Методы решения уравнений для непрерывных функций

Непрерывность функций с примерами решения и образцами выполнения

Непрерывность функции:

Непрерывные функции, точки разрыва и их классификация, действия над непрерывными функциями, свойства функций, непрерывных на сегменте.

Определение:

Функция у = f(x) называется непрерывной в точке х₀, если:

  • функция определена в точке x₀ и в некоторой ее окрестности, содержащей эту точку;
  • функция имеет предел при х → x₀;
  • предел функции при х → x₀ равен значению функции в точке x₀:
    (10.1)

Если в точке x₀ функция непрерывна, то точка x₀ называется точкой непрерывности функции.

Пример:

Исследовать на непрерывность функцию в точке х = 1.

Решение:

Чтобы доказать, что функция непрерывна в точке х = 1, необходимо проверить выполнение трех следующих условий (определение непрерывности):

  • функция определена в точке х = 1 ⇒ f(1) = e;
  • существует ;
  • этот предел равен значению функции в точке х = 1 :

Таким образом, доказано, что функция непрерывна в точке х = 1.

Замечание:

Формулу (10.1) можно записать в виде
(10.2)
так как . Это значит, что при нахождении предела непрерывной функции можно переходить к пределу под знаком функции.

Введем понятие непрерывности функции в точке х₀ справа и слева.
Если, существует f(x) = f(x₀), то функция называется непрерывной в точке x₀ слева. Аналогично определяется непрерывность функции справа.

Так как ∆x = x-x₀, a ∆y = f(x)-(x₀), то условие (10.1) равносильно следующему:

Определение:

Функция у = f(x) называется непрерывной в точке х₀, если бесконечно малому приращению аргумента соответствует бесконечно малое приращение функции
(10.3)

Пример:

Показать, что функция у = х³ непрерывна для любого значения аргумента х.

Решение:

Найдем приращение функции ∆y.

Используя теоремы о пределе суммы и произведения функции, получим
(3x²∆x 4- 3x∆x² + ∆x³) = 0.

Следовательно, функция у = х³ непрерывна при — ∞ Точки разрыва функции и их классификация

Определение:

Точка х₀ называется точкой разрыва функции у = f(x), если она принадлежит области определения функции или ее границе и не является точкой непрерывности.

Так, например, функция (рис. 89) терпит разрыв при х = 1. Эта функция не определена в точке х = 1, и не существует предела функции в этой точке.

Рис. 89. График функции

Определение:

Точка разрыва x₀ функции у = f(x) называется точкой устранимого разрыва, если существуют оба односторонних предела в точке x₀ и они равны, т. е.

Пример:

Исследовать на непрерывность функцию

Решение:

В точке x=-1 функция не определена, так как, выполнив подстановку, получаем неопределенность . В других точках дробь можно сократить на (1 + х), так как в них 1 + х ≠ 0. Легко видеть, что односторонние пределы слева и справа в точке х = — 1 равны между собой и их можно вычислить:

Таким образом, при x = -1 данная функция имеет устранимый разрыв.
Он будет устранен, если положить, что при x = -1 ⇒ у == 3.

Определение:

Если в точке x₀ односторонние пределы слева и справа существуют, но не равны, точка x₀ называется точкой разрыва I рода.

Пример:

Исследовать на непрерывность функцию
(рис. 90).

Рис. 90. График функции

Решение: Вычислим односторонние пределы функции в точке ее разрыва х = 4.

Предел слева —.
Предел справа — .
Пределы слева и справа существуют, но не равны, следовательно, точка x = 4 для данной функции — точка разрыва I рода (точка скачка).

Определение:

Точки разрыва, не являющиеся точками разрыва I рода, называются точками разрыва II рода.

В точках разрыва II рода не существует хотя бы один из односторонних пределов. Функция , представленная на рис. 89, не имеет ни левого, ни правого конечного предела в точке х = 1. Следовательно, для данной функции x = 1 является точкой разрыва II рода.

Действия над непрерывными функциями

Теорема:

Непрерывность суммы, произведения и частного непрерывных функций. Если функции ϕ(x) и ψ(x) непрерывны в точке Хо, то их сумма и произведение также непрерывны в точке x₀. Если, кроме того, знаменатель в рассматриваемой точке не равен нулю, то частное непрерывных функций есть функция непрерывная.

Докажем непрерывность произведения.

Дано: непрерывность функций в точке x₀:
и

Доказать, что f(x) — ϕ(x) ∙ ψ(x) есть функция непрерывная в точке x₀, т. е. f(x) — f(x₀).

Доказательство:
f(x) = [ϕ(x) ∙ ψ(x)] = ϕ(x) ∙ ψ(x) = ϕ(x₀) ∙ ψ(x₀) = f(x₀).

Можно строго доказать, что все основные элементарные функции непрерывны при всех значениях х, для которых они определены.

Например, степенная у = xⁿ, показательная у = , тригонометрические у = sin х и у = cos х функции непрерывны на всей числовой оси (х ∈ R), логарифмическая функция непрерывна при х > 0, а тригонометрическая у = tg x непрерывна в каждом из интервалов и терпит разрыв II рода в точках (k = 0; ±1; ±2;…).

Теорема:

Непрерывность сложной функции. Если функция и = ϕ(x) непрерывна в точке x₀, а функция у = f(u) непрерывна в точке и₀ = ϕ(x₀), то сложная функция у = f [ϕ(x)] непрерывна в точке x₀.

В заключение этого раздела рассмотрим два предела, которые нам понадобятся в дальнейшем.

Пример:

Вычислить

Решение:

Заметим, что при х → 0 числитель и знаменатель одновременно стремятся к нулю, т.е. имеет место неопределенность вида . Выполним преобразование

Так как данная логарифмическая функция непрерывна в окрестности точки х = 0, то можно перейти к пределу под знаком функции ( f(x)= f (x)).

но — второй замечательный предел.

Следовательно,
(10.4)

В частности, при а = е
(10.5)

Таким образом, у = ln( 1 + х) и у = х — эквивалентные бесконечно малые функции при х → 0.

Пример:

Вычислить

Решение:

Здесь мы имеем дело с неопределенностью вида . Для нахождения предела сделаем замену переменной, положив — 1 = t. Тогда . При х → 0 также и t → 0.

Так как на основании результата, полученного в предыдущем примере, то
(10.6)

В частности, если а = е, имеем

т.е. у = — 1 и y = x — эквивалентные бесконечно малые функции при х → 0.

Свойства функций, непрерывных на сегменте

Определение:

Функция у = f(x) непрерывна на сегменте [а, b], если она непрерывна во всех внутренних точках Этого сегмента, а на концах сегмента (в точках a и b) непрерывна соответственно справа и слева.

Теорема:

Если функция у = f(x) непрерывна на сегменте [а, b], то она достигает на этом сегменте своего наибольшего и(или) наименьшего значения.

Простым доказательством этой теоремы, является геометрическая иллюстрация функции у = f(x) на рисунке 91. Непрерывная на сегменте [α, b] функция достигает наименьшего своего значения в точке х = x₁= а, а наибольшего значения в точке х₂.

Рис. 91. Геометрическая иллюстрация условий теоремы 10.3

Следствие:

Если функция у = f(x) непрерывна на сегменте [a, b], то она ограничена на этом сегменте.

Действительно, если по теореме 10.3 функция достигает на сегменте наибольшего M и наименьшего т значений, то имеет место неравенство m ≤ f(x) ≤ M для всех значений функции на рассматриваемом сегменте. Т. е. |f(x)| ≤ M и, следовательно, функция у = f(x) ограничена на сегменте [а, b].

Теорема:

Теорема Больцано-Коши. Если функция у = f(x) непрерывна на сегменте [а, b] и на ее концах принимает значения разных знаков, то внутри этого сегмента найдется, по крайней мере, одна тонка С, в которой функция равна нулю.

Геометрический смысл теоремы заключается в следующем: если точки графика функции у = f(x), соответствующие концам сегмента [a, b], лежат по разные стороны от оси ОХ, то этот график хотя бы в одной точке сегмента пересекает ось OX. На данном рисунке 92 это три точки x₁, x₂, x₃.

Рис. 92. Геометрическая иллюстрация условий теоремы 10.4

Теорема:

О промежуточных значениях функции. Если функция у = f(x) непрерывна на сегменте [α, b] и f(α) = A и f(b) = В, то для любого числа С, заключенного между A и B, найдется внутри этого сегмента такая точка с, что f(c) = С.

Из графика на рисунке 93 видно, что непрерывная функция, переходя от одного значения к другому, обязательно проходит через все промежуточные значения.

Рис. 93. Геометрическая иллюстрация условий теоремы 10.5

Теорема:

О непрерывности обратной функции.) Если функция у = f(x) непрерывна на сегменте [а, b] в возрастает (убывает) на этом сегменте, то обратная функция х = f⁻¹(y) на соответствующем сегменте оси OY существует и является также непрерывной возрастающей (убывающей) функцией.

Эту теорему мы принимаем без доказательства.

Решение на тему: Непрерывная функция

Пример:

Показать, что функция у = 4x² непрерывна в точке х = 2.

Решение:

Для этого необходимо показать, что в точке х = 2 выполняется все три условия непрерывности функции:

1) функция у = 4х² определена в точке х = 2 ⇒ f(2) = 16;
2) существует f(x) = 4x²= 16;
3) этот предел равен значению функции в точке х = 2

f(x) = f(2) = 16.

Пример:

Показать, что функция у = sin x непрерывна для любого значения аргумента х.

Решение:

Найдем приращение функции ∆y, используя формулы тригонометрических тождеств

Так как то при любом х имеем

Следовательно, функция у = sin x непрерывна при -∞ Рис. 94. График функции примера 10.3

Эта функция (рис. 94) определена во всех точках сегмента [0,4] и ее значение при х = 3 ⇒ у = 2. Функция терпит разрыв, так как она не имеет предела при х → 3 :

Следовательно, точка х = 3, точка разрыва первого рода. При этом в граничных точках исследуемого сегмента [0,4], функция f(x) непрерывна справа (х = 0) и непрерывна слева (х = 4).

Пример:

Исследовать на непрерывность функцию

Решение:

В точке х = 5 функция не определена, т.к., выполнив подстановку, получаем неопределенность вида 0/0. Легко доказать, что

Следовательно, точка х = 5 точка устранимого разрыва.

Пример:

Исследовать на непрерывность функцию

Решение:

В точке х = 0 функция (рис. 95) терпит разрыв, так как она не определена в этой точке. Пределы функции слева и справа от точки х = 0 равны ∞. Следовательно, точка х = 0 для данной функции является точкой разрыва второго

Пример:

Исследовать на непрерывность функцию

Решение:

В точке х = 0 функция терпит разрыв 1-го рода, так как односторонние пределы существуют в этой точке, но не равны:
предел слева
предел справа

Рис. 95. График функции

Пример:

Исследовать на непрерывность функцию .

Решение:

Функция определена для всех значений х, кроме x = 0.B этой точке она имеет разрыв. Точка х = 0 есть точка разрыва II рода, так как при х → 0 как справа, так и слева, функция , колеблясь между -1 и 1, не приближается ни к какому числовому значению. График ее приведен на рис. 96.

Рис. 96. График функции

Пример:

Исследовать на непрерывность функцию

Решение:

Функция не определена в точке х = 0. Точка х = 0 является точкой разрыва I рода, так как при х → 0 существуют пределы справа и слева:

Если доопределить функцию в точке х = 0, полагая f(0) = 1, то получим уже непрерывную функцию, определенную так:
f(х) =, если х ≠ 0; f(0) = 1.

Доопределив функцию в точке х = 0, мы устранили разрыв.

Непрерывность функций

Решение заданий и задач по предметам:

Дополнительные лекции по высшей математике:

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Функциональные уравнения. Методы их решения

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

«Актуальность создания школьных служб примирения/медиации в образовательных организациях»

Свидетельство и скидка на обучение каждому участнику

Министерство образования и молодежной политики Чувашской Республики

БОУ ДПО (ПК) С «Чувашский республиканский институт образования»

Кафедра математики и информационных технологий

Курсовая работа на тему:

« Функциональные уравнения. Методы их решения»

Выполнил (а): учитель математики МБОУ «СОШ № 60»

Глава 1. Понятие функционального уравнения ………………………………. 5

Глава 2. Практическая часть. Методы решения функционального уравнения.9

Одно из важнейших математических умений, которым должны овладеть учащиеся школы, — умение решать уравнения. Корень уравнения находят в одно или более действий, многие текстовые задачи решаются алгебраическим способом, в уравнении могут участвовать целые, рациональные и другие числа, то есть уравнения одновременно сами по себе являются задачами и способами решения задач, умение, решать, которые необходимы всем учащимся школы. Но во время решения тренировочных заданий мне попалось уравнение, которое я решить не смогла. Как я узнала позже от учителя, это было функциональное уравнение.

Что же такое функциональные уравнения? И какие способы их решения существуют? Эти вопросы заинтересовали меня, и я решила провести исследование. функциональный уравнение коши

Функциональными уравнениями занимаются с очень давних пор, этому курсу так и не нашлось достойного места в математических программах. А жаль. Ведь решение отдельных функциональных уравнений требует достаточно глубокого понимания предмета и прививает любовь к самостоятельной творческой работе. Так как эта тема в школьном курсе не изучается в виду её сложности, при поступлении в престижные ВУЗы, на олимпиадах, в части С ЕГЭ такие задачи встречаются.

В настоящее время практически нет никаких пособий, обучающих решению функциональных уравнений.

Поэтому ощущается потребность в пособии, которое на простых и конкретных примерах способно показать читателю со скромной математической подготовкой весь арсенал современных методов решения функциональных уравнений.

Цель работы — выяснить, что является функциональным уравнением их системами, найти способы решения и составить сборник задач для использования математическими классами.

1. изучение и анализ литературы;

2. поиск способов решения функциональных уравнений и их систем;

3. решение функциональных уравнений

4. составление сборника

Объект исследования: функциональные уравнения

Предмет исследования: изучение свойств и способов решения функциональных уравнений.

Структура: введение, понятие функционального уравнения, сборник задач, заключение.

Глава 1. Понятие функционального уравнения

Функциональное уравнение – это уравнение, которое содержит одну или несколько неизвестных функций (с заданными областями определения и значений). Решить функциональное уравнение – это, значит, найти все функции, которые тождественно ему удовлетворяют. Функциональные уравнения возникают в самых различных областях математики, обычно в тех случаях, когда требуется описать все функции, обладающие заданными свойствами. Термин функциональное уравнение обычно используется для уравнений, несводимых простыми способами к алгебраическим уравнениям. Эта несводимость чаще всего обусловлена тем, что аргументами неизвестной функции в уравнении являются не сами независимые переменные, а некоторые данные функции от них. Часто встречаются на различных математических соревнованиях.

Некоторые функциональные уравнения знакомы нам еще из школьного курса это

которые задают такие свойства функций, как чётность, нечётность, периодичность.

Задача решения функциональных уравнений является одной из самых старых в математическом анализе. Они появились почти одновременно с зачатками теории функций. Первый настоящий расцвет этой дисциплины связан с проблемой параллелограмма сил. Ещё в 1769 году Даламбер свёл обоснование закона сложения сил к решению функционального уравнения

(1)

То же уравнение и с той же целью было рассмотрено Пуассоном в 1804 году при некотором предположении аналитичности, между тем как в 1821 году Коши (1789 – 1857) нашёл общие решения

этого уравнения, предполагая только непрерывность f(x).

Даже известная формула неевклидовой геометрии для угла параллельности

была получена Н. И. Лобачевским (1792 – 1856) из функционального уравнения

, (2)

которое он решил методом, аналогичным методу Коши. Это уравнение можно привести к уравнению

.

Ряд геометрических задач, приводящих к функциональным уравнениям, рассматривал английский математик Ч. Баббедж (1792—1871). Он изучал, например, периодические кривые второго порядка, определяемые следующим свойством для любой пары точек кривой: если абсцисса второй точки равна ординате первой, то ордината второй точки равна абсциссе первой. Пусть такая кривая является графиком функции у = f(х) ; (х, f(х)) — произвольная ее точка. Тогда, согласно условию, точка с абсциссой f(х) имеет ординату х. Следовательно,

(3)

Функциональному уравнению (3) удовлетворяют, в частности, функции:

,

Одними из простейших функциональных уравнений являются уравнения Коши

Эти уравнения Коши подробно изучил в своём (Курсе Анализа), изданном в 1821 году. Непрерывные решения этих четырёх основных уравнений имеют соответственно вид

, , ,

В классе разрывных функций могут быть и другие решения. Уравнение (4) ранее рассматривалось Лежандром и Гауссом при выводе основной теоремы проективной геометрии и при исследовании гауссовского закона распределения вероятностей.

Функциональное уравнение (4) было опять применено Г. Дарбу к проблеме параллелограмма сил и к основной теореме проективной геометрии; его главное достижение — значительное ослабление предположений. Мы знаем, что функциональное уравнение Коши (4) характеризует в классе непрерывных функций линейную однородную функцию f(x) = ax . Дарбу же показал, что всякое решение, непрерывное хотя бы в одной точке или же ограниченное сверху (или снизу) в произвольно малом интервале, также должно иметь вид f(x) = ax. Дальнейшие результаты по ослаблению предположений следовали быстро один за другим (интегрируемость, измеримость на множестве положительной меры и даже мажорируемость измеримой функцией). Возникает вопрос: существует ли хоть одна какая-нибудь аддитивная функция (т. е. удовлетворяющая (4)), отличная от линейной однородной. Найти такую функцию действительно нелегко! В ходе работы мы покажем, что при рациональных x значения любой аддитивной функции должны совпадать со значениями некоторой линейной однородной функции, т. е. f(x) = ax для x Q. Казалось бы, что тогда f(x) = ax для всех действительных x. Если f(x) — непрерывна, то это действительно так, если же данное предположение отбросить — то нет. Первый пример отличного от f(x) = ax разрывного решения функционального уравнения (4) построил в 1905 году немецкий математик Г. Гамель с помощью введённого им базиса действительных чисел.

Многие функциональные уравнения не определяют конкретную функцию, а задают широкий класс функций, т. е. выражают свойство, характеризующее тот или иной класс функций. Например, функциональное уравнение f(x+1) = f(x) характеризует класс функций, имеющих период 1, а уравнение f(1+x) = f(1-x) — класс функций, симметричных относительно прямой x = 1 , и т. д.

Элементарное введение в функциональные уравнения

Теория и примеры решения функциональных уравнений

Просмотр содержимого документа
«Элементарное введение в функциональные уравнения»

1.Функциональные уравнения. Их свойства и методы решения. 5

1.1 Определение и примеры функциональных уравнений. 5

1.2 Методы решения функциональных уравнений. 8

2. Решение функциональных уравнений Коши на множестве Q рациональных чисел. 13

2.1 Решение уравнения вида f(x+y)=f(x)+f(y) на Q. 13

2.2 Решение уравнения вида f(x+y)=f(x)∙f(y) на Q. 15

2.3 Решение уравнения вида f(x∙y)=f(x)+f(y) на Q. 17

2.4 Решение уравнения вида f(x∙y)=f(x)∙f(y) на Q. 19

3. Решение функциональных уравнений Коши на R. 22

3.1 Решение уравнения вида f(x+y)=f(x)+f(y) на оси R. 22

3.2 Решение уравнения вида f(x+y)=f(x)∙f(y) на оси R. 23

4. Решение функциональных уравнений Коши в измеримых функциях. 25

5. Класс уравнений типа Коши. 27

Список использованных источников. 30

Курсовая работа посвящена изучению функциональных уравнений, весьма общему классу уравнений, в которых искомой является некоторая функция.

К функциональным уравнениям по существу относятся дифференциальные уравнения, интегральные уравнения, уравнения в конечных разностях; следует, однако, отметить, что название функциональные уравнения обычно не относят к уравнениям этих типов. Под функциональными уравнениями в узком смысле слова понимают уравнения, в которых искомые функции связаны с известными функциями одного или нескольких переменных при помощи операции образования сложной функции. Функциональные уравнения можно также рассматривать как выражение свойства, характеризующего тот или иной класс функций.

Функциональное уравнение — это уравнение, в котором неизвестными являются функции (одна или несколько). Например,

Некоторые функциональные уравнения знакомы нам еще из школьного курса это f(x) = f(-x), f(-x) = — f(x), f(x+T) = f(x), которые задают такие свойства функций, как чётность, нечётность, периодичность.

Задача решения функциональных уравнений является одной из самых старых в математическом анализе. Они появились почти одновременно с зачатками теории функций. Первый настоящий расцвет этой дисциплины связан с проблемой параллелограмма сил. Ещё в 1769 году Даламбер свёл обоснование закона сложения сил к решению функционального уравнения

(1)

То же уравнение и с той же целью было рассмотрено Пуассоном в 1804 году при некотором предположении аналитичности, между тем как в 1821 году Коши (1789 – 1857) нашёл общие решения

Ряд геометрических задач, приводящих к функциональным уравнениям, рассматривал английский математик Ч. Баббедж (1792—1871). Он изучал, например, периодические кривые второго порядка, определяемые следующим свойством для любой пары точек кривой: если абсцисса второй точки равна ординате первой, то ордината второй точки равна абсциссе первой. Пусть такая кривая является графиком функции у = f(х); (х, f(х)) — произвольная ее точка. Тогда, согласно условию, точка с абсциссой f(х) имеет ординату х. Следовательно,

(2)

Функциональному уравнению (2) удовлетворяют, в частности, функции: ,

1. Функциональные уравнения. Их свойства и методы решения

1.1 Определение и примеры функциональных уравнений

Функциональные уравнения — весьма общий класс уравнений, в которых искомой является некоторая функция. К функциональным уравнениям, по существу, относятся дифференциальные уравнения, интегральные уравнения, уравнения в конечных разностях. Следует, однако, отметить, что название «функциональные уравнения» обычно не относят к уравнениям этих типов. Под функциональными уравнениями в узком смысле слова понимают уравнения, в которых искомые функции связаны с известными функциями одного или нескольких переменных при помощи операции образования сложной функции. Функциональные уравнения можно также рассматривать как выражение свойства, характеризующего тот или иной класс функций.

Например, функциональное уравнение f (x) = f (-x) характеризует класс чётных функций, функциональное уравнение f(-x) = -f(x) – класс нечетных; функциональное уравнение f (x + 1) = f (x) — класс функций, имеющих период 1, и т.д.

Одним из простейших функциональных уравнений является уравнение

f (x + у) = f (x) + f (y).

Непрерывные решения этого функционального уравнения имеют вид:

Однако в классе разрывных функций это функциональное уравнение имеет и иные решения. С рассмотренным функциональным уравнением связаны

f (x + у) = f (x) f (y),

непрерывные решения которых имеют соответственно вид e Cx , C∙lnx, x a (x 0).

Т.о., эти функциональные уравнения могут служить для определения показательной, логарифмической и степенной функций. В теории аналитических функций функциональные уравнения часто применяются для введения новых классов функций.

Например, двоякопериодические функции характеризуются функциональными уравнениями:

f (z + а) = f (z) и f (z + b) = f (z),

автоморфные функции — функциональными уравнениями:

где a> — некоторая группа дробно-линейных преобразований.

Если функция известна в некоторой области, то знание для неё функционального уравнения позволяет расширить область определения этой функции. Например, функциональное уравнение f (x + 1) = f (x) для периодических функций позволяет определить их значение в любой точке по значениям на отрезке [0, 1]. Этим часто пользуются для аналитического продолжения функций комплексного переменного. Например, пользуясь функциональным уравнением Г (z + 1) = z∙Г (z) и зная значения гамма-функции Г(z) в полосе 0 Re z

Условия симметрии, имеющиеся в какой-либо физической задаче, обусловливают определённые законы преобразования решений этой задачи при тех или иных преобразованиях координат. Этим определяются функциональные уравнения, которым должно удовлетворять решение данной задачи. Значение соответствующих функциональных уравнений во многих случаях облегчает нахождение решений.

Решения функциональных уравнений могут быть как конкретными функциями, так и классами функций, зависящими от произвольных параметров или произвольных функций.

Для некоторых функциональных уравнений общее решение может быть найдено, если известны одно или несколько его частных решений. Например, общее решение функционального уравнения

где j(x) — произвольная функция, а w(x) — частное решение этого функционального уравнения

Для решения функциональных уравнений их во многих случаях сводят к дифференциальным уравнениям. Этот метод даёт лишь решения, принадлежащие классу дифференцируемых функций.

Другим методом решения функциональных уравнений является метод итераций. Этот метод даёт, например, решение уравнения Абеля:

где a(x) — заданная функция и связанного с ним уравнения Шрёдера:

А. Н. Коркин доказал, что если a(х) — аналитическая функция, то уравнение Абеля имеет аналитическое решение. Эти результаты, нашедшие применение в теории групп Ли, привели в дальнейшем к созданию теории итераций аналитических функций. В некоторых случаях уравнение Абеля решается в конечном виде [1].


источники:

http://infourok.ru/funkcionalnie-uravneniya-metodi-ih-resheniya-403500.html

http://multiurok.ru/files/elementarnoe-vvedenie-v-funktsionalnye-uravneniia.html