Методы решения тригонометрических уравнений егэ

Презентация «МЕТОДЫ РЕШЕНИЯ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ» (Подготовка к ЕГЭ)

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Описание презентации по отдельным слайдам:

Учитель математики: Смирнова Р.М. ГБОУ СОШ п.г.т. Осинки Методы решения тригонометрических уравнений

Содержание Метод замены переменной Метод разложения на множители Однородные тригонометрические уравнения С помощью тригонометрических формул: Формул сложения Формул приведения Формул двойного аргумента

Метод замены переменной С помощью замены t = sinx или t = cosx, где t ∈ [−1;1] решение исходного уравнения сводится к решению квадратного или другого алгебраического уравнения. См. примеры 1 – 3 Иногда используют универсальную тригонометрическую подстановку: t = tg

Метод разложения на множители Суть этого метода заключается в том, что произведение нескольких множителей равно нулю, если хотя бы один из них равен нулю, а другие при этом не теряют смысл: f(x) · g(x) · h(x) · … = 0 ⟺ f(x) = 0 или g(x) = 0 или h(x) = 0 и т.д. при условии существования каждого из сомножителей См. примеры 4 – 5

Однородные тригонометрические уравнения Уравнение вида a sin x + b cos x = 0 называют однородным тригонометрическим уравнением первой степени. a sin x + b cos x = 0 Замечание. Деление на cos x допустимо, поскольку решения уравнения cos x = 0 не являются решениями уравнения a sin x + b cos x = 0. : cos x a tg x + b = 0 a sin x b cos x 0 cos x + cos x = cos x tg x = – a b

Однородные тригонометрические уравнения a sin2x + b sin x cos x + c cos2x = 0 Уравнение вида a sin2x + b sin x cos x + c cos2x = 0 называют однородным тригонометрическим уравнением второй степени. : cos2x a tg2x + b tg x + c = 0 Далее, вводим новую переменную tg x = t и решаем методом замены переменной. Замечание. Если в данном уравнении а = 0 или с = 0 то, уравнение решается методом разложения на множители. + cos2x

Пример 7 Пример 6

С помощью тригонометрических формул 1. Формулы сложения: sin (x + y) = sinx cosy + cosx siny cos (x + y) = cosx cosy − sinx siny sin (x − y) = sinx cosy + cosx siny cos (x − y) = cosx cosy + sinx siny tgx + tgy tg (x + y) = 1 − tgx tgy tgx − tgy tg (x − y) = 1 + tgx tgy сtgx сtgy − 1 сtg (x + y) = сtgу + с tgх сtgx сtgy + 1 сtg (x − y) = сtgу − с tgх

С помощью тригонометрических формул 2. Формулы приведения:

Лошадиное правило В старые добрые времена жил рассеянный математик, который при поиске ответа менять или не менять название функции (синус на косинус), смотрел на свою умную лошадь, а она кивала головой вдоль той оси координат, которой принадлежала точка, соответствующая первому слагаемому аргумента π/ 2 + α или π + α. Если лошадь кивала головой вдоль оси ОУ, то математик считал, что получен ответ «да, менять», если вдоль оси ОХ, то «нет, не менять».

С помощью тригонометрических формул 3. Формулы двойного аргумента: sin 2x = 2sinx cosx cos 2x = cos2x – sin2x cos 2x = 2cos2x – 1 cos 2x = 1 – 2sin2x tg 2x = 2tgx 1 – tg2x ctg 2x = 2ctgx ctg2x – 1

С помощью тригонометрических формул 4. Формулы понижения степени: 5. Формулы половинного угла:

С помощью тригонометрических формул 6. Формулы суммы и разности:

С помощью тригонометрических формул 7. Формулы произведения:

Мнемоническое правило “Тригонометрия на ладони” Очень часто требуется знать наизусть значения cos, sin, tg, ctg для углов 0°, 30°, 45°, 60°, 90°. Но если вдруг какое-либо значение забудется, то можно воспользоваться правилом руки. Правило: Если провести линии через мизинец и большой палец, то они пересекутся в точке, называемой “лунный бугор”. Образуется угол 90°. Линия мизинца образует угол 0°. Проведя лучи из “лунного бугра” через безымянный, средний, указательный пальцы, получаем углы соответственно 30°, 45°, 60°. Подставляя вместо n: 0, 1, 2, 3, 4, получаем значения sin, для углов 0°, 30°, 45°, 60°, 90°. Для cos отсчет происходит в обратном порядке.

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания

  • Сейчас обучается 932 человека из 80 регионов

Курс профессиональной переподготовки

Математика: теория и методика преподавания в образовательной организации

  • Сейчас обучается 682 человека из 75 регионов

Курс повышения квалификации

Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО

  • Сейчас обучается 308 человек из 69 регионов

Ищем педагогов в команду «Инфоурок»

Дистанционные курсы для педагогов

Самые массовые международные дистанционные

Школьные Инфоконкурсы 2022

33 конкурса для учеников 1–11 классов и дошкольников от проекта «Инфоурок»

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

5 573 334 материала в базе

Другие материалы

  • 22.11.2015
  • 1709
  • 3
  • 22.11.2015
  • 507
  • 1
  • 22.11.2015
  • 469
  • 0
  • 22.11.2015
  • 650
  • 2
  • 22.11.2015
  • 1571
  • 0
  • 22.11.2015
  • 24051
  • 54

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Добавить в избранное

  • 22.11.2015 6244
  • PPTX 992.4 кбайт
  • 382 скачивания
  • Рейтинг: 5 из 5
  • Оцените материал:

Настоящий материал опубликован пользователем Смирнова Раиса Михайловна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Автор материала

  • На сайте: 6 лет и 3 месяца
  • Подписчики: 0
  • Всего просмотров: 85308
  • Всего материалов: 32

Московский институт профессиональной
переподготовки и повышения
квалификации педагогов

Дистанционные курсы
для педагогов

663 курса от 690 рублей

Выбрать курс со скидкой

Выдаём документы
установленного образца!

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

Тринадцатилетняя школьница из Индии разработала приложение против буллинга

Время чтения: 1 минута

В Воронеже продлили удаленное обучение для учеников 5-11-х классов

Время чтения: 1 минута

Профессия педагога на третьем месте по популярности среди абитуриентов

Время чтения: 1 минута

Инфоурок стал резидентом Сколково

Время чтения: 2 минуты

Рособрнадзор не планирует переносить досрочный период ЕГЭ

Время чтения: 0 минут

Полный перевод школ на дистанционное обучение не планируется

Время чтения: 1 минута

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Методы решения тригонометрических уравнений

Разделы: Математика

Составной частью ЕГЭ являются тригонометрические уравнения.

К сожалению, не существует общего единого метода, следуя которому можно было бы решить любое уравнение, в котором участвуют тригонометрические функции. Успех здесь могут обеспечить лишь хорошие знания формул и умение видеть те или иные полезные комбинации, что вырабатывается лишь практикой.

Общая цель обычно состоит в преобразовании входящего в уравнение тригонометрического выражения к такому виду, чтобы корни находились из так называемых простейших уравнений:

сos px = a;sin gx = b;tg kx = c;ctg tx = d.

Для этого необходимо уметь применять тригонометрические формулы. Полезно знать и называть их “именами”:

1. Формулы двойного аргумента, тройного аргумента:

сos 2x = cos 2 x – sin 2 x = 1 – 2 sin 2 x = 2 cos 2 x – 1;

sin 2x = 2 sin x cos x;

tg 2x = 2 tg x/1 – tg x;

ctg 2x = (ctg 2 x – 1)/2 ctg x;

sin 3x = 3 sin x – 4 sin 3 x;

cos 3x = 4 cos 3 x – 3 cos x;

tg 3x = (2 tg x – tg 3 x)/(1 – 3 tg 2 x);

ctg 3x = (ctg 3 x – 3ctg x)/(3ctg 2 x – 1);

2. Формулы половинного аргумента или понижения степени:

sin 2 x/2 = (1 – cos x)/2; сos 2 x/2 = (1 + cos x)/2;

tg 2 x = (1 – cos x)/(1 + cos x);

ctg 2 x = (1 + cos x)/(1 – cos x);

3. Введение вспомогательного аргумента:

рассмотрим на примере уравнения a sin x + b cos x = c а именно, определяя угол х из условий sin y = b/v(a 2 + b 2 ), cos y = a/v(a 2 + b 2 ), мы можем привести рассматриваемое уравнение к простейшему sin (x + y) = c/v(a 2 + b 2 ) решения которого выписываются без труда; тем самым определяются и решения исходного уравнения.

4. Формулы сложения и вычитания:

sin (a + b) = sin a cos b + cos a sin b;

sin (a – b) = sin a cos b – cos a sin b;

cos (a + b) = cos a cos b – sin a sin b;

cos (a – b) = cos a cos b + sin a sin b;

tg (a + b) = ( tg a + tg b)/(1 – tg a tg b);

tg (a – b) = ( tg a – tg b)/(1 + tg a tg b);

5. Универсальная тригонометрическая подстановка:

cos a = (1 – tg 2 (a/2))/(1 + (tg 2 (a/2));

tg a = 2 tg a/2/(1 – tg 2 (a/2));

6. Некоторые важные соотношения:

sin x + sin 2x + sin 3x +…+ sin mx = (cos (x/2) -cos (2m + 1)x)/(2 sin (x/2));

cos x + cos 2x + cos 3x +…+ cos mx = (sin (2m+ 1)x/2 – sin (x/2))/(2 sin (x/2));

7. Формулы преобразования суммы тригонометрических функций в произведение:

sin a + sin b = 2 sin(a + b)/2 cos (a – b)/2;

sin a – sin b = 2 cos (a + b)/2 sin (a – b)/2;

cos a + cos b = 2 cos (a + b)/2 cos (a – b)/2;

cos a – cos b = -2 sin(a + b)/2 sin (b – a)/2;

tg a + tg b = sin (a + b)/(cos a cos b);

tg a – tg b = sin (a – b)/(cos a cos b).

А также формулы приведения.

В процессе решения надо особенно внимательно следить за эквивалентностью уравнений, чтобы не допустить потери корней (например, при сокращении левой и правой частей уравнения на общий множитель), или приобретения лишних корней (например, при возведении обеих частей уравнения в квадрат). Кроме того, необходимо контролировать принадлежат ли получающие корни к ОДЗ рассматриваемого уравнения.

Во всех необходимых случаях (т.е. когда допускались неэквивалентные преобразования), нужно обязательно делать проверку. При решении уравнении необходимо научить учащихся сводить их к определенным видам, обычно начиная с легких уравнении.

Ознакомимся с методами решения уравнений:

1. Сведение к виду аx 2 + bx + c = 0

2. Однородность уравнений.

3. Разложение на множители.

4. Сведение к виду a 2 + b 2 + c 2 = 0

5. Замена переменных.

6. Сведение уравнения к уравнению с одной переменной.

7. Оценка левой и правой части.

8. Метод пристального взгляда.

9. Введение вспомогательного угла.

10. Метод “ Разделяй и властвуй ”.

1. Решить уравнение: sin x + cos 2 х = 1/4.

Решение: Решим методом сведения к квадратному уравнению. Выразим cos 2 х через sin 2 x

4 sin 2 x – 4 sin x – 3 = 0

sin x = -1/2, sin x = 3/2(не удовлетворяет условию х€[-1;1]),

т.е. х = (-1) к+1 arcsin 1/2 + k, k€z,

Ответ: (-1) к+1 /6 + k, k€z.

2. Решить уравнение: 2 tg x cos x +1 = 2 cos x + tg x,

решим способом разложения на множители

2 tg x cos x – 2 cos x + 1 – tg x = 0,где х /2 + k, k€z,

2 cos x (tg x – 1) – (tg x – 1) = 0

(2 cos x – 1) (tg x – 1) = 0

2 cos x – 1 = 0 или tg x – 1 = 0

cos x = 1/2, tgx = 1,

т.е х = ± /3 + 2k, k€z, х = /4 + m, m€z.

Ответ: ± /3 + 2k, k€z, /4 + m, m€z.

3. Решить уравнение: sin 2 x – 3 sin х cos x + 2 cos 2 х = 0.

Решение: sin 2 x – 3 sin х cos x + 2 cos 2 х = 0 однородное уравнение 2 степени. Поскольку cos x = 0 не является корнем данного уравнения, разделим левую и правую часть на cos 2 х. В результате приходим к квадратному уравнению относительно tg x

tg x = 1 и tg x = 2,

откуда х = /4 + m, m€z,

х = arctg 2 + k, k€z.

Ответ: /4 + m, m€z, arctg 2 + k, k€z.

4. Решить уравнение: cos (10x + 12) + 42 sin (5x + 6) = 4.

Решение: Метод введения новой переменной

Пусть 5х + 6 = у, тогда cos 2у + 42 sin у = 4

1 – 2 sin 2 у + 42 sin у – 4 = 0

sin у = t, где t€[-1;1]

2t 2 – 42t + 3 = 0

t = 2/2 и t = 32/2 (не удовлетворяет условию t€[-1;1])

sin (5x + 6) = 2/2,

5x + 6 = (-1) к /4 + k, k€z,

х = (-1) к /20 – 6/5 + k/5, k€z.

Ответ: (-1) к ?/20 – 6/5 + ?k/5, k€z.

5. Решить уравнение: (sin х – cos у) 2 + 40х 2 = 0

Решение: Используем а 2 +в 2 +с 2 = 0, верно, если а = 0, в = 0, с = 0. Равенство возможно, если sin х – cos у = 0, и 40х = 0 отсюда:

х = 0, и sin 0 – cos у = 0, следовательно, х = 0, и cos у = 0, отсюда: х = 0, и у = /2 + k, k€z, также возможна запись (0; /2 + k) k€z.

Ответ: (0; /2 + k) k€z.

6. Решить уравнение: sin 2 х + cos 4 х – 2 sin х + 1 = 0

Решение: Преобразуем уравнение и применим метод “разделяй и властвуй”

(sin 2 х – 2 sin х +1) + cos 4 х = 0;

(sin х – 1) 2 + cos 4 х = 0; это возможно если

(sin х – 1) 2 = 0, и cos 4 х = 0, отсюда:

sin х – 1 = 0, и cos х = 0,

sin х = 1, и cos х = 0, следовательно

х = /2 + k, k€z

Ответ: /2 + k, k€z.

7. Решить уравнение: sin 5х + sin х = 2 + cos 2 х.

Решение: применим метод оценки левой и правой части и ограниченность функций cos и sin.

– 1 sin 5х 1, и -1 sin х 1

0 cos 2 х 1

0 + 2 2 + cos 2 х 1 + 2

2 2 + cos 2 х 3

sin 5х + sin х 2, и 2 + cos 2 х 2

-2 sin 5х + sin х 2, т.е.

sin 5х + sin х 2,

имеем левая часть 2, а правая часть 2,

равенство возможно если, они оба равны 2.

cos 2 х = 0, и sin 5х + sin х = 2, следовательно

х = /2 + k, k€z (обязательно проверить).

Ответ: /2 + k, k€z.

8. Решить уравнение: cos х + cos 2х + cos 3х+ cos 4х = 0.

Решение: Решим методом разложения на множители. Группируем слагаемые, расположенные в левой части, в пары.

(В данном случае любой способ группировки приводит к цели.) Используем формулу cos a+cos b=2 cos (a + b)/2 cos (a – b)/2.

2 cos 3/2х cos х/2 + 2 cos 7/2х cos х/2 = 0,

cos х/2 (cos 3/2х + cos 7/2х) = 0,

2 cos 5/2х cos х/2 cos х = 0,

Возникают три случая:

  1. cos х/2 = 0, х/2 = /2 + k, k€z, х = + 2k, k€z;
  2. cos 5/2х = 0, 5/2х = /2 + k, k€z, х = /5 + 2/5k, k€z;
  3. cos х = 0, х = /2 + k, k€z.

Ответ: + 2k, /5 + 2/5k, /2 + k, k€z.

Обратим внимание на то, что второй случай включает в себя первый. (Если во втором случае взять к = 4 + 5, то получим + 2n). Поэтому нельзя сказать, что правильнее, но во всяком случае “культурнее и красивее” будет выглядеть ответ: х1 = /5 + 2/5k, х2 = /2 + k, k€z. (Вновь типичная ситуация, приводящая к различным формам записи ответа). Первый ответ также верен.

Рассмотренное уравнение иллюстрирует весьма типичную схему решения – разложение уравнения на множители за счёт попарной группировки и использования формул:

sin a + sin b = 2 sin (a + b)/2 cos (a – b)/2;

sin a – sin b = 2 cos (a + b)/2 sin (a – b)/2;

cos a + cos b = 2 cos (a + b)/2 cos (a – b)/2;

cos a – cos b = -2 sin (a + b)/2 sin (b – a)/2.

Проблема отбора корней, отсеивания лишних корней при решении тригонометрических уравнений весьма специфична и обычно оказывается более сложной, чем это имело место для уравнений алгебраических. Приведём решения уравнений, иллюстрирующие типичные случаи появления лишних (посторонних) корней и методы “борьбы” с ними.

Лишние корни могут появиться вследствие того, что в процессе решения произошло расширение области определения уравнений. Приведём примеры.

9. Решить уравнение: (sin 4х – sin 2х – cos 3х + 2sin х -1)/(2sin 2х – 3) = 0.

Решение: Приравняем нулю числитель (при этом происходит расширение области определения уравнения – добавляются значения х, обращающие в нуль знаменатель) и постараемся разложить его на множители. Имеем:

2 cos 3х sin х – cos 3х + 2sin х – 1 = 0,

(cos 3х + 1) (2 sin х – 1) = 0.

Получаем два уравнения:

cos 3х + 1 = 0, х = /3 + 2/3k.

Посмотрим, какие k нам подходят. Прежде всего, заметим, что левая часть нашего уравнения представляет собой периодическую функцию с периодом 2. Следовательно, достаточно найти решение уравнения, удовлетворяющее условию 0 х 8 х – cos 5 х = 1.

Решение этого уравнения основывается на следующем простом соображении: если 0 t убывает с ростом t.

Значит, sin 8 х sin 2 х, – cos 5 х cos 2 х;

Сложив почленно эти неравенства, будем иметь:

sin 8 х – cos 5 х sin 2 х + cos 2 х = 1.

Следовательно, левая часть данного уравнения равна единице тогда и только тогда, когда выполняются два равенства:

sin 8 х = sin 2 х, cos 5 х = cos 2 х,

т.е. sin х может принимать значения -1, 0

Ответ: /2 + k, + 2k, k€z.

Для полноты картины рассмотрим ещё пример.

12. Решить уравнение: 4 cos 2 х – 4 cos 2 3х cos х + cos 2 3х = 0.

Решение: Будем рассматривать левую часть данного уравнения как квадратный трёхчлен относительно cos х.

Пусть D – дискриминант этого трёхчлена:

1/4 D = 4 (cos 4 3х – cos 2 3х).

Из неравенства D 0 следует cos 2 3х 0 или cos 2 3х 1.

Значит, возникают две возможности: cos 3х = 0 и cos 3х = ± 1.

Если cos 3х = 0, то из уравнения следует, что и cos х = 0, откуда х = /2 + k.

Эти значения х удовлетворяют уравнению.

Если cos 3х = 1, то из уравнения cos х = 1/2 находим х = ± /3 + 2k. Эти значения также удовлетворяют уравнению.

Ответ: /2 + k, /3 + 2k, k€z.

13. Решить уравнение: sin 4 x + cos 4 x = 7/2 sin x cos x.

Решение: Преобразуем выражение sin 4 x + cos 4 x,выделив полный квадрат: sin 4 x + cos 4 x = sin 4 x + 2 sin 2 х cos 2 х + cos 4 x – 2 sin 2 х cos 2 х = (sin 2 х + cos 2 х) 2 – 2 sin 2 х cos 2 х, откуда sin 4 x + cos 4 x = 1 – 1/2 sin 2 2х. Пользуясь полученной формулой, запишем уравнение в виде

1-1/2 sin 2 2х = 7/4 sin 2х.

обозначив sin 2х = t, -1 t 1,

получим квадратное уравнение 2t 2 + 7t – 4 = 0,

решая которое, находим t1 = 1/2, t2 = – 4

уравнение sin 2х = 1/2

2х = (- 1) к /6 + k, k€z, х = (- 1) к //12 + k /2, k€z .

уравнение sin 2х = – 4 решений не имеет.

Ответ: (- 1) к //12 + k /2, k€z .

14. Решить уравнение: sin 9х + sin х = 2.

Решение: Решим уравнение методом оценки. Поскольку при всех значениях а выполнено неравенство sin а1,то исходное уравнение равносильно sin х = 1 и sin 9х =1,откуда получаем х = /2 + 2k, k€z и х = /18 + 2n, n€z.

Решением будут те значения х, при которых выполнено и первое, и второе уравнение. Поэтому из полученных ответов следует отобрать только х = /2 + 2k, k€z.

Ответ: /2 + 2k, k€z.

15. Решить уравнение: 2 cos x = 1 – 2 cos 2 x – v3 sin 2х.

Решение: воспользуемся формулой:

сos 2x = cos 2 x – sin 2 x = 1 – 2 sin 2 x = 2 cos 2 x – 1;

и перепишем уравнение в виде

2 cos x = – cos 2х – 3 sin 2х.

Применим к правой части процедуру введения дополнительного аргумента. Получим уравнение:

2 cos x = – 2 (1/2 cos 2х + 3/2 sin 2х),

которое можно записать в виде

2 cos x = – 2 (cos а cos 2х + sin а sin 2х),

где очевидно, а = /3. Преобразуя правую часть полученного уравнения с помощью формулы:

cos (a – b) = cos a cos b + sin a sin b;

приходим к уравнению

2 cos x = – 2 cos (2х – /3),

cos x + cos (2х – /3) = 0.

Последнее уравнение легко решить, преобразовав сумму косинусов в произведение по формуле:

cos a + cos b = 2 cos (a + b)/2 cos (a – b)/2,

cos x + cos (2х – /3) = 2 cos (3х/2 – /6) cos (/6 – х/2) = 0

Это уравнение расщепляется на два уравнения

cos (3х/2 – /6) = 0, и

cos (/6 – х/2) = 0,

решение которых уже не представляет сколь нибудь значительных трудностей.

Ответ: 2/9(2 + 3n), 2/3(2 + 3 k), n, k€z.

16. При каких значениях параметра а, уравнение а sin x – 4 cos x = 5, имеет решения?

Решение: преобразуем левую часть уравнения, используя формулу введения дополнительного аргумента:

а sin x – 4 cos x = (а 2 + 16) sin (x – y), где y определяется из условий sin y = – 4/(а 2 + 16), и cos y = а /(а 2 + 16).

Но значение y нас не интересует. Поэтому данное уравнение перепишем в виде

(а 2 + 16) sin (x – y) = 5,

sin (x – y) = 5/(а 2 + 16), это уравнение имеет решение при условии 5/(а 2 + 16) 1.

Решим это неравенство:

5/(а 2 + 16) 1, обе части умножим на (а 2 + 16):

5 (а 2 + 16),

(а 2 + 16) 5,

а 2 + 16 25,

а 2 9, или

а 3, следовательно

а € (-;-3] U [3; ).

Ответ: (-;-3] U [3; ).

17. При каких значениях параметра а, уравнение 2 sin 2 x + 3 cos (x +2 а) = 5, имеет решения?

Решение: поскольку 0 sin 2 x 1, и -1 cos (x +2а) 1 левая часть уравнения может равняться 5 тогда и только тогда, когда одновременно выполняются равенства sin 2 x = 1, и cos (x +2 а) = 1.

Это означает, что исходное уравнение равносильно системе уравнений sin 2 x = 1, и cos (x +2 а) = 1.

sin x = – 1, sin x = 1, cos (x +2 а) = 1;

х = /2 + n, n€z, и x +2 а = 2 к, к€z;

х = /2 + n, и x = – 2 а + 2 к;

/2 + n = – 2 а + 2 к;

2 а = 2 к – /2 – n;

а = к – /4 – n/2;

а = – /4 + /2 (2к – n);

а = – /4 + m/2, m€z.

Ответ: – /4 + m/2, где m€z.

Рассмотренные выше примеры лишь иллюстрируют несколько общих рекомендаций, которые полезно учитывать при решении тригонометрических уравнений. Из приведённых примеров видно, что дать общий рецепт в каждом конкретном случае невозможно.

Ежегодно варианты экзаменационных материалов ЕГЭ содержат от 4-х до 6-ти различных задач по тригонометрии. Поэтому параллельно с повторением теоретического материала значительное время должно быть отведено решению конкретных задач, в том числе и тригонометрических уравнений. А умение можно выработать, только получив практические навыки в решении достаточного числа тригонометрических уравнений.

Основные виды тригонометрических уравнений (задание 13)

Рассмотрим некоторые наиболее часто встречающиеся виды тригонометрических уравнений и способы их решения.

\(\blacktriangleright\) Квадратные тригонометрические уравнения
Если после преобразования уравнение приняло следующий вид: \[<\Large>\] где \(a\ne 0, \ f(x)\) — одна из функций \(\sin x, \cos x, \mathrm\,x, \mathrm\, x\) ,
то такое уравнение с помощью замены \(f(x)=t\) сводится к квадратному уравнению.

Часто при решении таких уравнений используются
основные тождества: \[\begin <|ccc|>\hline \sin^2 \alpha+\cos^2 \alpha =1&& \mathrm\, \alpha \cdot \mathrm\, \alpha =1\\ &&\\ \mathrm\, \alpha=\dfrac<\sin \alpha><\cos \alpha>&&\mathrm\, \alpha =\dfrac<\cos \alpha><\sin \alpha>\\&&\\ 1+\mathrm^2\, \alpha =\dfrac1 <\cos^2 \alpha>&& 1+\mathrm^2\, \alpha=\dfrac1<\sin^2 \alpha>\\&&\\ \hline \end\]
формулы двойного угла: \[\begin <|lc|cr|>\hline \sin <2\alpha>=2\sin \alpha\cos \alpha & \qquad &\qquad & \cos<2\alpha>=\cos^2\alpha -\sin^2\alpha\\ \sin \alpha\cos \alpha =\dfrac12\sin <2\alpha>&& & \cos<2\alpha>=2\cos^2\alpha -1\\ & & & \cos<2\alpha>=1-2\sin^2 \alpha\\ \hline &&&\\ \mathrm\, 2\alpha = \dfrac<2\mathrm\, \alpha><1-\mathrm^2\, \alpha> && & \mathrm\, 2\alpha = \dfrac<\mathrm^2\, \alpha-1><2\mathrm\, \alpha>\\&&&\\ \hline \end\]

Пример 1. Решить уравнение \(6\cos^2x-13\sin x-13=0\)

С помощью формулы \(\cos^2\alpha=1-\sin^2\alpha\) уравнение сводится к виду:
\(6\sin^2x+13\sin x+7=0\) . Сделаем замену \(t=\sin x\) . Т.к. область значений синуса \(\sin x\in [-1;1]\) , то \(t\in[-1;1]\) . Получим уравнение:

\(6t^2+13t+7=0\) . Корни данного уравнения \(t_1=-\dfrac76, \ t_2=-1\) .

Таким образом, корень \(t_1\) не подходит. Сделаем обратную замену:
\(\sin x=-1 \Rightarrow x=-\dfrac<\pi>2+2\pi n, n\in\mathbb\) .

Пример 2. Решить уравнение \(5\sin 2x=\cos 4x-3\)

С помощью формулы двойного угла для косинуса \(\cos 2\alpha=1-2\sin^2\alpha\) имеем:
\(\cos4x=1-2\sin^22x\) . Сделаем эту подстановку и получим:

\(2\sin^22x+5\sin 2x+2=0\) . Сделаем замену \(t=\sin 2x\) . Т.к. область значений синуса \(\sin 2x\in [-1;1]\) , то \(t\in[-1;1]\) . Получим уравнение:

\(2t^2+5t+2=0\) . Корни данного уравнения \(t_1=-2, \ t_2=-\dfrac12\) .

Таким образом, корень \(t_1\) не подходит. Сделаем обратную замену: \(\sin 2x=-\dfrac12 \Rightarrow x_1=-\dfrac<\pi><12>+\pi n, \ x_2=-\dfrac<5\pi><12>+\pi n, n\in\mathbb\) .

Пример 3. Решить уравнение \(\mathrm\, x+3\mathrm\,x+4=0\)

Т.к. \(\mathrm\,x\cdot \mathrm\,x=1\) , то \(\mathrm\,x=\dfrac1<\mathrm\,x>\) . Сделаем замену \(\mathrm\,x=t\) . Т.к. область значений тангенса \(\mathrm\,x\in\mathbb\) , то \(t\in\mathbb\) . Получим уравнение:

\(t+\dfrac3t+4=0 \Rightarrow \dfrac=0\) . Дробь равна нулю, когда числитель равен нулю, а знаменатель отличен от нуля. Таким образом:

Сделаем обратную замену:

\(\blacktriangleright\) Кубические тригонометрические уравнения
Если после преобразования уравнение приняло следующий вид: \[<\Large>\] где \(a\ne 0, \ f(x)\) — одна из функций \(\sin x, \cos x, \mathrm\,x, \mathrm\, x\) ,
то такое уравнение с помощью замены \(f(x)=t\) сводится к кубическому уравнению.

Часто при решении таких уравнений в дополнение к предыдущим формулам используются
формулы тройного угла: \[\begin <|lc|cr|>\hline &&&\\ \sin <3\alpha>=3\sin \alpha -4\sin^3\alpha &&& \cos<3\alpha>=4\cos^3\alpha -3\cos \alpha\\&&&\\ \hline \end\]

Пример 4. Решить уравнение \(11\cos 2x-3=3\sin 3x-11\sin x\)

При помощи формул \(\sin 3x=3\sin x-4\sin^3x\) и \(\cos2x=1-2\sin^2x\) можно свести уравнение к уравнению только с \(\sin x\) :

\(12\sin^3x-9\sin x+11\sin x-3+11-22\sin^2 x=0\) . Сделаем замену \(\sin x=t, \ t\in[-1;1]\) :

\(6t^3-11t^2+t+4=0\) . Подбором находим, что один из корней равен \(t_1=1\) . Выполнив деление в столбик многочлена \(6t^3-11t^2+t+4\) на \(t-1\) , получим:

\((t-1)(2t+1)(3t-4)=0 \Rightarrow\) корнями являются \(t_1=1, \ t_2=-\dfrac12, \ t_3=\dfrac43\) .

Таким образом, корень \(t_3\) не подходит. Сделаем обратную замену:

\(\blacktriangleright\) Однородные тригонометрические уравнения второй степени: \[I. \quad <\Large>, \quad a\ne 0,c\ne 0\]

Заметим, что в данном уравнении никогда не являются решениями те значения \(x\) , при которых \(\cos x=0\) или \(\sin x=0\) . Действительно, если \(\cos x=0\) , то, подставив вместо косинуса ноль в уравнение, получим: \(a\sin^2 x=0\) , откуда следует, что и \(\sin x=0\) . Но это противоречит основному тригонометрическому тождеству, т.к. оно говорит о том, что если \(\cos x=0\) , то \(\sin x=\pm 1\) .

Аналогично и \(\sin x=0\) не является решением такого уравнения.

Значит, данное уравнение можно делить на \(\cos^2 x\) или на \(\sin^2 x\) . Разделим, например, на \(\cos^2 x\) :

Таким образом, данное уравнение при помощи деления на \(\cos^2x\) и замены \(t=\mathrm\,x\) сводится к квадратному уравнению:

\(at^2+bt+c=0\) , способ решения которого вам известен.

Уравнения вида \[I’. \quad <\Large>, \quad a\ne0,c\ne 0\] с легкостью сводятся к уравнению вида \(I\) с помощью использования основного тригонометрического тождества: \[d=d\cdot 1=d\cdot (\sin^2x+\cos^2x)\]

Заметим, что благодаря формуле \(\sin2x=2\sin x\cos x\) однородное уравнение можно записать в виде

\(a\sin^2 x+b\sin 2x+c\cos^2x=0\)

Пример 5. Решить уравнение \(2\sin^2x+3\sin x\cos x=3\cos^2x+1\)

Подставим вместо \(1=\sin^2x+\cos^2x\) и получим:

\(\sin^2x+3\sin x\cos x-4\cos^2x=0\) . Разделим данное уравнение на \(\cos^2x\) :

\(\mathrm^2\,x+3\mathrm\,x-4=0\) и сделаем замену \(t=\mathrm\,x, \ t\in\mathbb\) . Уравнение примет вид:

\(t^2+3t-4=0\) . Корнями являются \(t_1=-4, \ t_2=1\) . Сделаем обратную замену:

\(\blacktriangleright\) Однородные тригонометрические уравнения первой степени: \[II.\quad <\Large>, a\ne0, b\ne 0\]

Заметим, что в данном уравнении никогда не являются решениями те значения \(x\) , при которых \(\cos x=0\) или \(\sin x=0\) . Действительно, если \(\cos x=0\) , то, подставив вместо косинуса ноль в уравнение, получим: \(a\sin x=0\) , откуда следует, что и \(\sin x=0\) . Но это противоречит основному тригонометрическому тождеству, т.к. оно говорит о том, что если \(\cos x=0\) , то \(\sin x=\pm 1\) .

Аналогично и \(\sin x=0\) не является решением такого уравнения.

Значит, данное уравнение можно делить на \(\cos x\) или на \(\sin x\) . Разделим, например, на \(\cos x\) :

\(a \ \dfrac<\sin x><\cos x>+b \ \dfrac<\cos x><\cos x>=0\) , откуда имеем \(a\mathrm\, x+b=0 \Rightarrow \mathrm\, x=-\dfrac ba\)

Пример 6. Решить уравнение \(\sin x+\cos x=0\)

Разделим правую и левую части уравнения на \(\sin x\) :

\(1+\mathrm\, x=0 \Rightarrow \mathrm\, x=-1 \Rightarrow x=-\dfrac<\pi>4+\pi n, n\in\mathbb\)

\(\blacktriangleright\) Неоднородные тригонометрические уравнения первой степени: \[II.\quad <\Large>, a\ne0, b\ne 0, c\ne 0\]

Существует несколько способов решения подобных уравнений. Рассмотрим те из них, которые можно использовать для любого такого уравнения:

1 СПОСОБ: при помощи формул двойного угла для синуса и косинуса и основного тригонометрического тождества: \(<\large<\sin x=2\sin<\dfrac x2>\cos<\dfrac x2>, \qquad \cos x=\cos^2 <\dfrac x2>-\sin^2 <\dfrac x2>,\qquad c=c\cdot \Big(\sin^2 <\dfrac x2>+\cos^2 <\dfrac x2>\Big)>>\) данное уравнение сведется к уравнению \(I\) :

Пример 7. Решить уравнение \(\sin 2x-\sqrt3 \cos 2x=-1\)

Распишем \(\sin 2x=2\sin x\cos x, \ \cos 2x=\cos^2x-\sin^2 x, \ -1=-\sin^2 x-\cos^2x\) . Тогда уравнение примет вид:

\((1+\sqrt3)\sin^2x+2\sin x\cos x+(1-\sqrt3)\cos^2x=0\) . Данное уравнение с помощью деления на \(\cos^2x\) и замены \(\mathrm\,x=t\) сводится к:

\((1+\sqrt3)t^2+2t+1-\sqrt3=0\) . Корнями этого уравнения являются \(t_1=-1, \ t_2=\dfrac<\sqrt3-1><\sqrt3+1>=2-\sqrt3\) . Сделаем обратную замену:

2 СПОСОБ: при помощи формул выражения функций через тангенс половинного угла: \[\begin <|lc|cr|>\hline &&&\\ \sin<\alpha>=\dfrac<2\mathrm\, \dfrac<\alpha>2><1+\mathrm^2\, \dfrac<\alpha>2> &&& \cos<\alpha>=\dfrac<1-\mathrm^2\, \dfrac<\alpha>2><1+\mathrm^2\, \dfrac<\alpha>2>\\&&&\\ \hline \end\] уравнение сведется к квадратному уравнению относительно \(\mathrm\, \dfrac x2\)

Пример 8. Решить то же уравнение \(\sin 2x-\sqrt3 \cos 2x=-1\)

\(\dfrac<(\sqrt3+1)t^2+2t+1-\sqrt3><1+t^2>=0 \Rightarrow (\sqrt3+1)t^2+2t+1-\sqrt3=0\) (т.к. \(1+t^2\geqslant 1\) при всех \(t\) , то есть всегда \(\ne 0\) )

Таким образом, мы получили то же уравнение, что и, решая первым способом.

3 СПОСОБ: при помощи формулы вспомогательного угла.
\[<\large\,\sin (x+\phi),>> \quad \text <где >\cos \phi=\dfrac a<\sqrt>\]

Для использования данной формулы нам понадобятся формулы сложения углов: \[\begin <|lc|cr|>\hline &&&\\ \sin<(\alpha\pm \beta)>=\sin\alpha\cdot \cos\beta\pm \sin\beta\cdot \cos\alpha &&& \cos<(\alpha\pm \beta)>=\cos\alpha\cdot \cos\beta \mp \sin\alpha\cdot \sin\beta\\ &&&\\ \hline \end\]

Пример 9. Решить то же уравнение \(\sin 2x-\sqrt3 \cos 2x=-1\)

Т.к. мы решаем уравнение, то можно не преобразовывать левую часть, а просто разделить обе части уравнения на \(\sqrt<1^2+(-\sqrt3)^2>=2\) :

\(\dfrac12\sin 2x-\dfrac<\sqrt3>2\cos 2x=-\dfrac12\)

Заметим, что числа \(\dfrac12\) и \(\dfrac<\sqrt3>2\) получились табличные. Можно, например, взять за \(\dfrac12=\cos \dfrac<\pi>3, \ \dfrac<\sqrt3>2=\sin \dfrac<\pi>3\) . Тогда уравнение примет вид:

\(\sin 2x\cos \dfrac<\pi>3-\sin \dfrac<\pi>3\cos 2x=-\dfrac12 \Rightarrow \sin\left(2x-\dfrac<\pi>3\right)=-\dfrac12\)

Решениями данного уравнения являются:

Заметим, что при решении уравнения третьим способом мы добились “более красивого” ответа (хотя ответы, естественно, одинаковы), чем при решении первым или вторым способом (которые, по сути, приводят уравнение к одному и тому же виду).
Таким образом, не стоит пренебрегать третьим способом решения данного уравнения.

\(\blacktriangleright\) Если тригонометрическое уравнение можно свести к виду \[<\Large>, \text <где >a\ne 0, b\ne 0,\] то с помощью формулы \[<\large<(\sin x\pm\cos x)^2=1\pm2\sin x\cos x>> \ \ (*)\] данное уравнение можно свести к квадратному.

Для этого необходимо сделать замену \(t=\sin x\pm \cos x\) , тогда \(\sin x\cos x=\pm \dfrac2\) .

Заметим, что формула \((*)\) есть не что иное, как формула сокращенного умножения \((A\pm B)^2=A^2\pm 2AB+B^2\) при подстановке в нее \(A=\sin x, B=\cos x\) .

Пример 10. Решить уравнение \(3\sin 2x+3\cos 2x=16\sin x\cos^3x-8\sin x\cos x\) .

Вынесем общий множитель за скобки в правой части: \(3\sin 2x+3\cos 2x=8\sin x\cos x(2\cos^2 x-1)\) .
По формулам двойного угла \(2\sin x\cos x=\sin 2x, 2\cos^2x-1=\cos 2x\) имеем: \[3(\sin 2x+\cos 2x)=4\sin 2x\cos 2x\] Заметим, что полученное уравнение как раз записано в необходимом нам виде. Сделаем замену \(t=\sin 2x+\cos 2x\) , тогда \(\sin 2x\cos 2x=\dfrac2\) . Тогда уравнение примет вид: \[3t=2t^2-2 \Rightarrow 2t^2-3t-2=0\] Корнями данного уравнения являются \(t_1=2, t_2=-\dfrac12\) .

По формулам вспомогательного аргумента \(\sin2x+\cos 2x=\sqrt2\sin\left(2x+\dfrac<\pi>4\right)\) , следовательно, сделав обратную замену: \[\left[ \begin \begin &\sqrt2\sin\left(2x+\dfrac<\pi>4\right)=2\\[1ex] &\sqrt2\sin\left(2x+\dfrac<\pi>4\right)=-\dfrac12 \end \end \right. \Rightarrow \left[ \begin \begin &\sin\left(2x+\dfrac<\pi>4\right)=\sqrt2\\[1ex] &\sin\left(2x+\dfrac<\pi>4\right)=-\dfrac1 <2\sqrt2>\end \end \right.\] Первое уравнение корней не имеет, т.к. область значений синуса находится в пределах от \(-1\) до \(1\) . Значит: \(\sin\left(2x+\dfrac<\pi>4\right)=-\dfrac1 <2\sqrt2>\Rightarrow \left[ \begin \begin &2x+\dfrac<\pi>4=-\arcsin <\dfrac1<2\sqrt2>>+2\pi n\\[1ex] &2x+\dfrac<\pi>4=\pi+\arcsin <\dfrac1<2\sqrt2>>+2\pi n \end \end \right. \Rightarrow \)
\(\Rightarrow \left[ \begin \begin &x=-\dfrac12\arcsin <\dfrac1<2\sqrt2>>-\dfrac<\pi>8+\pi n\\[1ex] &x=\dfrac<3\pi>8+\dfrac12\arcsin <\dfrac1<2\sqrt2>>+\pi n \end \end \right. \ \ n\in\mathbb\)

\(\blacktriangleright\) Формулы сокращенного умножения в тригонометрическом варианте:

\(I\) Квадрат суммы или разности \((A\pm B)^2=A^2\pm 2AB+B^2\) :

\((\sin x\pm \cos x)^2=\sin^2 x\pm 2\sin x\cos x+\cos^2x=(\sin^2 x+\cos^2 x)\pm 2\sin x\cos x=1\pm \sin 2x\)

\(II\) Разность квадратов \(A^2-B^2=(A-B)(A+B)\) :

\((\cos x-\sin x)(\cos x+\sin x)=\cos^2x-\sin^2x=\cos 2x\)

\(III\) Сумма или разность кубов \(A^3\pm B^3=(A\pm B)(A^2\mp AB+B^2)\) :

\(\sin^3x\pm \cos^3x=(\sin x\pm \cos x)(\sin^2x\mp \sin x\cos x+\cos^2x)=(\sin x\pm \cos x)(1\mp \sin x\cos x)=\)

\(=(\sin x\pm \cos x)(1\mp \frac12\sin 2x)\)

\(IV\) Куб суммы или разности \((A\pm B)^3=A^3\pm B^3\pm 3AB(A\pm B)\) :

\((\sin x\pm \cos x)^3=(\sin x\pm \cos x)(\sin x\pm \cos x)^2=(\sin x\pm \cos x)(1\pm \sin 2x)\) (по первой формуле)


источники:

http://urok.1sept.ru/articles/537151

http://shkolkovo.net/theory/24