Методы решения трансцендентных уравнений python

Библиотека Sympy: символьные вычисления в Python

Что такое SymPy ? Это библиотека символьной математики языка Python. Она является реальной альтернативой таким математическим пакетам как Mathematica или Maple и обладает очень простым и легко расширяемым кодом. SymPy написана исключительно на языке Python и не требует никаких сторонних библиотек.

Документацию и исходный код этой библиотеки можно найти на ее официальной странице.

Первые шаги с SymPy

Используем SymPy как обычный калькулятор

В библиотеке SymPy есть три встроенных численных типа данных: Real , Rational и Integer . С Real и Integer все понятно, а класс Rational представляет рациональное число как пару чисел: числитель и знаменатель рациональной дроби. Таким образом, Rational(1, 2) представляет собой 1/2 , а, например, Rational(5, 2) — соответственно 5/2 .

Библиотека SymPy использует библиотеку mpmath , что позволяет производить вычисления с произвольной точностью. Таким образом, ряд констант (например, пи, e), которые в данной библиотеке рассматриваются как символы, могут быть вычислены с любой точностью.

Как можно заметить, функция evalf() дает на выходе число с плавающей точкой.

В SymPy есть также класс, представляющий такое понятие в математике, как бесконечность. Он обозначается следующим образом: oo .

Символы

В отличие от ряда других систем компьютерной алгебры, в SymPy можно в явном виде задавать символьные переменные. Это происходит следующим образом:

После их задания, с ними можно производить различные манипуляции.

С символами можно производить преобразования с использованием некоторых операторов языка Python. А именно, арифметических ( + , -` , «* , ** ) и логических ( & , | ,

Библиотека SymPy позволяет задавать форму вывода результатов на экран. Обычно мы используем формат такого вида:

Алгебраические преобразования

SymPy способна на сложные алгебраические преобразования. Здесь мы рассмотрим наиболее востребованные из них, а именно раскрытие скобок и упрощение выражений.

Раскрытие скобок

Чтобы раскрыть скобки в алгебраических выражениях, используйте следующий синтаксис:

При помощи ключевого слова можно добавить поддержку работы с комплексными переменными, а также раскрытие скобок в тригонометрических функциях.

Упрощение выражений

Если вы хотите привести выражение к более простому виду (возможно, сократить какие-то члены), то используйте функцию simplify .

Также надо сказать, что для определенных видов математических функций существуют альтернативные, более конкретные функции для упрощения выражений. Так, для упрощения степенных функций есть функция powsimp , для тригонометрических — trigsimp , а для логарифмических — logcombine , radsimp .

Вычисления

Вычисления пределов

Для вычисления пределов в SymPy предусмотрен очень простой синтаксис, а именно limit(function, variable, point) . Например, если вы хотите вычислить предел функции f(x) , где x -> 0 , то надо написать limit(f(x), x, 0) .

Также можно вычислять пределы, которые стремятся к бесконечности.

Дифференцирование

Для дифференцирования выражений в SymPy есть функция diff(func, var) . Ниже даны примеры ее работы.

Проверим результат последней функции при помощи определения производной через предел.

tan 2 (𝑥)+1 Результат тот же.

Также при помощи этой же функции могут быть вычислены производные более высоких порядков. Синтаксис функции будет следующим: diff(func, var, n) . Ниже приведено несколько примеров.

Разложение в ряд

Для разложения выражения в ряд Тейлора используется следующий синтаксис: series(expr, var) .

Интегрирование

В SymPy реализована поддержка определенных и неопределенных интегралов при помощи функции integrate() . Интегрировать можно элементарные, трансцендентные и специальные функции. Интегрирование осуществляется с помощью расширенного алгоритма Риша-Нормана. Также используются различные эвристики и шаблоны. Вот примеры интегрирования элементарных функций:

Также несложно посчитать интеграл и от специальных функций. Возьмем, например, функцию Гаусса:

Результат вычисления можете посмотреть сами. Вот примеры вычисления определенных интегралов.

Также можно вычислять определенные интегралы с бесконечными пределами интегрирования (несобственные интегралы).

Решение уравнений

При помощи SymPy можно решать алгебраические уравнения с одной или несколькими переменными. Для этого используется функция solveset() .

Как можно заметить, первое выражение функции solveset() приравнивается к 0 и решается относительно х . Также возможно решать некоторые уравнения с трансцендентными функциями.

Системы линейных уравнений

SymPy способна решать широкий класс полиномиальных уравнений. Также при помощи данной библиотеки можно решать и системы уравнений. При этом переменные, относительно которых должна быть разрешена система, передаются в виде кортежа во втором аргументе функции solve() , которая используется для таких задач.

Факторизация

Другим мощным методом исследования полиномиальных уравнений является факторизация многочленов (то есть представление многочлена в виде произведения многочленов меньших степеней). Для этого в SymPy предусмотрена функция factor() , которая способна производить факторизацию очень широкого класса полиномов.

Булевы уравнения

Также в SymPy реализована возможность решения булевых уравнений, что по сути означает проверку булевого выражения на истинность. Для этого используется функция satisfiable() .

Данный результат говорит нам о том, что выражение (x & y) будет истинным тогда и только тогда, когда x и y истинны. Если выражение не может быть истинным ни при каких значениях переменных, то функция вернет результат False .

Линейная алгебра

Матрицы

Матрицы в SymPy создаются как экземпляры класса Matrix :

В отличие от NumPy , мы можем использовать в матрицах символьные переменные:

И производить с ними разные манипуляции:

Дифференциальные уравнения

При помощи библиотеки SymPy можно решать некоторые обыкновенные дифференциальные уравнения. Для этого используется функция dsolve() . Для начала нам надо задать неопределенную функцию. Это можно сделать, передав параметр cls=Function в функцию symbols() .

Теперь f и g заданы как неопределенные функции. мы можем в этом убедиться, просто вызвав f(x) .

Теперь решим следующее дифференциальное уравнение:

Чтобы улучшить решаемость и помочь этой функции в поиске решения, можно передавать в нее определенные ключевые аргументы. Например, если мы видим, что это уравнение с разделяемыми переменными, то мы можем передать в функцию аргумент hint=’separable’ .

Бесплатные кодинг марафоны с ревью кода

Наш телеграм канал проводит бесплатные марафоны по написанию кода на Python с ревью кода от преподавателя

Найти корень трансцендентного уравнения с питоном

Я должен решить следующее трансцендентное уравнение

для заданной константы c.

Например Я сделал короткий код в Mathematica, где я создал список случайных значений для константы c

Чем я определил функцию

и начал искать корни:

Теперь я хотел бы запрограммировать что-то подобное в python (возможно, используя numpy?), но я не могу найти хороший ответ на подобную проблему. Может ли кто-нибудь помочь?

Один из способов, который я достиг в прошлом, – использовать scipy.optimize.minimize для поиска минимумов квадратичной функции.

Это отнюдь не дурацкое, но оно может быть быстрым и точным. Если есть несколько корней, например, minimize найдет ту, что находится в “направлении спуска”, из выбранной вами начальной точки, поэтому я выбрал небольшое положительное значение выше.

Еще одна проблема, на которую следует обратить внимание, которая всегда верна с проблемами минимизации, – это цифры с совершенно разными порядками. В вашем уравнении, когда c становится очень большим, первый положительный корень становится очень маленьким. Если вы попытаетесь найти корни в этом обстоятельстве, вам может потребоваться масштабировать как x , чтобы быть рядом с 1, чтобы получить точные результаты (здесь)).

В качестве альтернативы вы можете использовать root :

Тогда res выглядит следующим образом:

Если вы заинтересованы в решении систем уравнений с помощью root , вы можете проверить этот ответ.

Для этого типа простых одномерных функций вы можете легко найти все корни в интересующем вас интервале, используя реализацию Python для Chebfun. Я знаю два, Chebpy и pychebfun, которые оба превосходны.

Например, используя Chebpy, можно было бы найти корни cos(x)/x — 0.05 в интервале [0.5, 12] :

Решение системы трансцендентных уравнений с питоном

Предполагая, что у меня есть следующие четыре уравнения:

    cos (x)/x = a
    cos (y)/y = b
    a + b = 1
    c sinc (x) = d sinc (y)

для неизвестных переменных x, y, a и b . Заметим, что cos(x)/x=a имеет несколько решений. Аналогично для переменной y . Меня интересуют только значения x и y , которые являются первыми положительными корнями (если это имеет значение).

Можно с уверенностью предположить, что a, b, c и d — известные реальные константы, все положительные.

В Mathematica код для решения будет выглядеть примерно так:

который в результате возвращает

Хотя это было довольно просто, я понятия не имею, как сделать что-нибудь подобное в python. Поэтому, если кто-то может мне помочь (или просто показать мне, как это сделать), я бы очень признателен.


источники:

http://techarks.ru/qa/python/najti-koren-transcendentnog-IW/

http://progi.pro/reshenie-sistemi-transcendentnih-uravneniy-s-pitonom-4378082