата

Поясним этот метод на примере 4: решим уравнение х 2 + 6х – 7 = 0.

Выделим в левой части полный квадрат. Для этого запишем выражение

х 2 + 6х в виде: х 2 + 6х = х 2 + 2· х ·3.

В полученном выражении первое слагаемое – квадрат числа х, а второе – удвоенное произведение х на 3, поэтому, чтобы получить полный квадрат, нужно прибавить 3 2 , так как х 2 + 2· х ·3 + 3 2 = (х + 3) 2 .

Преобразуем теперь левую часть уравнения х 2 + 6х – 7 = 0, прибавляя к ней и вычитая 3 2 . Имеем:

х 2 + 6х – 7 = х 2 + 2· х ·3 + 3 2 – 3 2 – 7 = (х + 3) 2 – 9 – 7 = (х + 3) 2 – 16.

Таким образом, данное уравнение можно записать так:

(х + 3) 2 –16 = 0, т.е. (х + 3) 2 = 16.

Следовательно, х + 3 = 4, х1 = 1, или х + 3 = — 4 , х2 = – 7.

2.5 Разложение левой части квадратного уравнения на множители

Рассмотрим пример 5: решим уравнение х 2 + 10х – 24 = 0.

Разложим левую часть уравнения на множители:

х 2 + 10х – 24 = х 2 + 12х – 2х – 24 = х(х + 12) – 2(х +12) = (х + 12)(х – 2).

Следовательно, уравнение можно переписать так:

Так как произведение равно нулю, то, по крайне мере один из его множителей равен нулю. Поэтому левая часть уравнения обращается в нуль при х = 2, а также при х = — 12. Это означает, что числа 2 и – 12 являются корнями уравнения х 2 + 10х – 24 = 0.

2.6 Графический способ решения

Если в уравнении x 2 + bx + c = 0

перенести второй и третий члены в правую часть, то получим x 2 = – bx – c .

Построим графики зависимостей у = х 2 и у = – bx – c .

График первой зависимости – парабола, проходящая через начало координат.

График второй зависимости – прямая. Возможны следующие случаи:

прямая и парабола могут пересекаться в двух точках, абсциссы точек пересечения являются корнями квадратного уравнения;

прямая и парабола могут касаться (только одна общая точка), т.е. уравнение имеет одно решение;

прямая и парабола не имеют общих точек, т.е. квадратное уравнение не имеет корней. [2]

Пример 6: решим графически уравнение х 2 –3х – 4 = 0.

Запишем уравнение в виде х 2 = 3х + 4. Построим параболу у = х 2 и прямую у = 3х + 4. Прямую у = 3х + 4 можно построить по двум точкам М(0;4) и N (3;13).

Прямая и парабола пересекаются в двух точках А и B с абсциссами х1 = – 1 и х2 = 4. (Рис.2)

2.7 Решение квадратных уравнений с помощью теоремы Виета

1. Приведенное квадратное уравнение имеет вид х 2 + px + q = 0.

Его корни удовлетворяют теореме Виета, которая при а = 1 имеет вид

Отсюда можно сделать следующие выводы (по коэффициентам p и q можно предсказать знаки корней).

Если свободный член q приведенного уравнения положителен ( q >0), то уравнение имеет два одинаковых по знаку корня и это зависит от второго коэффициента p .

Если p >0, то оба корня отрицательные, если p 2 – 3х + 2 = 0; х1 = 2 и х2 = 1, так как q = 2 > 0 и p = – 3 2 +8х + 7 = 0; х1 = – 7 и х2 = – 1, так как q = 7 > 0 и p = 8 >0.

Если свободный член q приведенного уравнения отрицателен ( q p p >0.

х 2 + 4х – 5 = 0; х1 = – 5 и х2 = 1, так как q = – 5 p = 4 > 0;

х 2 – 8х – 9 = 0; х1 = 9 и х2 = – 1, так как q = – 9 p = – 8 >0.

2. Теорема Виета для квадратного уравнения ах 2 + b х +с = 0 имеет вид

Справедлива теорема, обратная теореме Виета:

Если числа х1 и х2 таковы, что х12 = — b , х1х2 = c , то х1 и х2 – корни квадратного уравнения х 2 + b х + c = 0.

Эта теорема позволяет в ряде случаев находить корни квадратного уравнения без использования формулы корней. [4]

Пример 7: решим уравнение х 2 – 9х + 14 =0.

Найдём два числа х1 и х2 , такие, что

Такими числами являются 2 и 7. По теореме, обратной теореме Виета, они и служат корнями заданного квадратного уравнения.

При решении квадратного уравнения не надо ограничиваться одним

способом решения уравнения, который изучается в школьном курсе математики, а для каждой ситуации можно использовать свой способ решения.

Особенно популярным способом является решение квадратного уравнения по формуле и теорема Виета. Изучив материалы для подготовки к ГИА, я пришла к выводу: материалы содержат много квадратных уравнений, при решении которых можно использовать различные способы.

Интересным для меня оказался графический способ решения квадратного уравнения. Но недостаток этого способа – не всегда значения абсцисс точек пересечения графиков будут являться целыми и точными значениями.

Более подробно изучив тему «Решение полных квадратных уравнений», я углубила знания в истории развития математики и открыла много полезного и нового для себя. Кроме вышеперечисленных мною основных способов решения квадратных уравнений в разных источниках выделяют ещё: решение уравнений способом «переброски», решение с помощью циркуля и линейки, решение с помощью номограммы, геометрический способ и использование свойств коэффициентов квадратного уравнения.

Такая широкая тема позволяет всем желающим находить в книгах, научных журналах, сайтах всё новые пути решения уравнений, создавать основу для дальнейших исследований в мире математики, получать необходимые интересующие сведения, применение которых на практике способствует развитию мышления и повышению уровня знаний. Каждый из способов удобен по-своему, интересен и значим в общей копилке умений каждого.

Список использованных источников и литературы

Мерзляк А.Г. Алгебра: 8 класс: учебник для общеобразовательных организаций/А.Г.Мерзляк, В.Б.Полонский, М.С.Якир. – М.:Вентана – Граф, 2017.

Окунев А.К. Квадратичные функции, уравнения и неравенства / Пособие для учителя. — М.: Просвещение, 2016.

Соломник В.С., Милов П.И. Сборник вопросов и задач по математике. Изд. — 4-е, дополн. — М.: Высшая школа, 2017.

Якушева Г.Н. Математика. Справочник школьника. — М., Просвещение, 2015.

История возникновения квадратных уравнений: [Электронный ресурс]. URL : https://ru.wikipedia.org/wiki/Квадратное_уравнение (Дата обращения 26.03.2019).

Индийский математик Брахмагупта и среднеазиатский учёный, математик, астроном Абу́ Абдулла́х Муха́ммад ибн Муса́ аль-Хорезми́

Как решать квадратные уравнения

О чем эта статья:

Понятие квадратного уравнения

Уравнение — это равенство, содержащее переменную, значение которой нужно найти.

Например, х + 8 = 12 — это уравнение, которое содержит переменную х.

Корень уравнения — это такое значение переменной, которое при подстановке в уравнение обращает его в верное числовое равенство.

Например, если х = 5, то при подстановке в уравнение мы получим 5 + 8 = 12. 13 = 12 — противоречие. Значит, х = 5 не является корнем уравнения.

А вот если х = 4, то при подстановке в уравнение мы получим 4 + 8 = 12. 12 = 12 — верное равенство. Значит, х = 4 является корнем уравнения.

Решить уравнение — значит найти все его корни или доказать, что их не существует.

Квадратное уравнение — это уравнение вида ax 2 + bx + c = 0, где a — первый или старший коэффициент, не равный нулю, b — второй коэффициент, c — свободный член.

Чтобы запомнить месторасположение коэффициентов, давайте потренируемся определять их.

Квадратные уравнения могут иметь два корня, один корень или не иметь корней.

Чтобы определить, сколько корней имеет уравнение, нужно обратить внимание на дискриминант. Чтобы его найти, берем формулу: D = b 2 − 4ac. А вот свойства дискриминанта:

  • если D 0, есть два различных корня.

С этим разобрались. А сейчас посмотрим подробнее на различные виды квадратных уравнений.

Разобраться в теме еще быстрее с помощью опытного преподавателя можно на курсах по математике в онлайн-школе Skysmart.

Приведенные и неприведенные квадратные уравнения

Квадратное уравнение может быть приведенным или неприведенным — все зависит от от значения первого коэффициента.

Приведенное квадратное уравнение — это уравнение, где старший коэффициент, тот который стоит при одночлене высшей степени, равен единице.

Неприведенным называют квадратное уравнение, где старший коэффициент отличается от единицы.

Давайте-ка на примерах — вот у нас есть два уравнения:

  • x 2 — 2x + 6 = 0
  • x 2 — x — 1/4 = 0

В каждом из них старший коэффициент равен единице (которую мы мысленно представляем при x 2 ), а значит уравнение называется приведенным.

  • 2x 2 − 4x — 12 = 0 — первый коэффициент отличен от единицы (2), значит это неприведенное квадратное уравнение.

Каждое неприведенное квадратное уравнение можно преобразовать в приведенное, если произвести равносильное преобразование — разделить обе его части на первый коэффициент.

Пример 1. Превратим неприведенное уравнение: 8x 2 + 20x — 9 = 0 — в приведенное.

Для этого разделим обе части исходного уравнения на старший коэффициент 8:

Ответ: равносильное данному приведенное уравнение x 2 + 2,5x — 1,125 = 0.

Полные и неполные квадратные уравнения

В определении квадратного уравнения есть условие: a ≠ 0. Оно нужно, чтобы уравнение ax 2 + bx + c = 0 было именно квадратным. Если a = 0, то уравнение обретет вид линейного: bx + c = 0.

Что касается коэффициентов b и c, то они могут быть равны нулю, как по отдельности, так и вместе. В таком случае квадратное уравнение принято называть неполным.

Неполное квадратное уравнение —— это квадратное уравнение вида ax 2 + bx + c = 0, где оба или хотя бы один из коэффициентов b и c равен нулю.

Полное квадратное уравнение — это уравнение, у которого все коэффициенты отличны от нуля.

Для самых любопытных объясняем откуда появились такие названия:
  • Если b = 0, то квадратное уравнение принимает вид ax 2 + 0x+c=0 и оно равносильно ax 2 + c = 0.
  • Если c = 0, то квадратное уравнение выглядит так ax 2 + bx + 0 = 0, иначе его можно написать как ax 2 + bx = 0.
  • Если b = 0 и c = 0, то квадратное уравнение выглядит так ax 2 = 0.

Такие уравнения отличны от полного квадратного тем, что их левые части не содержат либо слагаемого с неизвестной переменной, либо свободного члена, либо и того и другого. Отсюда и их название — неполные квадратные уравнения.

Решение неполных квадратных уравнений

Как мы уже знаем, есть три вида неполных квадратных уравнений:

  • ax 2 = 0, ему отвечают коэффициенты b = 0 и c = 0;
  • ax 2 + c = 0, при b = 0;
  • ax 2 + bx = 0, при c = 0.

Давайте рассмотрим по шагам, как решать неполные квадратные уравнения по видам.

Как решить уравнение ax 2 = 0

Начнем с решения неполных квадратных уравнений, в которых b и c равны нулю, то есть, с уравнений вида ax 2 = 0.

Уравнение ax 2 = 0 равносильно x 2 = 0. Такое преобразование возможно, когда мы разделили обе части на некое число a, которое не равно нулю. Корнем уравнения x 2 = 0 является нуль, так как 0 2 = 0. Других корней у этого уравнения нет, что подтверждают свойства степеней.

Таким образом, неполное квадратное уравнение ax 2 = 0 имеет единственный корень x = 0.

Пример 1. Решить −6x 2 = 0.

  1. Замечаем, что данному уравнению равносильно x 2 = 0, значит исходное уравнение имеет единственный корень — нуль.
  2. По шагам решение выглядит так:

Как решить уравнение ax 2 + с = 0

Обратим внимание на неполные квадратные уравнения вида ax 2 + c = 0, в которых b = 0, c ≠ 0. Мы давно знаем, что слагаемые в уравнениях носят двусторонние куртки: когда мы переносим их из одной части уравнения в другую, они надевает куртку на другую сторону — меняют знак на противоположный.

Еще мы знаем, что если обе части уравнения поделить на одно и то же число (кроме нуля) — у нас получится равносильное уравнение. Ну есть одно и то же, только с другими цифрами.

Держим все это в голове и колдуем над неполным квадратным уравнением (производим «равносильные преобразования»): ax 2 + c = 0:

  • перенесем c в правую часть: ax 2 = — c,
  • разделим обе части на a: x 2 = — c/а.

Ну все, теперь мы готовы к выводам о корнях неполного квадратного уравнения. В зависимости от значений a и c, выражение — c/а может быть отрицательным или положительным. Разберем конкретные случаи.

Если — c/а 2 = — c/а не имеет корней. Все потому, что квадрат любого числа всегда равен неотрицательному числу. Из этого следует, что при — c/а 0, то корни уравнения x 2 = — c/а будут другими. Например, можно использовать правило квадратного корня и тогда корень уравнения равен числу √- c/а, так как (√- c/а) 2 = — c/а. Кроме того, корнем уравнения может стать -√- c/а, так как (-√- c/а) 2 = — c/а. Ура, больше у этого уравнения нет корней.

Неполное квадратное уравнение ax 2 + c = 0 равносильно уравнению х 2 = -c/a, которое:

  • не имеет корней при — c/а 0.
В двух словах

Пример 1. Найти решение уравнения 8x 2 + 5 = 0.

    Перенесем свободный член в правую часть:

Разделим обе части на 8:

  • В правой части осталось число со знаком минус, значит у данного уравнения нет корней.
  • Ответ: уравнение 8x 2 + 5 = 0 не имеет корней.

    Как решить уравнение ax 2 + bx = 0

    Осталось разобрать третий вид неполных квадратных уравнений, когда c = 0.

    Неполное квадратное уравнение ax 2 + bx = 0 можно решить методом разложения на множители. Как разложить квадратное уравнение:

    Разложим на множители многочлен, который расположен в левой части уравнения — вынесем за скобки общий множитель x.

    Теперь можем перейти от исходного уравнения к равносильному x * (ax + b) = 0. А это уравнение равносильно совокупности двух уравнений x = 0 и ax + b = 0, последнее — линейное, его корень x = −b/a.

    Таким образом, неполное квадратное уравнение ax 2 + bx = 0 имеет два корня:

    Пример 1. Решить уравнение 0,5x 2 + 0,125x = 0

  • Это уравнение равносильно х = 0 и 0,5x + 0,125 = 0.
  • Решить линейное уравнение:

    0,5x = 0,125,
    х = 0,125/0,5

  • Значит корни исходного уравнения — 0 и 0,25.
  • Ответ: х = 0 и х = 0,25.

    Как разложить квадратное уравнение

    С помощью теоремы Виета можно получить формулу разложения квадратного трехчлена на множители. Выглядит она так:

    Формула разложения квадратного трехчлена

    Если x1 и x2 — корни квадратного трехчлена ax 2 + bx + c, то справедливо равенство ax 2 + bx + c = a (x − x1) (x − x2).

    Дискриминант: формула корней квадратного уравнения

    Чтобы найти результат квадратного уравнения, придумали формулу корней. Выглядит она так:

    где D = b 2 − 4ac — дискриминант квадратного уравнения.

    Эта запись означает:

    Чтобы легко применять эту формулу, нужно понять, как она получилась. Давайте разбираться.

    Алгоритм решения квадратных уравнений по формулам корней

    Теперь мы знаем, что при решении квадратных уравнения можно использовать универсальную формулу корней — это помогает находить комплексные корни.

    В 8 классе на алгебре можно встретить задачу по поиску действительных корней квадратного уравнения. Для этого важно перед использованием формул найти дискриминант и убедиться, что он неотрицательный, и только после этого вычислять значения корней. Если дискриминант отрицательный, значит уравнение не имеет действительных корней.

    Алгоритм решения квадратного уравнения ax 2 + bx + c = 0:

    • вычислить его значение дискриминанта по формуле D = b 2 −4ac;
    • если дискриминант отрицательный, зафиксировать, что действительных корней нет;
    • если дискриминант равен нулю, вычислить единственный корень уравнения по формуле х = −b/2a;
    • если дискриминант положительный, найти два действительных корня квадратного уравнения по формуле корней

    Чтобы запомнить алгоритм решения квадратных уравнений и с легкостью его использовать, давайте тренироваться!

    Примеры решения квадратных уравнений

    Как решать квадратные уравнения мы уже знаем, осталось закрепить знания на практике.

    Пример 1. Решить уравнение −4x 2 + 28x — 49 = 0.

    1. Найдем дискриминант: D = 28 2 — 4(-4)(-49) = 784 — 784 = 0
    2. Так как дискриминант равен нулю, значит это квадратное уравнение имеет единственный корень
    3. Найдем корень

    Ответ: единственный корень 3,5.

    Пример 2. Решить уравнение 54 — 6x 2 = 0.

      Произведем равносильные преобразования. Умножим обе части на −1

    Оставим неизвестное в одной части, остальное перенесем с противоположным знаком в другую

    Ответ: два корня 3 и — 3.

    Пример 3. Решить уравнение x 2 — х = 0.

      Преобразуем уравнение так, чтобы появились множители

    Ответ: два корня 0 и 1.

    Пример 4. Решить уравнение x 2 — 10 = 39.

      Оставим неизвестное в одной части, остальное перенесем с противоположным знаком в другую

    Ответ: два корня 7 и −7.

    Пример 5. Решить уравнение 3x 2 — 4x+94 = 0.

      Найдем дискриминант по формуле

    D = (-4) 2 — 4 * 3 * 94 = 16 — 1128 = −1112

  • Дискриминант отрицательный, поэтому корней нет.
  • Ответ: корней нет.

    В школьной программе за 8 класс нет обязательного требования искать комплексные корни, но такой подход может ускорить ход решения. Если дискриминант отрицательный — сразу пишем ответ, что действительных корней нет и не мучаемся.

    Формула корней для четных вторых коэффициентов

    Рассмотрим частный случай. Формула решения корней квадратного уравнения , где D = b 2 — 4ac, помогает получить еще одну формулу, более компактную, при помощи которой можно решать квадратные уравнения с четным коэффициентом при x. Рассмотрим, как появилась эта формула.

    Например, нам нужно решить квадратное уравнение ax 2 + 2nx + c = 0. Сначала найдем его корни по известной нам формуле. Вычислим дискриминант D = (2n) 2 — 4ac = 4n 2 — 4ac = 4(n 2 — ac) и подставим в формулу корней:

    2 + 2nx + c = 0″ height=»705″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc11a460e2f8354381151.png» width=»588″>

    Для удобства вычислений обозначим выражение n 2 -ac как D1. Тогда формула корней квадратного уравнения со вторым коэффициентом 2·n примет вид:

    где D1 = n 2 — ac.

    Самые внимательные уже заметили, что D = 4D1, или D1= D/4. Проще говоря, D1 — это четверть дискриминанта. И получается, что знак D1 является индикатором наличия или отсутствия корней квадратного уравнения.

    Сформулируем правило. Чтобы найти решение квадратного уравнения со вторым коэффициентом 2n, нужно:

    • вычислить D1= n 2 — ac;
    • если D1 0, значит можно найти два действительных корня по формуле

    Формула Виета

    Если в школьной геометрии чаще всего используется теорема Пифагора, то в школьной алгебре ведущую роль занимают формулы Виета. Теорема звучит так:

    Сумма корней x 2 + bx + c = 0 равна второму коэффициенту с противоположным знаком, а произведение корней равняется свободному члену.

    Если дано x 2 + bx + c = 0, где x₁ и x₂ являются корнями, то справедливы два равенства:

    Знак системы, который принято обозначать фигурной скобкой, означает, что значения x₁ и x₂ удовлетворяют обоим равенствам.

    Рассмотрим теорему Виета на примере: x 2 + 4x + 3 = 0.

    Пока неизвестно, какие корни имеет данное уравнение. Но в соответствии с теоремой можно записать, что сумма этих корней равна второму коэффициенту с противоположным знаком. Он равен четырем, значит будем использовать минус четыре:

    Произведение корней по теореме соответствует свободному члену. В данном случае свободным членом является число три. Значит:

    Необходимо проверить равна ли сумма корней −4, а произведение 3. Для этого найдем корни уравнения x 2 + 4x + 3 = 0. Воспользуемся формулами для чётного второго коэффициента:
    2 + 4x + 3 = 0″ height=»215″ src=»https://lh5.googleusercontent.com/E_X403ETh_88EANRWdQN03KRT8yxP2HO4HoCrxj__c8G0DqmNJ1KDRqtLH5Z1p7DtHm-rNMDB2tEs41D7RHpEV5mojDTMMRPuIkcW33jVNDoOe0ylzXdHATLSGzW4NakMkH2zkLE» width=»393″>

    Получилось, что корнями уравнения являются числа −1 и −3. Их сумма равняется второму коэффициенту с противоположным знаком, а значит решение верное.
    2 + 4x + 3 = 0″ height=»52″ src=»https://lh5.googleusercontent.com/VzGPXO9B0ZYrr9v0DpJfXwuzeZtjYnDxE_ma76PUC8o7jVWwa8kZjTJhq2Lof0TiJXAp_ny3yRwI_OyRzeucv9xUZ63yoozGPP4xd4OxvElVT7Pt-d6xL5w17e_mQNs5qZJQiwfG» width=»125″>

    Произведение корней −1 и −3 по теореме Виета должно равняться свободному члену, то есть числу 3. Это условие также выполняется:
    2 + 4x + 3 = 0″ height=»52″ src=»https://lh4.googleusercontent.com/Cq-LCFmY3YGNSan1VF3l3CqIeojoJYAvGAiTBWnzyoZu_xJFrF5NfQ3xCe59apJklw6uYbmQ4lAkBTeC-TJmEGicN3rgGtsezhuqdNiOWjZT39NziOB5uOmQr3cr9-5fNnepdZDo» width=»112″>

    Результат проделанных вычислений в том, что мы убедились в справедливости выражения:

    Когда дана сумма и произведение корней квадратного уравнения, принято начинать подбор подходящих корней. Теорема, обратная теореме Виета, при таких условиях может быть главным помощником. Вот она:

    Обратная теорема Виета

    Если числа x1 и x2 таковы, что их сумма равна второму коэффициенту уравнения x 2 + bx + c = 0, взятому с противоположным знаком, а их произведение равно свободному члену, то эти числа и есть корни x 2 + bx + c = 0.

    Обычно вся суть обратных теорем в том самом выводе, которое дает первая теорема. Так, при доказательстве теоремы Виета стало понятно, что сумма x1 и x2 равна −b, а их произведение равно c. В обратной теореме это и есть утверждение.

    Пример 1. Решить при помощи теоремы Виета: x 2 − 6x + 8 = 0.

      Для начала запишем сумму и произведение корней уравнения. Сумма будет равна 6, так как второй коэффициент равен −6. А произведение корней равно 8.

    2 − 6x + 8 = 0″ height=»59″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc101ce2e346034751939.png» width=»117″>

    Когда у нас есть эти два равенства, можно подобрать подходящие корни, которые будут удовлетворять обоим равенствам системы.

    Чтобы проще подобрать корни, нужно их перемножить. Число 8 можно получить путем перемножения чисел 4 и 2 либо 1 и 8. Но значения x1 и x2 надо подбирать так, чтобы они удовлетворяли и второму равенству тоже.

    Можно сделать вывод, что значения 1 и 8 не подходят, так как они не удовлетворяют равенству x1 + x2 = 6. А значения 4 и 2 подходят обоим равенствам:

    Значит числа 4 и 2 — корни уравнения x 2 − 6x + 8 = 0. p>

    Упрощаем вид квадратных уравнений

    Если мы ходили в школу всегда одной тропинкой, а потом вдруг обнаружили путь короче — это значит теперь у нас есть выбор: упростить себе задачу и сократить время на дорогу или прогуляться по привычному маршруту.

    Так же и при вычислении корней квадратного уравнения. Ведь проще посчитать уравнение 11x 2 — 4 x — 6 = 0, чем 1100x 2 — 400x — 600 = 0.

    Часто упрощение вида квадратного уравнения можно получить через умножение или деление обеих частей на некоторое число. Например, в предыдущем абзаце мы упростили уравнение 1100x 2 — 400x — 600 = 0, просто разделив обе части на 100.

    Такое преобразование возможно, когда коэффициенты не являются взаимно простыми числами. Тогда принято делить обе части уравнения на наибольший общий делитель абсолютных величин его коэффициентов.

    Покажем, как это работает на примере 12x 2 — 42x + 48 = 0. Найдем наибольший общий делитель абсолютных величин его коэффициентов: НОД (12, 42, 48) = 6. Разделим обе части исходного квадратного уравнения на 6, и придем к равносильному уравнению 2x 2 — 7x + 8 = 0. Вот так просто.

    А умножение обеих частей квадратного уравнения отлично помогает избавиться от дробных коэффициентов. Умножать в данном случае лучше на наименьшее общее кратное знаменателей его коэффициентов. Например, если обе части квадратного уравнения

    умножить на НОК (6, 3, 1) = 6, то оно примет более простой вид x 2 + 4x — 18 = 0.

    Также для удобства вычислений можно избавиться от минуса при старшем коэффициенте квадратного уравнения — для этого умножим или разделим обе части на −1. Например, удобно от квадратного уравнения −2x 2 — 3x + 7 = 0 перейти к решению 2x 2 + 3x — 7 = 0.

    Связь между корнями и коэффициентами

    Мы уже запомнили, что формула корней квадратного уравнения выражает корни уравнения через его коэффициенты:

    Из этой формулы, можно получить другие зависимости между корнями и коэффициентами.

    Например, можно применить формулы из теоремы Виета:

    Для приведенного квадратного уравнения сумма корней равна второму коэффициенту с противоположным знаком, а произведение корней — свободному члену. Например, по виду уравнения 3x 2 — 7x + 22 = 0 можно сразу сказать, что сумма его корней равна 7/3, а произведение корней равно 22/3.

    Можно активно использовать уже записанные формулы и с их помощью получить ряд других связей между корнями и коэффициентами квадратного уравнения. Таким образом можно выразить сумму квадратов корней квадратного уравнения через его коэффициенты:

    Теоретический материал по теме «10 способов решений квадратных уравнений»

    Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

    10 способов решения квадратных уравнений

    Квадратные уравнения — это фундамент, на котором покоится величественное здание алгебры. Квадратные уравнения находят широкое применение при решении тригонометрических, показательных, логарифмических, иррациональных и трансцендентных уравнений и неравенств. Многие практические задачи решаются с их помощью. Например, квадратное уравнение позволяет рассчитать тормозной путь автомобиля, мощность ракеты для вывода на орбиту космического корабля, траектории движения различных физических объектов – от элементарных частиц до звёзд.

    В школе изучаются формулы корней квадратных уравнений, с помощью которых можно решать любые квадратные уравнения. Однако имеются и другие способы решения квадратных уравнений, которые позволяют очень быстро и рационально решать квадратные уравнения. Предлагаю 10.

    Определение 1. Квадратным уравнением называют уравнение вида ах 2 + b х + с = 0, где коэффициенты а, в, с- действительные числа, а ≠ 0.

    Определение 2 . Полное квадратное уравнение — это квадратное уравнение, в котором присутствуют все три слагаемых т.е. коэффициенты в и с отличны от нуля.

    Неполное квадратное уравнение — это уравнение, в котором хотя бы один из коэффициентов в или, с равен нулю.

    Определение 3. Корнем квадратного уравнения ах 2 + вх + с = 0 называют всякое значение переменной х, при котором квадратный трехчлен ах 2 + вх + с обращается в нуль.

    Определение 4 . Решить квадратное уравнение — значит найти все его

    корни или установить, что корней нет.

    Разложение левой части уравнения на множители.

    Решим уравнение х 2 + 10х — 24 = 0 .

    Разложим левую часть на множители:

    х 2 + 10х — 24 = х 2 + 12х — 2х — 24 = х(х + 12) — 2(х + 12) = (х + 12)(х — 2).

    Следовательно, уравнение можно переписать так:

    Произведение множителей равно нулю, если по крайней мере, один из его множителей равен нулю.

    х + 12= 0 или х – 2=0

    2. Метод выделения полного квадрата двучлена.

    Решим уравнение х 2 + 6х — 7 = 0 .

    Выделим в левой части полный квадрат:

    тогда, данное уравнение можно записать так:

    х + 3=4 или х + 3 = -4

    3.Решение квадратных уравнений по формулам.

    а) Решим уравнение:

    б) Решим уравнение:

    в) Решим уравнение: 2 + 3х + 4 = 0,

    Данное уравнение корней не имеет.

    Ответ: корней нет.

    4. Решение уравнений с использованием теоремы Виета.

    Чтобы квадратное уравнение привести к приведенному виду, нужно все его члены разделить на a ,, тогда

    сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.

    5. Решение уравнений способом «переброски».

    Рассмотрим квадратное уравнение

    Умножая обе его части на а, получаем уравнение а 2 х 2 + а b х + ас = 0.

    Пусть ах = у , откуда х = у/а ; тогда приходим к уравнению у 2 + by + ас = 0,

    Его корни у 1 и у 2 найдем с помощью теоремы Виета и окончательно:

    При этом способе коэффициент а умножается на свободный член, как бы «перебрасывается» к нему, поэтому его называют способом «переброски» . Этот способ применяют, когда можно легко найти корни уравнения, используя теорему Виета и, что самое важное, когда дискриминант есть точный квадрат.

    Решим уравнение 2 – 11х + 15 = 0.

    Решение. «Перебросим» коэффициент 2 к свободному члену, в результате получим уравнение

    Согласно теореме Виета

    6. Свойства коэффициентов квадратного уравнения.

    1. Пусть дано квадратное уравнение ах 2 + b х + с = 0, где а ≠ 0.

    Если, а+ b + с = 0 (т.е. сумма коэффициентов равна нулю),

    А. Решим уравнение 345х 2 – 137х – 208 = 0.

    Решение. Так как а + b + с = 0 (345 – 137 – 208 = 0), то

    Б. Решим уравнение 132х 2 – 247х + 115 = 0.

    Решение. Так как а + b + с = 0 (132 – 247 + 115 = 0), то

    2) Решим уравнение 2х 2 + 3х +1= 0. Так как 2 — 3+1=0, значит х 1 = — 1, х 2 = -с/а= -1/2

    Данный метод удобно применять к квадратным уравнениям с большими коэффициентами.

    2. Если второй коэффициент уравнения b = 2 k – четное число, то формулу корней можно записать в виде

    Решим уравнение 2 — 14х + 16 = 0 .

    Приведенное уравнение х 2 + рх + q = 0 совпадает с уравнением общего вида, в котором а = 1 , b = р и с = q . Поэтому для приведенного квадратного уравнения формула корней принимает вид

    Формулу ( ) удобно использовать, когда р — четное число.

    Пример. Решим уравнение х 2 – 14х – 15 = 0.

    Решение. Имеем а=1, в =-14, (к=-7),с=-15.

    7.Графическое решение квадратного уравнения.

    И спользуя знания о квадратичной и линейной функциях и их графиках, можно решить квадратное уравнение так называемым функционально-графическим методом. Причем некоторые квадратные уравнения можно решить различными способами, рассмотрим эти способы на примере одного квадратного уравнения.

    Пример. Решить уравнение =0

    1способ . Построим график функции , воспользовавшись алгоритмом.

    Значит, вершиной параболы служит точка (1;-4), а осью параболы – прямая x=1

    2) Возьмем на оси х две точки, симметричные относительно оси параболы, например точки рис.2

    х= -1 и х=3, тогда f (-1)= f (3)=0.

    3) Через точки (-1;0) , (1;-4), (3;0) проводим параболу (рис 2).

    Корнями уравнений являются абсциссы точек пересечения параболы с осью х; значит, корни уравнения

    Преобразуем уравнение к виду .

    Построим в одной системе координат графики функций и (рис 3 ).

    Они пересекаются в двух точках A(-1;1) и B(3;9). Корнями уравнения служат абсциссы точек A и B , значит, .

    3 способ

    Преобразуем уравнения к виду.

    Построим в одной системе координат графики функций и (рис.4) Они пересекаются в двух точках A(-1;-2) и В (3;6). Корнями уравнения являются абсциссы точек А и В, поэтому .

    Преобразуем уравнение к виду , затем т.е.

    Построим в одной системе координат параболу и прямую . Они пересекаются в точках А(-1;4) и В(3;4). Корнями уравнений служат абсциссы точек А и В, поэтому (рис.5) .

    Рис.5

    Разделим почленно обе части уравнения на x, получим:

    Построим в одной системе координат гиперболу и прямую (рис.6). Они пересекаются в двух точках А(-1;-3) и В(3;1). Корнями уравнений являются абсциссы точек А и В, следовательно, .

    Первые четыре способа применимы к любым уравнениям вида

    ах 2 + b х + с = 0, а пятый- только к тем, у которых с не равно нулю.

    Графические способы решения квадратных уравнений красивы, но не дают стопроцентной гарантии решения любого квадратного уравнения.

    8. Решение квадратных уравнений с помощью циркуля и

    Предлагаю следующий способ нахождения корней квадратного уравнения ах 2 + b х + с = 0 с помощью циркуля и линейки (рис.7 ).

    Допустим, что искомая окружность пересекает ось

    Центр окружности находится в точке пересечения перпендикуляров SF и SK , восстановленных в серединах хорд AC и BD , поэтому

    Итак:

    1) построим точки (центр окружности) и A (0; 1) ;

    2) проведем окружность с радиусом SA ;

    3) абсциссы точек пересечения этой окружности с осью Ох являются корнями исходного квадратного уравнения.

    При этом возможны три случая.

    2) Радиус окружности равен ординате центра ( AS = SB , или R = a + c /2 a ) , окружность касается оси Ох (рис.8б) в точке В(х 1 ; 0) , где х 1 — корень квадратного уравнения.

    3) Радиус окружности меньше ординаты центра

    окружность не имеет общих точек с осью абсцисс (рис 8в), в этом случае уравнение не имеет решения.

    Решим уравнение х 2 — 2х — 3 = 0 (рис.9).

    Решение. Определим координаты точки центра окружности по формулам:

    Проведем окружность радиуса SA , где А (0; 1).

    9. Решение квадратных уравнений с помощью

    Это старый и в настоящее время забытый способ решения квадратных уравнений, помещенный на с.83 сборника: Брадис В.М. Четырехзначные математические таблицы. — М., Просвещение, 1990.

    Таблица XXII . Номограмма для решения уравнения z 2 + pz + q = 0 . Эта номограмма позволяет, не решая квадратного уравнения, по его коэффициен-

    там определить корни уравнения.

    Криволинейная шкала номограммы построена

    по формулам (рис.10):

    Полагая ОС = р, ED = q , ОЕ = а (все в см.), из

    подобия треугольников САН и CDF получим

    откуда после подстановок и упрощений вытекает уравнение

    причем буква z означает метку любой точки криволинейной шкалы.

    2) Решим с помощью номограммы уравнение

    Разделим коэффициенты этого уравнения на 2,

    3) Для уравнения z 2 — 25 z + 66 = 0 коэффициенты p и q выходят за пределы шкалы, выполним подстановку z = 5 t , получим уравнение t 2 — 5 t + 2,64 = 0,

    10. Геометрический способ решения квадратных уравнений.

    В древности, когда геометрия была более развита, чем алгебра, квадратные уравнения решали не алгебраически, а геометрически. Приведу ставший знаменитым пример из «Алгебры» ал — Хорезми.

    1) Решим уравнение х 2 + 10х = 39.

    В оригинале эта задача формулируется следующим образом : «Квадрат и десять корней равны 39» (рис.12).

    Решение. Рассмотрим квадрат со стороной х, на его сторонах строятся прямоугольники так, что другая сторона каждого из них равна 2,5, следовательно, площадь каждого равна 2,5х. Полученную фигуру дополняют затем до нового квадрата ABCD , достраивая в углах четыре равных квадрата , сторона каждого их них 2,5, а площадь 6,25.

    Площадь S квадрата ABCD можно представить как сумму площадей: первоначального квадрата х 2 , четырех прямоугольников (4• 2,5х = 10х ) и четырех пристроенных квадратов (6,25• 4 = 25) , т.е. S = х 2 + 10х + 25. Заменяя

    х 2 + 10х числом 39 , получим, что S = 39 + 25 = 64 , откуда следует, что сторона квадрата ABCD , т.е. отрезок АВ = 8 . Для искомой стороны х первоначального квадрата получим

    2) А вот, например, как древние греки решали уравнение у 2 + 6у — 16 = 0 .

    Решение представлено на рис 13. где

    Решение. Выражения у 2 + 6у + 9 и 16 + 9 геометрически представляют собой

    один и тот же квадрат, а исходное уравнение у 2 + 6у — 16 + 9 — 9 = 0 — одно и то же уравнение. Откуда и получаем, что у + 3 = ± 5, или у 1 = 2, у 2 = — 8 (рис. .

    3) Решить геометрически уравнение у 2 — 6у — 16 = 0.

    Преобразуя уравнение, получаем

    На рис 14. находим «изображения» выражения у 2 — 6у, т.е. из площади квадрата со стороной у два раза вычитается площадь квадрата со стороной, равной 3 . Значит, если к выражению у 2 — 6у прибавить 9 , то получим площадь квадрата со стороной у — 3 . Заменяя выражение у 2 — 6у равным ему числом 16,

    получаем: (у — 3) 2 = 16 + 9, т.е. у — 3 = ± √25 , или у — 3 = ± 5, где у 1 = 8 и у 2 = — 2.


    источники:

    http://skysmart.ru/articles/mathematic/kak-reshat-kvadratnye-uravneniya

    http://infourok.ru/teoreticheskij-material-po-teme-10-sposobov-reshenij-kvadratnyh-uravnenij-4034975.html