Методы вычислений приближенное решение уравнений

Приближенное вычисление корней в уравнениях

Приближенное вычисление корней в уравнениях

    Приближённое решение уравнений :

1.1 Способ хорд (или способ линейной интерполяции).

  1. Способ касательных (или способ Ньютона).
  2. Комбинированный способ (комбинированное применение способов хорд и касательных).
  • Заключение.
  • Список литературы.
  • Приближённое решение уравнений.

    Если квадратные уравнения решали уже древние греки, то способы решения алгебраических уравнений третьей и четвёртой степени были открыты лишь в XVI веке. Эти классические способы дают точные значения корней и выражают их через коэффициенты уравнения при помощи радикалов различных степеней. Однако эти способы приводят к громоздким вычислениям и поэтому имеют малую практическую ценность.

    В отношении алгебраических уравнений пятой и высших степеней доказано, что в общем случае их решения не выражаются через коэффициенты при помощи радикалов. Не выражаются в радикалах, например, корни уже такого простого по виду уравнения, как:

    Сказанное, однако, не означает отсутствия в науке методов решения уравнения высших степеней. Имеется много способов приближенного решения уравнений — алгебраических и неалгебраических (или, как их называют, трансцендентных), позволяющих вычислять их корни с любой, заранее заданной степенью точности, что для практических целей вполне достаточно.

    На простейших из таких способов мы и остановимся, причём речь будет идти о вычислении действительных корней.

    Пусть нужно решить уравнение:

    Если обратиться к рисунку, то каждый корень уравнения (1) представляет собой абсциссу точки пересечения графика функции y=f(х)

    C осью Ох (рисунок №1)

    С помощью графика функции или каким-нибудь иным способом обычно удаётся установить приблизительные значения корней. Это позволяет для каждого корня получить грубые приближения по недостатку и по избытку. Такого рода грубых приближений во многих случаях оказывается достаточно, чтобы, отправляясь от них, получить все значения корня с требуемой точностью. Об этом и пойдёт речь.

    Итак, пусть корень Е уравнения (1) «зажат» между двумя его приближениями а и b по недостатку и по избытку а

    Способ хорд (или способ линейной интерполяции).

    Проведём хорду АВ (рисунок№3) и за первое приближённое значение корня примем абсциссу x1 точки С пересечения хорды с осью Ох.

    Уравнение хорды имеет вид:

    Поэтому в точке С:

    Рассмотрение всех четырёх случаев, изображённых на рисунке №2, показывает, что точка x1 лежит между a и b с той стороны от Е, где f(х) имеет знак, противоположный знаку f«(х).

    Остановим внимание на первом случае: f`(х)>0, f«(х)>0 (рисунок №3), — в остальных случаях рассуждение вполне аналогично. В этом первом случае x1 лежит между a и Е. С отрезком [x1, b] поступаем так же, как мы поступаем с отрезком [a, b] (рисунок №4). При этом для нового приближённого значения корня получаем:

    x1 = x2-(b- x1)*f(x1)/f(b)-f(x1)

    ( в формуле (2) заменяем x1 на x2, а на x1 ); значение x2 оказывается между x1 и Е. Рассматриваем отрезок [x2, b] и находим новое приближённое x3, заключённое между x2 и Е и. т. д. В результате получим последовательность а 0

    Найдём первое приближённое значение корня по формуле (2):

    так как f(1,588)=-0,817 0

    Следовательно, искомый корень с точностью до 0,01 равен 1,64.

    1.2 Способ касательных (или способ Ньютона).

    В том из концов дуги АВ (рисунок №5), в котором знаки f(х) и f«(х) совпадают, проводим касательную и за первое приближённое значение корня принимаем абсциссу х1` точки Д пересечения этой касательной с осью Ох. Обратимся вновь к первому случаю, соответствующему первому рисунку №2 (f`(x)>0, f«(x)>0), — в остальных случаях рассуждают опять-таки аналогично. Уравнение интересующей нас касательной имеет вид:

    и поэтому в точке Д:

    Из рисунка видно, что x1` лежит между Е и b. С отрезком [a, x1`] поступаем так же, как с отрезком [a, b] ( рисунок №5), и в результате для нового приближённого значения корня получим:

    х2` = x1`- f( x1`)/ f`( x1`).

    Значение х2` оказывается между Е и x1`. Рассматриваем отрезок [a, х2`] и находим новое приближение х3` и т. д. В результате получим последовательность:

    все более точных приближённых значений корня, причём:

    xn+1`= xn`- f(xn`)/ f`( xn`) (8)

    Эта формула справедлива для всех четырёх случаев, изображённых на рисунке 32. Для оценки погрешностей полученных приближений можно опять воспользоваться формулой (5), как и в первом случае, легко устанавливается сходимость последовальности x1`, х2`, х3`,…,xn`,… к значению Е

    Пример №2. Методом касательных найдём положительный корень уравнения

    с точностью до 0,01.

    В этом уравнении f(х)=х^4-2x-4, f`(х)=4х^3-2,а f«(х)=12x^2.Так как f(х) и f«(х) при х0 = 1,7 имеют один и тот же знак, а именно:

    f(1,7)=0,952>0 и f«(1,7)>0, то применяем формулу:

    x1`= х0- f(х0)/ f`( х0), где f`(1,7)=4*1,7^3-2=17,652. Тогда

    Применяем второй раз способ касательных:

    х2= x1- f(x1)/ f` (x1), где f(x1)= f(1,646)=0,048, f` (1,646) =15,838;

    f(1,643)=0,004, f` (1,643)=15,740;

    Следовательно, искомый корень с точностью до 0,01 равен 1,64.

    1.3 Комбинированный способ

    (комбинированное применение способов хорд и касательных).

    Этот способ состоит в одновременном использовании способов хорд и касательных. Остановим своё внимание опять на случае, отвечающем первому рисунку №2. Значения x1 и x1`, вычисляем по прежним формулам, т. е. принимаем:

    x1`=b-f(b)/f`(b), причём: x1 0 изображён на рисунке №7. Из этого рисунка видно, что уравнение имеет положительный единственный корень, лежащий на отрезке 1 0,f«(x)>0 т. е. знак производных сохраняется. Применяем комбинированный способ:

    Формулы (10) дают:

    При этом x1`- x1=0,012, т. е. точность недостаточна. Совершаем второй шаг:

    При этом х2`- х2=0,00018, т. е. точность достаточна. Таким образом:

    Ошибка в тексте? Выдели её мышкой и нажми

    Остались рефераты, курсовые, презентации? Поделись с нами — загрузи их здесь!

    Лекция «Приближенные решения алгебраических и трансцендентных уравнений»

    Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

    БИК Курс лекций по дисциплине «Численные методы»

    для специальности 230105 Программное обеспечение вычислительной техники и автоматизированных систем

    Раздел 2. Численные методы

    2.1.1. Приближенные решения алгебраических и трансцендентных уравнений

    Алгебраические и трансцендентные уравнения

    Графический метод решения уравнений

    1. Алгебраические и трансцендентные уравнения

    При решении практических задач часто приходится сталкиваться с решением уравнений. Всякое уравнение с одним неизвестным можно представить в виде

    ( x )= g ( x ), (1)

    где (х) и g (х) — данные функции, определенные на некотором числовом множестве X , называемом областью допустимых значений уравнения .

    В общем случае нелинейное уравнение можно записать в виде:

    F ( x ) определена и непрерывна на конечном или бесконечном интервале .

     Совокупность значений переменной х, при которых уравнение (1) превращается в тождество, называется решением этого уравнения, а каждое значение х : из этой совокупности называется корнем уравнения.

     Всякое число , обращающее функцию F ( x ) в нуль, т.е. такое, при котором F ( )=0, называется корнем уравнения (1).

     Число называется корнем k -той кратности, если при x =вместе с функцией F ( x ) равны нулю ее производные до ( k -1) порядка включительно:

    F ( ) = F / () = … = F ( k -1) ( ) = 0.

    Однократный корень называется простым.

     Решить уравнение – значит найти множество всех корней этого уравнения.

    Оно может быть конечным или бесконечным.

     Два уравнения F ( x )=0 и G ( x =0) называются равносильными (эквивалентными), если всякое решение каждого из них является решением и для другого, то есть множества решений этих уравнений совпадают.

    В зависимости от того, какие функции входят в уравнения (1) или (2), уравнения разделяются на два больших класса: линейные и нелинейные.

    Нелинейные уравнения делятся, в свою очередь на: алгебраические и трансцендентные .

    Уравнение (2) называется алгебраическим, если функция является алгебраической функцией. Путем алгебраических преобразований из всякого алгебраического уравнения можно получить уравнение в канонической форме:

    где a 0, a 1, . , a n — коэффициенты уравнения, а x -неизвестное. Показатель n называется степенью алгебраического уравнения.

    Если функция F ( x ) не является алгебраической, то уравнение (1) называется трансцендентным.

    В некоторых случаях решение трансцендентных уравнений можно свести к решению алгебраических уравнений.

    Решение уравнения с одним неизвестным заключается в отыскании корней, т. е. тех значений х, которые обращают уравнение в тождество. Корни уравнения могут быть вещественными и невещественными (комплексными).

    Найти точные значения корней уравнения можно только в исключительных случаях, обычно, когда есть какая-либо простая формула для вычисления значения корней, выражающая их через известные величины.

    Поскольку подавляющее большинство нелинейных уравнений с одной переменой не решаются путем аналитических преобразований (точными методами), на практике их решают только численными методами.

    При решении многих практических задач точное решение уравнения не всегда является необходимым. Задача нахождения корней считается решенной, если корни вычислены с заданной степенью точности.

     Решить уравнение – это значит

    установить, имеет ли оно корни,

    и найти значение корней с заданной точностью.

     Задача численного нахождения действительных и комплексных корней уравнения (2) обычно состоит из двух этапов:

    отделение корней, т.е. нахождение достаточно малых окрестностей рассматриваемой области, в которых находится одно значение корня,

    и уточнение корней, т.е. вычисление корней с заданной степенью точности в некоторой окрестности.

    Наиболее распространенными на практике численными методами решения уравнения (2) являются: метод половинного деления, метод хорд, метод касательных (Ньютона), комбинированный метод, метод простой итерации. Применение того или иного метода для решения уравнения (2) зависит от числа корней, задания исходного приближения и поведения функции F ( x ).

    2. Графические методы решения уравнений

    Одним из методов решения уравнений является графический. Точность такого решения невелика, однако с помощью графика можно разумно выбрать первое приближение, с которого начнется дальнейшее решение уравнения. Существуют два способа графического решения уравнений.

    Первый способ. Все члены уравнения переносят в левую часть, т. е. представляют его в виде f (х) = 0. После этого строят график функции у = f ( x ), где f (х) – левая часть уравнения. Абсциссы точек пересечения графика функции у = f (х) с осью Ох и являются корнями уравнения, так как в этих точках у = 0 (рис. 1).

    Рисунок 1

    Второй способ. Все члены уравнения разбивают на две группы, одну из них записывают в левой части уравнения, а другую в правой, т. е. представляют его в виде f (х) = g (х).

    После этого строят графики двух функций у = f (х) и у = g (х). Абсциссы точек пересечения графиков этих двух функций и служат корнями данного уравнения. Пусть точка пересечения графиков имеет абсциссу х0, ординаты обоих графиков в этой точке равны между собой, т. е. f (х0) = g (х0). Из этого равенства следует, что х0 – корень уравнения (рис. 2).

    Рисунок 2

    Пример 1. Решить графически уравнение х 3 — 2 x 2 + 2х — 1 = 0.

    Первый способ. Построим график функции у = х 3 — 2 x 2 + 2х — 1 и определим абсциссы точек пересечения этого графика с осью Ох. Кривая пересекает ось Ох в точке х = 1, следовательно, уравнение имеет один корень (рис. 3). (Отметим, что алгебраическое уравнение третьей степени имеет или один действительный корень или три. Так как кривая пересекает ось абсцисс только в одной точке, то данное уравнение имеет только один действительный корень. Остальные два корня – комплексные.)

    Рисунок 3 Рисунок 4

    Второй способ. Представим данное уравнение в виде х 3 = 2 x 2 + 2х–1 и построим графики функций у = х 3 и у = 2 x 2 + 2х – 1. Найдем абсциссу точки пересечения этих графиков; получим х = 1 (рис. 4).

    Пример 2. Найти приближенно графическим способом корни уравнения lg х — Зх + 5 = 0.

    Перепишем уравнение следующим образом: lg х = Зх — 5.

    Функции в левой и в правой части уравнения имеют общую область определения: интервал 0

    Строим графики функций у = lg х и у = Зх — 5 (рис. 5). Прямая у = Зх-5 пересекает логарифмическую кривую в двух точках с абсциссами x 1 0,00001 и x 2 1,75. На рисунке трудно показать пересечение графиков этих двух функций в первой точке, однако, учитывая, что нижняя ветвь, логарифмической кривой неограниченно приближается к оси Оу, можно предполагать, что пересечение этих двух графиков произойдет вблизи точки пересечения графика функции у = Зх — 5 и оси Оу. Абсцисса точки пересечения приближенно равна 0,00001. Итак, корни уравнения x 1 0,00001 и x 2 1,75

    Рисунок 5 Рисунок 6

    Пример 3. Найти графически корни уравнения 2 х = 2х.

    Решение. Строим графики функций у = 2 х и у = 2х. Эти графики пересекаются в двух точках, абсциссы которых равны х 1 = 1 и х 2 = 2. Данное урав­нение имеет два корня х 1 = 1 и х 2 = 2 (рис. 6).

    Подводя итог вышеизложенному, можно рекомендовать для графического решения уравнения f (х) = 0, все корни которого лежат в промежутке [а, b ], следующую простую схему.

    1. Представить указанное уравнение в виде (х) = g (х) с таким расчетом, чтобы функции у=(х) и у = g (х) были просты и удобны для исследования и построения.

    2. На бумаге вычертить графики функций у =(х) и у = g (х) в промежутке [а, b ].

    3. Если графики не пересекаются, то корней в данном промежутке нет. Если же графики пересекаются, то нужно определить точки их пересечения, найти абсциссы этих точек, которые и будут приближенными значениями корней рассматриваемого уравнения.

    Первый этап численного решения уравнения (2) состоит в отделении корней, т.е. в установлении “тесных” промежутков, содержащих только один корень.

     Корень уравнения f (х) = 0 считается отделенным на отрезке [ a , b ] , если на этом отрезке уравнение f (х) = 0 не имеет других корней.

     Отделить корни – это значит разбить всю область допустимых значений на отрезки, в каждом из которых содержится один корень.

    Отделение корней можно произвести двумя способами – графическим и аналитическим.

    Графический метод отделения корней. При графическом методе отделения корней поступают так же, как и при графическом методе решения уравнений.

    Графический метод отделения корней не обладает большой точностью. Он дает возможность грубо определить интервалы изоляции к орня. Далее корни уточняются одним из способов, указанных ниже.

    Аналитический метод отделения корней. Аналитически корни уравнения f(х) =0 можно отделить, используя некоторые свойства функций, изучаемые в курсе математического анализа.

    Сформулируем без доказательства теоремы, знание которых необходимо при отделении корней.

    1) Если непрерывная на отрезке функция F ( x ) принимает на его концах значения разных знаков, то уравнение (2) имеет на этом отрезке, по меньшей мере, один корень

    2) Если функция F ( x ) к тому же еще и строго монотонна, то корень на отрезке единственный.

    Рассмотрим примеры поведения некоторых функций:

    Рисунок 7

    Для отделения корней можно эффективно использовать ЭВМ.

    Пусть имеется уравнение F ( x )=0, причем можно считать, что все корни находятся на отрезке , в которой функция F ( x ) отделена, непрерывна и F ( A )* F ( B ) F ( x ), начиная с точки X = A , двигаясь вправо с некоторым шагом h .

    Как только обнаружится пара соседних значений F ( x ), имеющих разные знаки, и функция F ( x ) монотонна на этом отрезке, так соответствующие значения аргумента X (предыдущее и последующее) можно считать концами отрезка, содержащего корень.

    Схема соответствующего алгоритма изображена ниже. Результатом решения поставленной задачи будут выводимые на дисплей в цикле значения параметров X 1 и X 2 (Концов выделенных отрезков).

    Исследование методов приближенного решения уравнений

    Работа посвящена исследованию методов приближенного решения уравнений. Рассмотрены следующие методы приближенногорешения уравнений: метод половинного деления, метод хорд, метод касательных, комбинированный метод, построены компьютерные модели всех изученных методов на языке программирования Free Pascal. Модели позволили провести сравнительный анализ изученных методов и выбрать среди них оптимальный.

    Скачать:

    ВложениеРазмер
    start_v_nauku.docx161.16 КБ

    Предварительный просмотр:

    Городская научно – практическая конференция

    Исследование методов приближенного решения уравнений

    Секция: современное программирование

    Автор: Сергеева Мария Сергеевна,

    11 «Б» класс, МБОУ «Средняя общеобразовательная школа № 27»

    Руководитель: Сергеева Светлана Александровна

    Учитель информатики 1 категории,

    МБОУ «Средняя общеобразовательная школа № 27»

    1. Теоретическая часть 4
    1. Метод половинного деления 5
    2. Метод хорд 7
    3. Метод касательных 8
    4. Комбинированный метод хорд и касательных 9
    1. Практическая часть 11
    1. Компьютерная модель построения графика функции на языке программирования Free Pascal 11
    2. Компьютерная модель метода половинного деления 13
    3. Компьютерная модель метода хорд 14
    4. Компьютерная модель метода касательных 15
    5. Компьютерная модель комбинированного метода хорд и касательных 16
    6. Сравнительный анализ методов 17

    С термином «уравнение» мы знакомимся еще в начальной школе, а задача «решить уравнение», вероятно, является наиболее часто встречающейся задачей не только на уроках математики.

    На уроке алгебры при решении уравнений возникают ситуации, когда путем алгебраических преобразований уравнение решить невозможно. Для решения данной проблемы, существуют методы приближенного решения уравнений.

    Актуальность темы обоснована тем, что с развитием компьютерной техники методы решения уравнений, основанные на большом количестве повторов, получают возможность широкого применения.

    Цель : нахождение оптимального метода приближенного решения уравнения.

    1. Изучить методы приближенного решения уравнения:
    1. метод половинного деления
    2. метод хорд
    3. метод касательных
    4. комбинированный метод
    1. Создать компьютерные модели приближенного решения уравнений с помощью всех методов на языке программирования Free Pascal.
    2. Провести сравнительный анализ методов.

    Нелинейные уравнения можно разделить на 2 класса — алгебраические и трансцендентные. Алгебраическими уравнениями называют уравнения, содержащие только алгебраические функции (целые, рациональные, иррациональные). В частности, многочлен является целой алгебраической функцией. Уравнения, содержащие другие функции (тригонометрические, показательные, логарифмические и др.) называются трансцендентными.

    Методы решения нелинейных уравнений делятся на две группы:

    1. точные методы;
    2. итерационные методы (за счет последовательных приближений получить решение уравнения с необходимой точностью).

    Точные методы решения уравнений основываются на поиске равносильных преобразований алгебраических выражений, например, перенос слагаемых из одной части уравнения в другую с противоположным знаком, деление обеих частей уравнения на одинаковое число не равное 0, а также точные способы решений позволяют записать корни уравнения в виде некоторого конечного соотношения (формулы). Точные решения существуют только для некоторых уравнений определенного вида (линейные, квадратные, тригонометрические и др.), поэтому для большинства уравнений приходится использовать методы приближенного решения с заданной точностью (графические или численные). В первую очередь это относится к большинству трансцендентных уравнений. Доказано также, что нельзя построить формулу, по которой можно было бы решить произвольное алгебраическое уравнение выше четвертой степени.

    Точные методы решения Приближенные методы решения

    Например, уравнение x3+cos x=0 нельзя решить путем равносильных алгебраических преобразований. Но это уравнение можно решать приближенно графическими и численными методами.

    Решение уравнения проводят численно в два этапа. На первом этапе производится отделение корней — поиск интервалов, на которых содержится только по одному корню. Второй этап решения связан с уточнением корня на выбранном интервале (определением значения корня с заданной точностью). Далее будут рассмотрены несколько численных методов и приведены алгоритмы нахождения корней уравнений.

    Отделение корней уравнения может проводиться графически, т.е. путем построения графика функции y=f(x). Для уравнения вида f (x) = 0 , где f(x) – некоторая непрерывная функция, корень (или корни) этого уравнения являются точкой (или точками) пересечения графика функции с осью абсцисс.

    Решение уравнений с заданной точностью

    Метод половинного деления

    f(x)=0,
    где f(x) — непрерывная функция

    Отделение корней уравнения можно осуществить путем построения компьютерных моделей:

    1. построение графика функции с помощью одного из языков программирования (в данном случае Free Pascal);
    2. построение графика функции в электронных таблицах Microsoft Excel путем построения диаграммы типа График .

    При построении графика функции корни уравнения можно получить лишь с небольшой степенью точности. Поэтому, чтобы эти значения получить с любой заданной степенью точности, необходимо применять методы, которые позволяют «уточнять» найденные значения.

    Рассмотрим методы уточнения корней и их основные идеи. Отметим следующий момент: при прочих равных условиях, тот метод уточнения корней будет более эффективен, в котором результат с той же погрешностью найден за меньшее число раз вычисления функции f(x).

    1.1. Метод половинного деления

    Самый простой из них – метод половинного деления, или иначе метод дихотомии. Метод дихотомии получил свое название от древнегреческого слова διχοτομία, что в переводе означает деление надвое. Его мы используем довольно часто. Допустим, играя в игру «Угадай число», где один игрок загадывает число от 1 до 100, а другой пытается его отгадать, руководствуясь подсказками «больше» или «меньше». Логично предположить, что первым числом будет названо 50, а вторым, в случае если оно меньше — 25, если больше — 75. Таким образом, на каждом этапе неопределенность неизвестного уменьшается в 2 раза. Т.е. даже самый невезучий в мире человек отгадает загаданное число в данном диапазоне за 7 предположений вместо 100 случайных утверждений.

    Алгоритм метода половинного деления основан на теореме Больцано — Коши о промежуточных значениях непрерывной функции и следствии из неё.

    Теорема Больцано — Коши: если непрерывная функция принимает два значения, то она принимает любое значение между ними.

    Следствие (теорема о нуле непрерывной функции): если непрерывная функция принимает на концах отрезка положительное и отрицательное значения, то существует точка, в которой она равна 0.


    источники:

    http://infourok.ru/lekciya-priblizhennie-resheniya-algebraicheskih-i-transcendentnih-uravneniy-3854782.html

    http://nsportal.ru/ap/library/nauchno-tekhnicheskoe-tvorchestvo/2012/02/09/issledovanie-metodov-priblizhennogo-resheniya