Методы решения тригонометрических уравнений презентация

Методы решения тригонометрических уравнений
презентация к уроку по алгебре (10 класс) по теме

Презентация к уроку в 10 классе

Скачать:

ВложениеРазмер
truravneniya.ppt851 КБ

Предварительный просмотр:

Подписи к слайдам:

МЕТОДЫ РЕШЕНИЯ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ Шишкина Елена Павловна, учитель математики МБОУ г.Мурманска гимназии №2

I . СВЕДЕНИЕ К АЛГЕБРАИЧЕСКОМУ.

Пример: Пусть . Уравнение примет вид: — не удовлетворяет условию Ответ: .

II . ОДНОРОДНЫЕ И СВОДИМЫЕ К НИМ .

Уравнение вида называется однородным уравнением I степени.

Пример: Множество значений x , удовлетворяющих уравнению , не является решением данного уравнения. Поэтому можно обе части уравнения разделить на . Получим: Ответ : .

Уравнение вида называется однородным уравнением II степени.

Пример: Решение: Множество значений x , удовлетворяющих уравнению , не является решением данного уравнения. Разделим обе части уравнения на . Получим:

Пусть . Уравнение примет вид: Ответ:

III . ЕСЛИ В УРАВНЕНИИ СОДЕРЖИТСЯ ПРОИЗВЕДЕНИЕ ФУНКЦИЙ SIN (А X ) SIN ( BX ) , SIN ( AX ) COS ( BX ) , COS ( AX ) COS ( BX ) , ТО ТАКИЕ УРАВНЕНИЯ РЕШАЮТСЯ ПРЕОБРАЗОВАНИЕМ ПРОИЗВЕДЕНИЯ В СУММУ (РАЗНОСТЬ) И НАОБОРОТ.

При этом применяют тождества:

Пример 1. Ответ: . или

IV . ПОНИЖЕНИЕ СТЕПЕНИ.

Если в уравнении содержатся чётные степени sinx и cosx , то понижают степень уравнения с применением понижающих формул:

V . РАЗЛОЖЕНИЕ НА МНОЖИТЕЛИ.

VI . ВВЕДЕНИЕ ВСПОМОГАТЕЛЬНОГО АРГУМЕНТА.

Пример Решение: Разделим обе части уравнения на Получаем: Ответ:

VII . ПРИМЕНЕНИЕ УНИВЕРСАЛЬНОЙ ПОДСТАНОВКИ.

Пример Решение: Пусть: . Уравнение примет вид . О.Д.З. . не удовлетворяет условию Ответ: ; .

Пример 2: Решение: Проверка: Ответ: ; .

VIII . ВВЕДЕНИЕ НОВОГО ПЕРЕМЕННОГО.

! Если в уравнении содержится сумма или разность sinx и cosx и их произведения, то уравнение решается введением нового переменного:

Пример: Пусть: (Решите самостоятельно)

IX . ИСПОЛЬЗОВАНИЕ ПОНЯТИЯ ОГРАНИЧЕННОСТИ (МИНИМАКС).

Пример: k – целое Ответ: .

По теме: методические разработки, презентации и конспекты

Основные методы решения тригонометрических уравнений (профильный уровень)

Урок обобщения и систематизации знаний, умений и навыков, приобретенных при изучении данной темы. Сопровождается мультимедийной презентацией.

Методы решения тригонометрических уравнений

Данная презентация может быть использована как индивидуальная самостоятельная работа с последующей самопроверкой по теме «Методы решения тригонометрических уравнений».

Урок «Методы решения тригонометрических уравнений»

p < margin-bottom: 0.21cm; >Данный урок является заключительным в теме “Методы решения тригонометрических уравнений”. На изучение этой темы в программе отводится 12 часов.

Конспект и презентация урока алгебры в 10 классе по теме «Общие методы решения тригонометрических уравнений»

Урок систематизации знаний по теме «Решение тригонометрических уравнений» можно проводить как в 10 классе ( при изучении соответствующего материала), так и в 11 класе (при подготовке к ЕГЭ).

Методы решения тригонометрических уравнений

В работе рассматриваются различные способы решения тригонометрических уравнений и основные ошибки, которые при этом допускаются. Материал можно использоватьпри подготовке к ЕГЭ как наиболее подго.

Урок»Методы решения тригонометрических уравнений»

Решение тригонометрических уравнений одна из самых сложных тем математики для учащихся. Урок подготовлен для учащихся 10 класса. Можно использовать для повторения при подготовке к ЕГЭ в 11 класс.

Презентация к уроку Методы решения тригонометрических уравнений

Презентация к уроку позволяет детям усваивать учебный материал с наиболее полным использованием органов чувств, что повышает эффективность обучения.

Презентация «Методы решения тригонометрических уравнений»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

«Актуальность создания школьных служб примирения/медиации в образовательных организациях»

Свидетельство и скидка на обучение каждому участнику

Описание презентации по отдельным слайдам:

Методы решения тригонометрических уравнений (проектное задание) Выполнила: Остапенко Татьяна Ивановна, учитель математики и физики МБОУ «Бехтеевская СОШ Корочанского района Белгородской области» Руководитель курса: Вертелецкая О.В., старший преподаватель кафедры естественно- математического образования

Введение Тригонометрические уравнения возникают при решении задач по планиметрии, стереометрии, астрономии, физики и в других областях. Еще древнегреческие математики, используя элементы тригонометрии для решения прямоугольных треугольников, фактически составляли и решали простейшие тригонометрические уравнения. Исторически учение о решении тригонометрических уравнений формировалось с развитием теории тригонометрических функций, а также черпало из алгебры общие методы их решения. Цель работы: изучить методы решения тригонометрических уравнений, исследовать применение их к решению уравнений повышенной сложности и задач различного содержания.

Рекомендации по решению тригонометрических уравнений 1. Если аргументы функций одинаковые, попробовать получить одинаковые функции, использовав формулы без изменения аргументов. 2. Если аргументы функций отличаются в два раза, попробовать получить одинаковые аргументы, использовав формулы двойного аргумента. 3. Если аргументы функций отличаются в четыре раза, попробовать их привести к промежуточному двойному аргументу. 4. Если есть функции одного аргумента, степени свыше первой, попробовать понизить степень, используя формулы понижения степени или формулы сокращенного умножения. 5. Если есть сумма одноименных функций первой степени с разными аргументами (вне случаев 2,3), попробовать преобразовать сумму в произведение для появления общего множителя. 6. Если есть сумма разноимённых функций первой степени с разными аргументами (вне случаев 2, 3), попробовать использовать формулы приведения, получить затем случай 5. 7. Если в уравнении есть произведение косинусов (синусов) различных аргументов, попробовать свести его к формуле синус двойного аргумента, умножив и разделив это выражение на синус (косинус) подходящего аргумента: 8. Если в уравнении есть числовое слагаемое (множитель), то его можно представить в виде значений функции угла. Например:

II. Приведение к однородному уравнению первого порядка I. Приведение тригонометрического уравнения к алгебраическому виду. III. Приведение уравнения к однородному уравнению II порядка IV. Разложение левой части на множители V. Понижение степени VI.Трехчленное уравнение

Решение уравнений разложением на множители

Пример 1 Решение: Ответ:

Решение уравнений, сводящихся к квадратным уравнениям

Пример 2 Решение: Пусть , ответ:

Пример 3 Решение: Ответ:

Решение однородных и сводящихся к ним уравнений

Пример 4 Решение: Т.к. значения x при которых cos3x равен нулю, не являются корнем уравнения ,то разделим обе части уравнения ответ:

Пример 5 Решение: Уравнение является однородным второй степени ответ:

Пример 6: Решение: В этом уравнении нельзя делить на cosx Ответ:

Решение уравнений с помощью введения вспомогательного аргумента

Пример 7 Решение: Ответ:

Решение уравнений преобразованием суммы тригонометрических функций в произведение

Пример 8 Решение: Ответ:

Решение уравнений преобразования произведения тригонометрических функций в сумму

Пример 9 Решение: Ответ:

Решение уравнений вида Asinx+Bcosx=C где A,B,C — действительные числа, A,B 0 Решается подстановкой

Пример 10 Решение: Ответ:

Заключение. Изучение тригонометрических уравнений позволяет учащимся овладеть конкретными математическими знаниями, необходимыми для применения в практической деятельности, для изучения смежных дисциплин, развития умственных способностей, умение извлекать учебную информацию на основе сопоставительного анализа графиков, самостоятельно выполнять различные творческие работы. В данной работе рассмотрены основные методы решения тригонометрических уравнений, причем, как специфические, характерные только для тригонометрических уравнений, так и общие функциональные методы решения уравнений, применительно к тригонометрическим уравнениям. Для успешного решения уравнений необходимо знать формулы корней простейших тригонометрических уравнений, значение тригонометрических функций для основных углов и значение обратных тригонометрических функций, универсальные правила решения уравнений. Рассмотрено решение элементарных тригонометрических уравнений, метод разложения на множители, методы сведения тригонометрических уравнений к алгебраическим. Приведенные методы не исчерпывают все многообразие способов решений тригонометрических уравнений. Однако рассмотренные типы уравнений встречаются наиболее часто и важно уметь распознавать в данном уравнении тот или иной тип. Результаты данной работы могут быть использованы в качестве учебного материала при подготовке творческих работ, при составлении факультативных курсов для школьников, так же работа может применяться при подготовке учащихся к Единому государственному экзамену, вступительным экзаменам.

Библиография Алексеев А. Тригонометрические подстановки. // Квант. – 1995. — №2. –с. 40 – 42. Выгодский М. Я. «Справочник по элементарной математике». М., «Наука», 1982 г. Г. И. Глейзер История математики в школе. – М.: «Просвещение» 1983г. Карасев В.А., Лёвшина Г.Д. «12 уроков по тригонометрии» — М.: Илекса, 2013.- 200 с.:ил. Крамор В.С. Тригонометрические функции. – М.: Просвещение, 1979. Сост. Гряда Н. Н. и др. Обобщающее повторение в системе подготовки к ЕГЭ по теме «Тригонометрические уравнения», Армавир, 2005г. Цукарь А.Я. Упражнения практического характера по тригонометрии //Математика в школе. 1993-№3- с 12-15. Шаталов В.Ф. Методические рекомендации для работы с опорными сигналами по тригонометрии. — М.: Новая школа, 1993.

Краткое описание документа:

Тригонометрические уравнения возникают при решении задач по планиметрии, стереометрии, астрономии, физики и в других областях. Еще древнегреческие математики, используя элементы тригонометрии для решения прямоугольных треугольников, фактически составляли и решали простейшие тригонометрические уравнения. Исторически учение о решении тригонометрических уравнений формировалось с развитием теории тригонометрических функций, а также черпало из алгебры общие методы их решения.

Цель работы : изучить методы решения тригонометрических уравнений, исследовать применение их к решению уравнений повышенной сложности и задач различного содержания.

Тригонометрические уравнения и методы их решений. — презентация

Презентация была опубликована 6 лет назад пользователемФёдор Кавелин

Похожие презентации

Презентация на тему: » Тригонометрические уравнения и методы их решений.» — Транскрипт:

1 Тригонометрические уравнения и методы их решений

2 Тригонометрические уравнения — уравнения, содержащие неизвестное под знаком тригонометрической функции. Решение тригонометрического уравнения состоит из двух этапов: преобразование уравнения для получения его простейшего вида решение полученного простейшего тригонометрического уравнения. Рассмотрим десять основных методов решения тригонометрических уравнений.

3 Содержание: 1. Алгебраический метод Алгебраический метод 2. Метод разложения на множители Метод разложения на множители 3. Метод вспомогательного угла Метод вспомогательного угла 4. Однородные уравнения Однородные уравнения 5. Универсальная подстановка Универсальная подстановка 6. Метод оценки Метод оценки 7. Метод понижения степени Метод понижения степени 8. Метод сравнения множеств Метод сравнения множеств 9. Переход к половинному углу Переход к половинному углу 10. Преобразование произведения в сумму Преобразование произведения в сумму

4 Алгебраический метод Этот метод нам хорошо известен из курса алгебры как метод замены переменной и подстановки.

5 Пример. Решить уравнение: 2cos 2 x-sinx+1=0 Решение. 2(1-sin 2 x)-sinx+1=0 -2sin 2 x-sinx+3=0 2sin 2 x+sinx-3=0 Пусть sinx=y, -1y1 2y 2 +y-3=0 y 1 =-1,5- не подходит по условию y 2 =1 Возвращаемся к старой переменной: sinx=1 x=/2+2k, k є Z

6 Метод разложения на множители Пример. Решить уравнение: sinx — sin2x = 0 Решение. sinx – 2sinx · cosx = 0 sinx(1- cosx) = 0 1. sinx=0 x=k, k є Z 2. 1-cosx=0 cosx=1 x=2n, n є Z Ответ: x=k, k є Z

7 Метод вспомогательного угла Пример. Решить уравнение: 3sinx-4cosx=5 Решение =25 25=5 5(3sinx/5-4cosx/5)=5 3sinx/5-4cosx/5=1 Т.к. (3/5) 2 +(4/5) 2 =1, то 3/5=cosφ φ=arccos(3/5) 4/5=sinφ φ=arcsin(4/5) sinxcosφ-cosxsinφ=1 sin(x-φ)=1 x-φ= /2+2k, k є Z x=/2+φ+2k, k є Z x=/2+arcsin(4/5)+2k, k є Z

8 Однородные уравнения Уравнение называется однородным относительно sin и cos, если все его члены одной и той же степени относительно sin и cos одного и того же угла. Чтобы решить однородное уравнение, надо: а) перенести все его члены в левую часть; б) вынести все общие множители за скобки; в) приравнять все множители и скобки нулю; г) скобки, приравненные нулю, дают однородное уравнение меньшей степени, которое следует разделить на cos ( или sin ) в старшей степени; д) решить полученное алгебраическое уравнение относительно tg.

9 Пример. Решить уравнение: 3sin 2 x + 4sinx · cosx + 5cos 2 x = 2. Решение. 3sin 2 x + 4sinx · cosx + 5cos 2 x = 2sin 2 x + 2cos 2 x sin 2 x + 4sinx · cosx + 3cos 2 x = 0 tg 2 x + 4tgx + 3 = 0, отсюда y 2 + 4y +3 = 0, корни этого уравнения: y 1 = -1, y 2 = -3, отсюда 1) tg x = –1, x=-/4+k, k є Z 2) tg x = –3, x=-arctg3+n, n є Z

10 Универсальная подстановка Универсальная подстановка применяется для тригонометрических уравнений, содержащих 2 и более тригонометрические функции. Пусть tg(x/2)=t, тогда sinx=2t/(1+t 2 ) (1) cosx=(1-t 2 )/(1+t 2 ) (2) tgx=2t/(1-t 2 ) В конце решения следует обязательно сделать проверку!

0, то 4t 2 +6t-4=3+3t 2 t 2 +6t-7=0 t 1 =-7 t 2 =1 tg(x/2)=-7 x=» title=»Пример. Решить уравнение: 3sinx-4cosx=3 Решение. При помощи формул (1) и (2) произведем замену sinx и cosx и приведем выражение к общему знаменателю: (6t-4+4t 2 )/(1+t 2 )=3 Т.к. 1+t 2 >0, то 4t 2 +6t-4=3+3t 2 t 2 +6t-7=0 t 1 =-7 t 2 =1 tg(x/2)=-7 x=» > 11 Пример. Решить уравнение: 3sinx-4cosx=3 Решение. При помощи формул (1) и (2) произведем замену sinx и cosx и приведем выражение к общему знаменателю: (6t-4+4t 2 )/(1+t 2 )=3 Т.к. 1+t 2 >0, то 4t 2 +6t-4=3+3t 2 t 2 +6t-7=0 t 1 =-7 t 2 =1 tg(x/2)=-7 x=2arctg(-7)+2k, k є Z tg(x/2)=1 x=/2+2n, n є Z 0, то 4t 2 +6t-4=3+3t 2 t 2 +6t-7=0 t 1 =-7 t 2 =1 tg(x/2)=-7 x=»> 0, то 4t 2 +6t-4=3+3t 2 t 2 +6t-7=0 t 1 =-7 t 2 =1 tg(x/2)=-7 x=2arctg(-7)+2k, k є Z tg(x/2)=1 x=/2+2n, n є Z»> 0, то 4t 2 +6t-4=3+3t 2 t 2 +6t-7=0 t 1 =-7 t 2 =1 tg(x/2)=-7 x=» title=»Пример. Решить уравнение: 3sinx-4cosx=3 Решение. При помощи формул (1) и (2) произведем замену sinx и cosx и приведем выражение к общему знаменателю: (6t-4+4t 2 )/(1+t 2 )=3 Т.к. 1+t 2 >0, то 4t 2 +6t-4=3+3t 2 t 2 +6t-7=0 t 1 =-7 t 2 =1 tg(x/2)=-7 x=»>

12 Метод оценки При решении некоторых тригонометрических уравнений иногда бывает полезно оценить значения тригонометрических функций, входящих в уравнение.

13 Пример. Решить уравнение: sinxsin5x=1 sinx=1 x=/2+2m, m є Z sin5x=1 — ? sin5(/2+2n)=1 sin(5/2+52n)=1 sin(5/2)=1 sin(/2)=1 — верно Ответ:x= /2+k, k є Z sinx=-1 x=-/2+2n, n є Z sin5x=-1 — ? sin5(-/2+2n)=-1 sin(-5/2+52n)=-1 sin(-5/2)=-1 sin(-/2)=-1 — sin(/2)=-1 — верно

14 Метод понижения степени Для решения уравнений данным методом применяются формулы понижения степени: 2sin 2 x=1-cos2x 2cos 2 x=1+cos2x

15 Пример. Решить уравнение: sin 4 x+cos 4 x= ½ sin 2 2x Решение. (sin 2 x) 2 +(cos 2 x) 2 = ½ sin 2 2x ¼ (1-2cos2x+cos 2 2x+1+2cos2x+cos 2 2x)= ½ (1-cos 2 2x) ½ (2+2cos 2 2x)=1-cos 2 2x 1+cos 2 2x= 1-cos 2 2x 2cos 2 2x=0 cos2x=0 2x=/2+k, k є Z x= /4+k/2, k є Z

16 Метод сравнения множеств Уравнения вида f(x)=φ(x) решаются методом сравнения множеств. Если Е(f) E(φ) – пустое множество, то уравнение не имеет решений Если Е(f) E(φ) состоит только из одной общей точки, то уравнение решается системой 2-х уравнений, левые части которых равны f и φ, а правые части равны значению общей точки.

17 Пример. Решить уравнение: 6cos 2 5x-5cosx+5,1=0 (1) Решение. 6cos 2 5x+5,1=5cosx (2) Пусть f(x)=6cos 2 5x+5,1 и φ(x)=5cosx. Е(f)=[5,1;11,1]-область значений функции f(x), Е(φ)=[-5;5]-область значений функции φ(x). Так как Е(f) E(φ) является пустое множество, то равенство (2) невозможно. Уравнение (2) решений не имеет, а, значит, и равносильное ему уравнение (1) тоже решений не имеет.

18 Переход к половинному углу При решении уравнений данным методом используются формулы двойного аргумента: sin2x=2sinxcosx cos2x=cos 2 x-sin 2 x В конце решения следует обязательно сделать проверку!

19 Пример. Решить уравнение: 2sinx–cosx=2. Решение. 4sin(x/2)·cos(x/2)-cos²(x/2)+sin²(x/2)= =2sin²(x/2)+2cos²(x/2) sin²(x/2)–4sin(x/2)·cos(x/2)+3cos²(x/2)=0 tg²(x/2)–4tg(x/2)+3=0 tg 1 (x/2)=1 x=/2+2k, k є Z tg 2 (x/2)=3 x=2arctg3+2k, k є Z

20 Преобразование произведения в сумму Данным методом решаются уравнения вида: 1. singxsingx=sinγxsinδx, если α+β=±(γ+δ) или α-β=±γ-δ 2. cosαxcosβx=cosγxcosδx, если α+β=±(γ+δ) или α-β=±γ-δ 3. singxsingx=cosγxcosδx, если α-β=±(γ+δ) 4. cosαxcosβx=sinγxsinδx, если α+β=γ±δ или α-β=γ±δ

21 Этот метод включает в себя применение формул: преобразования произведения в сумму: 2singsing=cos(α-β)-cos(α+β) 2cosαcosβ=cos(α+β)+cos(α-β) 2singcosβ=sin(α+β)+sin(α-β) 2cosαsing=sin(α+β)-sin(α-β) преобразования суммы в произведение: sing+sing=2sin((α+β)/2)cos((α-β)/2) sing-sing=2cos((α+β)/2)sin((α-β)/2) cosα+cosβ=2cos((α+β)/2)cos((α-β)/2) cosα-cosβ=-2sin((α+β)/2)sin((α-β)/2)

22 Пример. Решить уравнение: sinxsin5x=cos4x Решение. Преобразуем левую часть в сумму: ½ cos4x – ½ cos6x = cos4x ½ cos6x+ ½ cos4x= 0 cos6x+cos4x=0 Преобразуем левую часть в произведение: 2cos5xcosx=0 cos5xcosx=0 cos5x=0, x=/10+2k/5, k є Z cosx=0, x=/2+2n, n є Z. Ответ:x=/10+2k/5, k є Z

23 Презентацию подготовила ученица 11 «А» класса Мозжухина Софья


источники:

http://infourok.ru/prezentaciya_metody_resheniya_trigonometricheskih_uravneniy-574460.htm

http://www.myshared.ru/slide/1052216/