Методы решения систем линейных алгебраических уравнений курсовая

Курсовая работа: Решение системы линейных уравнений

Министерство образования и науки Республики Беларусь

Белорусский государственный университет

информатики и радиоэлектроники

Факультет информационных технологий и управления

Кафедра Вычислительных Методов и Программирования

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

к курсовой работе

по программированию

«Решение системы линейных уравнений»

ст.гр.020603 Навроцкий А.А.

1. Анализ существующих методов решения задачи.

2. Описание используемого метода.

3. Анализ результатов.

Список использованной литературы.

Приложение (распечатка программы, результатов).

Решение систем линейных алгебраических уравнений (СЛАУ) является одной из основных задач линейной алгебры. Эта задача имеет важное прикладное значение при решении научных и технических проблем. Кроме того, является вспомогательной при реализации многих алгоритмов вычислительной математики, математической физики, обработки результатов экспериментальных исследований.

Применяемые на практике численные методы решения СЛАУ делятся на две группы — прямые и итерационные .

В прямых (или точных) методах решение системы получают за конечное число арифметических действий. К ним относятся известное правило Крамера нахождения решения с помощью определителей, метод последовательного исключения неизвестных (метод Гаусса) и его модификации, метод прогонки и другие. Сопоставление различных прямых методов проводится обычно по числу арифметический действий, необходимых для получения решения. Прямые методы являются универсальными и применяются для решения систем до порядка 10 3 . Отметим, что вследствие погрешностей округления при решении задач на ЭВМ прямые методы на самом деле не приводят к точному решению системы.

Итерационные (или приближенные) методы являются бесконечными и находят решение системы как предел при k ® ¥ последовательных приближений x ( k ) , где k — номер итерации. Обычно задается точность e, и вычисления проводятся до тех пор, пока не будет выполнена оценка ºx ( k ) x ( k -1) º 2 числовым равенствам

.

Разложение матрицы A на множители обычно получают посредством алгоритма, который называется компактной схемой метода Гаусса. Элементы li m и U m i могут быть вычислены по формулам

Тогда решение системы Ax=b сводится к последовательному решению двух систем — Ly=b и Ux=y.

Рассмотренный метод можно применять к решению серии систем с одной и той же матрицей.

Метод простых итераций (Якоби).

Для решения итерационным методом система линейных алгебраических уравнений Ax = b должна быть приведена к виду x = Gx + f , где G — некоторая матрица, f преобразованный вектор свободных членов. Затем выбирается начальное приближение — произвольный вектор x (0) — и строится рекуррентная последовательность векторов x (1) , x (2) . x ( k ) . по формуле

.

Для сходимости этой последовательности при любом начальном приближении необходимо и достаточно , чтобы все собственные значения матрицы G были по абсолютной величине меньше единицы. На практике это трудно проверить, и обычно пользуются достаточными условиями сходимости — итерации сходятся, если какая-нибудь норма матрицы меньше единицы, т.е.

или .

Чем меньше норма матрицы G , тем быстрее сходится итерационный процесс.

Преобразование системы можно осуществить, просто решая каждое i -е уравнение относительно xi :

.

Метод Якоби использует следующий алгоритм построения приближений:

.

Если A — матрица с доминирующей диагональю, т.е. , то метод Якоби сходится при любом начальном приближении x (0 ) .

Метод Якоби относится к одношаговым итерационным методам , когда для нахождения x ( k +1) требуется помнить только одну предыдущую итерацию x ( k ) . Для исследования сходимости удобнее записывать итерационные методы не в координатной, а в матричной форме, придерживаясь стандартной формы записи итерационных методов.

Канонической формой одношагового итерационного метода решения СЛАУ называется его запись в виде

,

где Bk+1 — матрица, задающая тот или иной итерационный метод, tk+1 — итерационный параметр. Числовые параметры tk вводят для ускорения сходимости. Способ выбора итерационных параметров определяется при исследовании сходимости метода, когда выясняется при каких значениях параметров метод сходится и когда сходимость будет наиболее быстрой (соответствующие параметры называются оптимальными).

Итерационный метод называют явным , если Bk+1 — единичная матрица. Неявные итерационные методы имеет смысл применять лишь в том случае, когда решение системы уравнений с матрицей Bk требует меньше машинной памяти или времени или алгоритмически проще, чем решение исходной системы.

Методом простой итерации называют явный метод с постоянм параметром

, или,

где r ( k ) = Ax ( k ) b — вектор невязки. Метод сходится для симметричных положительно определенных матриц при .

Для окончания итерационного процесса используют три способа. При первом определяют величину стабилизации и прекращают вычисления, если она меньше e, т.е.

.

Недостатком этого способа является то, что при медленно сходящихся итерациях величина стабилизации может быть малой, хотя приближенное решение сильно отличается от точного.

При втором способе вычисляют нормы невязки до начала итераций и на каждой итерации. Итерации прекращают при выполнении неравенства

.

При третьем способе предварительно оценивается число итераций, необходимое для получения заданной точности e. Если для погрешности итерационного метода выполняются оценки

,

где q (0,1), то метод сходится со скоростью геометрической прогрессии со знаменателем q . Можно определить, потребовав, чтобы q n (0) — и строится рекуррентная последовательность векторов x (1) , x (2) . x ( k ) . по формуле

.

Для сходимости этой последовательности при любом начальном приближении необходимо и достаточно , чтобы все собственные значения матрицы G были по абсолютной величине меньше единицы. На практике это трудно проверить, и обычно пользуются достаточными условиями сходимости — итерации сходятся, если какая-нибудь норма матрицы меньше единицы, т.е.

или .

Чем меньше норма матрицы G , тем быстрее сходится итерационный процесс.

Преобразование системы можно осуществить, просто решая каждое i -е уравнение относительно xi :

.

Метод Зейделя использует следующий алгоритм построения приближений:

Если A — матрица с доминирующей диагональю, т.е. , то метод Зейделя сходится при любом начальном приближении x (0 ) .

Название: Решение системы линейных уравнений
Раздел: Рефераты по информатике, программированию
Тип: курсовая работа Добавлен 01:57:05 25 июня 2010 Похожие работы
Просмотров: 2073 Комментариев: 21 Оценило: 5 человек Средний балл: 4.2 Оценка: неизвестно Скачать

Метод Зейделя сходится примерно так же, как геометрическая прогрессия со знаменателем || G | | . Если норма матрицы G близка к 1, то скорость сходимости очень медленная. Для ускорения сходимости используется метод релаксации . Суть его в том, что полученное по методу Зейделя очередное значение пересчитывается по формуле:

Здесь 0 1 – верхняя релаксация . Параметр w подбирают так, чтобы сходимость метода достигалась за минимальное число итераций.

Метод Зейделя является одношаговым итерационным методам , когда для нахождения x ( k +1) требуется помнить только одну предыдущую итерацию x ( k ) .

Погрешность итерации вычисляется по формуле:

n — порядок матрицы A.

Если d меньше заданной точности e, то итерационный процесс прекращают.

Элементы главной диагонали называются главными. Заметим, что если в ходе расчётов по данному алгоритму на главной диагонали окажется нулевой элемент, то произойдет сбой программы. Для того, чтобы избежать этого, следует перестановку строк таким образом, чтобы на главной диагонали находились максимальные элементы строк. Т. е., если в k-й строке максимальным является i-й элемент, необходимо поменять местами k-ю и i-ю строки, и поменять местами соответствующие элементы вектора b. Такой выбор главного элемента необходим для сходимости итерационного процесса.

Приведём блок-схему реализации данного метода:

3. Анализ результатов.

Скорость сходимости итерационного процесса зависит от заданной матрицы коэффициентов. В зависимости от вида исходных данных( матрицы коэффициентов и матрицы b) программа подбирает оптимальный параметр релаксации w(при котором решение достигается за минимальное число итераций).

Для достижения наивысшей скорости сходимости итерационного процесса для уравнения, заданного на рис.3 программой был выбран параметр релаксации w=1,26. Таким образом, была применена верхняя релаксация. Заданная точность e=0,0001 была достигнута за 40 итераций.

График зависимости количества итераций от параметра релаксации приведен на рис 1.

Рис. 1

Для достижения наивысшей скорости сходимости итерационного процесса для уравнения, заданного на рис.4 программой был выбран параметр релаксации w=0,98. Таким образом, была применена нижняя релаксация. Заданная точность e=0,0001 была достигнута за 17 итераций. График зависимости количества итераций от параметра релаксации приведен на рис 2.

Рис. 2

Правильность решения СЛАУ была проверена с помощью программного пакета Mathcad 2000 professional. Отметим, что программа даёт правильное решение СЛАУ почти во всех случаях, когда каждый элемент главной диагонали является максимальным в своей строке.

Программа, разработанная в данной курсовой работе, реализует метод Зейделя для решения СЛАУ 6-го порядка. Она даёт гарантированно правильное решение системы линейных уравнений, если каждый элемент главной диагонали матрицы коэффициентов является единственным максимальным в своей строке, ненулевым, либо справедливы условия: максимальный элемент строки является единственным максимальным в своём столбце, ненулевым, а ни один из остальных элементов столбца не является максимальным в своей строке, все элементы каждой строки кроме максимального одинаковы.

При исходных данных:

была достигнута точность 0,0001 в решении:

за 2 итерации при параметре релаксации w=0,97.

Программа строит график зависимости количества итераций от параметра релаксации для данной СЛАУ, находит параметр релаксации w, при котором решение достигается за минимальное количество итераций и, разумеется, само решение. Программа проста в эксплуатации и нетребовательна к ресурсам. Реализованная в современной среде разработки Delphi 5.0, она без труда может быть доработана или исправлена.

Недостатки программы: 1) применима не для всех систем линейных уравнений; 2)оптимальный параметр релаксации w вычисляется методом подбора, и, поэтому, количество итераций, требуемое для его отыскания достаточно велико(около 18000), однако, для современных ПК, это не является затруднением.

Список использованной литературы

1. Волков Е.А. Численные методы. ¾ М.: Наука, 1987. ¾ 254 с.

2. Калиткин Н.Н. Численные методы. ¾ М.: Наука, 1978. ¾ 512 с.

3. Мудров А.Е. Численные методы для ПЭВМ на языках БЕЙСИК, ФОРТРАН и ПАСКАЛЬ. ¾ Томск, МП «Раско», 1992. ¾270 с.

4. Самарский А.А., Гулин А.В. Численные методы. ¾ М.: Наука, 1989. ¾432с.

5. Кэнту М. Delphi 4 для профессионалов ¾ СПб: «Питер», 1999 ¾1200с.

6. Delphi 5.0 help.

Приложение(распечатка программы, результатов)

Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,

Grids, StdCtrls, ComCtrls, ToolWin, Menus, Unit1, TeEngine, Series,

Курсовая работа на тему: Решение систем линейных уравнений. Метод Гаусса

ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕСИОНАЛЬНОГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ им А. И.ГЕРЦЕНА»

Кафедра информационных и коммуникационных технологий

«Решение систем линейных уравнений. Метод Гаусса. Алгоритм оптимального исключения неизвестных по столбцам с выбором главных элементов по строкам преобразовав матрицу А в эквивалентную верхнюю левую треугольную матрицу»

студентка 2 курса 1 гр

кандидат педагогических наук, доцент

Введение Постановка задачи

1) вывод рекуррентной формулы

3) код программы

4) контрольный пример

Введение

Решение систем линейных алгебраических уравнений – одна из основных задач вычислительной линейной алгебры. Хотя задача решения системы линейных уравнений сравнительно редко представляет самостоятельный интерес для приложений, от умения эффективно решать такие системы часто зависит сама возможность математического моделирования самых разнообразных процессов с применением ЭВМ. Значительная часть численных методов решения различных (в особенности – нелинейных) задач включает в себя решение систем линейных уравнений как элементарный шаг соответствующего алгоритма.

Одна из трудностей практического решения систем большой размерности связанна с ограниченностью оперативной памяти ЭВМ. Хотя объем оперативной памяти вновь создаваемых вычислительных машин растет очень быстро, тем не менее, еще быстрее возрастают потребности практики в решении задач все большей размерности. В значительной степени ограничения на размерность решаемых систем можно снять, если использовать для хранения матрицы внешние запоминающие устройства. Однако в этом случае многократно возрастают как затраты машинного времени, так и сложность соответствующих алгоритмов. Поэтому при создании вычислительных алгоритмов линейной алгебры большое внимание уделяют способам компактного размещения элементов матриц в памяти ЭВМ.

К счастью, приложения очень часто приводят к матрицам, в которых число ненулевых элементов много меньше общего числа элементов матрицы. Такие матрицы принято называть разреженными. Одним из основных источников разреженных матриц являются математические модели технических устройств, состоящих из большого числа элементов, связи между которыми локальны. Простейшие примеры таких устройств – сложные строительные конструкции и большие электрические цепи.

Известны примеры решенных в последние годы задач, где число неизвестных достигало сотен тысяч. Естественно, это было бы невозможно, если бы соответствующие матрицы не являлись разреженными (матрица системы из 100 тыс. уравнений в формате двойной точности заняла бы около 75 Гбайт).

Множество прикладных и чисто математических задач приводят к необходимости решения систем линейных алгебраических уравнений. Без преувеличения можно утверждать, что это одна из важнейших задач вычислительной математики.

Значимость задачи породила целый ряд методов ее решения. Среди этих методов есть универсальные и специализированные (т. е. применимые лишь к системам, имеющим некоторые специальные свойства). Методы отличаются друг от друга эффективностью, требованиями к объемам машинной памяти (при реализации на ЭВМ), закономерностями накопления ошибок в ходе расчетов. Не существует одного метода, который можно было бы во всех случаях предпочесть всем остальным, и поэтому знакомство с несколькими методами является обязательным для квалифицированного вычислителя.

Как известно из курса алгебры, число неизвестных в системе может быть больше числа уравнений или равно ему. Если число неизвестных больше числа уравнений, то на первом этапе стандартными алгебраическими методами задача сводится к промежуточной задаче, в которой число неизвестных равно числу уравнений. С точки зрения вычислителя истинная проблема состоит именно в решении такой системы, и поэтому в данной работе я рассмотрю лишь такую ситуацию.

Итак, перед нами система n линейных алгебраических уравнений с n неизвестными:

(1.1)

Запись матрицы в такой форме достаточно громоздка, и при первой возможности я буду впредь использовать матричную форму записи, совершенно равносильную (1.1):

А — матрица, X – вектор-столбец неизвестных, B- вектор-столбец свободных членов.

Методы решения систем вида (1.1) можно разделить на два класса. К первому относятся прямые методы. С помощью таких методов в принципе можно в результате конечного числа шагов получить точные значения неизвестных. При этом предполагается, что и коэффициенты в правой части, и элементы столбца свободных членов – числа точные, а все вычисления производятся без округлений. Однако практически такое может произойти и в исключительных случаях или может быть связано с решением специального класса задач (например, когда решениями являются только целые числа). К подобным методам относятся:

o Метод определителей (метод Крамера) хорошо известный из курса алгебры;

o Матричное решение: X=A-1B (если известна обратная матрица);

o Различные варианты метода исключения неизвестных (метода Гаусса).

Чаще всего прямые методы реализуются на ЭВМ, и в процессе вычислительной ошибки округления и погрешности арифметических действий неизбежны. В силу этого название «точный» не вполне соответствует существу дела (но является традиционным).

Практическое применение первых двух методов может оказаться неэффективным или вообще невозможным. Если попробовать решать «в лоб» систему 15 линейных уравнений с 15 неизвестными с помощью формулы Крамера, то придется вычислить 16 определителей порядка 15, что приведет к выполнению примерно 2*16*15!*14 умножений и сложений. Для выполнения этих вычислений на ЭВМ с быстродействием 106 арифметических операций в секунду потребуется почти 10 недель непрерывной работы. С практической точки зрения при достаточно больших размерах системы матричное решение также является малопривлекательным, поскольку задача нахождения обратной матрицы сама по себе не проще задачи решения системы.

Ко второму классу методов решения систем линейных алгебраических уравнений относятся различные итерационные методы. К ним относятся:

o Метод простой итерации;

o Метод Зейделя.

Системы линейных алгебраических уравнений можно решать как с помощью прямых, так и итерационных методов. Для систем уравнений средней размерности чаще используют прямые методы.

Итерационные методы применяют главным образом для решения задач большой размерности, когда использование прямых методов невозможно из-за ограничений в доступной оперативной памяти ЭВМ или из-за необходимости выполнения чрезмерно большого числа арифметических операций. Большие системы уравнений, возникающие в основном в приложениях, как правило, являются разреженными. Методы исключения для систем с разреженными матрицами неудобны, например, тем, что при их использовании большое число нулевых элементов превращается в ненулевые и матрица теряет свойство разреженности. В противоположность им при использовании итерационных методов в ходе итерационного процесса матрица не меняется, и она, естественно, остается разреженной. Большая эффективность итерационных методов по сравнению с прямыми методами тесно связанна с возможностью существенного использования разреженности матриц.

Применение итерационных методов для качественного решения большой системы уравнений требует серьезного использования ее структуры, специальных знаний и определенного опыта.

2. Постановка задачи:

Решение систем линейных уравнений. Метод Гаусса. Алгоритм оптимального исключения неизвестных по столбцам и с выбором главных элементов по строкам, преобразовав матрицу А в эквивалентную верхнюю левую треугольную матрицу.

2.1. Вывод рекуррентной формулы

Рассмотрим метод Гаусса оптимального исключения неизвестного по столбцам. В методе оптимального исключения принцип преобразования матрицы аналогичен классическому методу последовательного исключения.

В численном методе Гаусса решения систем линейных уравнений АХ=В преобразуем в эквивалентную треугольную систему.

Решение этой задачи сводится сводиться к двум этапам.

1 этап. Прямой ход.

Матрица А преобразуется в эквивалентную ей левую верхнюю треугольную матрицу, таким же преобразованиям подвергается и вектор-столбец свободных членов В, который обычно присоединяется к матрице А справа как n+1 столбец, но я присоединю его слева как 1 столбец для того, чтобы удобнее было вычислять неизвестные данной нам матрицы.

2 этап. Обратный ход.

На этом ходе находятся корни уравнений методом обратной подстановки.

Алгоритм действия на 1 этапе.

На этапе прямого хода мы должны получить левую верхнюю треугольную матрицу, диагональные элементы должны быть не единичными.

Для этого необходимо:

1. преобразование матрицы А начнем из верхнего правого угла, где расположен элемент а1n+1 и будем двигаться сверху вниз и справа налево

2. двигаясь сверху вниз под диагональю в каждом (n-i+1)-том столбце будем получать нули

3. двигаясь справа налево включая столбец свободных членов обеспечивает эквивалентное преобразование элементов начиная с (n+1) столбца.

Рассмотрим подробно вывод рекуррентных формул для первого этапа.

1.Для получения нуля на месте ведомого элемента ak(n-i+1) необходимо получить новый коэффициент преобразования для k-той строки. Он равен:

(2.1)

2.Далее в каждом цикле частичного обнуления (n-i+1)-го столбца из каждой ведомой k-той строки вычитается ведущая строка кратная коэффициенту преобразования , с точки зрения математики это описывается следующим образом:

(2.2)

В данном методе на этапе прямого кода выполняется на n операций делений меньше, чем в методе последовательного исключения поскольку в каждом цикле обнуления столбца на подготовку коэффициентов преобразования требуется на одно деление меньше по сравнению с количеством делений элементов ведущей строки вместе с тем этот выигрыш является кажущимся, так как на втором этапе (обратный код) требуется ровно на n операций деления больше, чем в методе последовательного исключения диагональные элементы не равны единице.

Алгоритм действий на этапе обратного хода.

В результате преобразования имеем:

Обобщенные формулы для нахождения корней систем линейных уравнений имеет следующий вид:

(2.3)

(2.4)

Dim x(3), p, p5, S As Decimal

Dim i, k, n, j, i1, j1, t, m, m5, l, m1, max As Integer

Dim strSt As String

Console. WriteLine(«Метод оптимального исключения по столбцам «)

Console. WriteLine(«с выбором главного элемента по строкам»)

‘вывод матрицы на экран

Console. WriteLine(«Исходная матрица»)

For i = 0 To n — 1

strSt = FormatNumber(mas(i, j), 2)

Console. Write(» <0>«, strSt)

‘выбор главного элемента по строкам

For i = 0 To n — 1

max = Math. Abs(mas(i, n — i))

For j = n — i To 1 Step -1

m5 = Math. Abs(mas(i, j))

If m5 > max Then

If j1 = n — i Then

‘конец алгоритма выбора главного элемента

For l = 0 To n — 1

mas(l, n — i) = mas(l, j1)

Console. WriteLine(«Преобразованная матрица»)

For t = 0 To n — 1

strSt = FormatNumber(mas(t, j), 2)

Console. Write(» <0>«, strSt)

Console. WriteLine(«Преобразовываем матрицу в треугольную левую верхнюю»)

‘процедура прямого хода

‘преобразовываем матрицу в левую верхнюю треугольную

For i = 0 To n — 2

For k = i + 1 To n — 1

p = mas(k, n — i) / mas(i, n — i)

For j = n — i To 0 Step -1

mas(k, j) = mas(k, j) — p * mas(i, j)

‘вывод преобразованной матрицы

For t = 0 To n — 1

strSt = FormatNumber(mas(t, j), 2)

Console. Write(» <0>«, strSt)

‘вывод полученной матрицы

Console. WriteLine(«Полученная матрица»)

For i = 0 To n — 1

strSt = FormatNumber(mas(i, j), 2)

Console. Write(» <0>«, strSt)

‘процедура обратного кода

x(0) = mas(n — 1, 0) / mas(n — 1, 1)

For j = 0 To n — i — 2

S = S + mas(i, j + 1) * x(j)

x(n — i — 1) = (mas(i, 0) — S) / mas(i, n — i)

Loop While i >= 0

Console. WriteLine(«Полученные значения х»)

For i = 0 To n — 1

Console. Write(«x<0>=», i + 1)

strSt = FormatNumber(x(i), 2)

Решить систему линейных уравнений методом Гаусса оптимального исключения неизвестных по столбцам, преобразовав данную матрицу в эквивалентную ей левую верхнюю треугольную матрицу с выбором главного элемента по строкам.

1. Получим новый коэффициент преобразования для каждой k-ой строки.

2. Для обнуления 5-го столбца из каждой ведомой k-той строки вычитается ведущая строка кратная коэффициенту преобразования .

3. Получим новый коэффициент преобразования для каждой k-ой строки.

4. Для обнуления 4-го столбца из каждой ведомой k-той строки вычитается ведущая строка кратная коэффициенту преобразования .

5. Получим новый коэффициент преобразования для каждой k-ой строки.

6. Для обнуления 3-го столбца из каждой ведомой k-той строки вычитается ведущая строка кратная коэффициенту преобразования .

7. Вычислим переменные х:

Сравним полученные результаты с результатом программы

Метод оптимального исключения по столбцам

с выбором главного элемента по строкам

17,00 5,00 2,00 4,00 6,00

13,00 4,00 3,00 1,00 5,00

22,00 6,00 5,00 3,00 8,00

20,00 3,00 10,00 5,00 2,00

17,00 4,00 2,00 5,00 6,00

13,00 1,00 3,00 4,00 5,00

22,00 3,00 5,00 6,00 8,00

20,00 5,00 10,00 3,00 2,00

Преобразовываем матрицу в треугольную левую верхнюю

17,00 4,00 2,00 5,00 6,00

-1,17 -2,33 1,33 -0,17 0,00

-0,67 -2,33 2,33 -0,67 0,00

14,33 3,67 9,33 1,33 0,00

17,00 4,00 2,00 5,00 6,00

-1,17 -2,33 1,33 -0,17 0,00

4,00 7,00 -3,00 0,00 0,00

5,00 -15,00 20,00 0,00 0,00

17,00 4,00 2,00 5,00 6,00

-1,17 -2,33 1,33 -0,17 0,00

4,00 7,00 -3,00 0,00 0,00

31,67 31,67 0,00 0,00 0,00

17,00 4,00 2,00 5,00 6,00

-1,17 -2,33 1,33 -0,17 0,00

4,00 7,00 -3,00 0,00 0,00

31,67 31,67 0,00 0,00 0,00

Полученные значения х

. Теория матриц (издание третье)./. Москва: „Наука”, главная редакция физико-математической литературы, 1967г. Математический энциклопедический словарь. Москва: „Советская энциклопедия”, 1988г. Интернет-ресурсы (*****) Выводила рекуррентные формулы студентка 2 курса института информационных технологий

Решение систем линейных алгебраических уравнений

Автор: igsru • Январь 22, 2018 • Курсовая работа • 5,518 Слов (23 Страниц) • 409 Просмотры

ФЕДЕРАЛЬНОЕ АГЕНТСТВО СВЯЗИ

Хабаровский институт инфокоммуникаций (филиал)

федерального государственного бюджетного образовательного

учреждения высшего образования

«Сибирский государственный университет телекоммуникаций и информатики»

по дисциплине: «Вычислительная математика»

на тему: «Решение систем линейных алгебраических уравнений»

Выполнил: студент 2 курса

группы 1/15 ПОВТ

шифр: 151nx-011
Лавренчук И.П.

Проверил: Суханова С.Г.

Хабаровск 2017 г.

ЗАДАНИЕ НА КУРСОВУЮ РАБОТУ

На тему: «Решение систем линейных алгебраических уравнений»


источники:

http://pandia.ru/text/78/002/10054.php

http://ru.essays.club/%D0%A2%D0%BE%D1%87%D0%BD%D1%8B%D0%B5-%D0%BD%D0%B0%D1%83%D0%BA%D0%B8/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0/%D0%A0%D0%B5%D1%88%D0%B5%D0%BD%D0%B8%D0%B5-%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC-%D0%BB%D0%B8%D0%BD%D0%B5%D0%B9%D0%BD%D1%8B%D1%85-%D0%B0%D0%BB%D0%B3%D0%B5%D0%B1%D1%80%D0%B0%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D1%85-6375.html