Мгновенное значение электрического тока задано уравнением

Решение типовых задач. Синусоидальные токи, напряжения

Синусоидальные токи, напряжения. Параметры идеальных элементов электрических цепей синусоидального тока

Общие сведения. Электромагнитный процесс в электрической цепи считается периодическим, если мгновенные значения напряжений и токов повторяются через равные промежутки времени Т. Время Т называется периодом. Напряжения u(t) = u(t+T) и токи i(t)=i(t+T) ветвей электрической цепи являются периодическими функциями времени.

Величина, обратная периоду (число периодов в единицу времени), называется частотой: f = 1/T. Частота имеет размерность 1/c, а единицей измерения частоты служит Герц (Гц).

Широкое применение в электротехнике нашли синусоидальные напряжения и токи:

,

В этих выражениях:

ω = 2π/T = 2πf – угловая частота (скорость изменения аргумента),

ωt + ψu, ωt + ψi – фазы, соответственно напряжения и тока.

Графики изменения u(t), i(t) удобно представлять не в функции времени t, а в функции угловой величины ωt , пропорциональной t (рис. 1.1).

Величина φ = (ωt + ψu) – (ωt + ψi) = ψu, — ψi называется углом сдвига фаз. На рис. 1.1 ψu > 0, ψi > 0, φ = ψuψi > 0, т.е. напряжение опережает ток. Аналогично можно ввести понятие углов сдвига фаз между двумя напряжениями или токами.

Количество тепла, рассеиваемого на сопротивление R при протекании по нему тока, электромагнитная сила взаимодействия двух проводников с равными токами, пропорциональны квадрату тока. Поэтому о величине тока судят по действующему значению за период. Действующее значение периодического тока i(t) определяется по выражению

.

Для квадратов левой и правой частей этого равенства, после умножения их на RT, будем иметь:

.

Из этого равенства следует, что действующее значение периодического тока равно по величине такому постоянному току I, который на неизменном сопротивлении R за время T выделяет тоже количество тепла, что и ток i(t).

При синусоидальном токе i(t) = Im sin ωt интеграл

.

Следовательно, действующее значение синусоидального тока равно

Действующее значение синусоидальных напряжений u(t), э.д.с. e(t) определяются аналогично:

; .

Для измерения действующих значений используются приборы электромагнитной, электродинамической, тепловой и др. систем.

Среднее значение синусоидального тока определяется как среднее за половину периода. Поэтому,

.

Средние значения синусоидальных напряжений u(t), э.д.с. e(t) определяются аналогично:

; .

Отношение амплитудного значения к действующему называется коэффициентом амплитуды ka, а отношение действующего значения к среднему – коэффициентом формы kф. Для синусоидальных величин, например, тока i(t), эти коэффициенты равны:

; .

Для синусоидальных токов i(t) = Im sin(ωt + ψi) уравнения идеальных элементов R, L, C при принятых на рис. 1.2. положительных направлениях имеют вид

; ;

.

,
,
,

На активном сопротивлении R мгновенные значения напряжения и тока совпадают по фазе. Угол сдвига фаз φ = 0.

На индуктивности L мгновенное значение тока отстает от мгновенного значения напряжения на угол . Угол сдвига фаз .

На емкости C мгновенное значение напряжения отстает от мгновенного значения тока на угол . Угол сдвига фаз .

Величины ωL и 1/ωC имеют размерность [Ом] и называются реактивным сопротивлением индуктивности или индуктивным сопротивлением XL:

и реактивным сопротивлением емкости или емкостным сопротивлением XС:

.

Величины 1/ωL и ωC имеют размерность [Ом -1 ] и называются реактивной проводимостью индуктивности или индуктивной проводимостью BL:

и реактивной проводимостью емкости или емкостной проводимостью BС:

.

Связь между действующими значениями напряжения и тока на идеальных элементах R, L, C устанавливают уравнения:

; ;

; ;

; .

Для синусоидального напряжения u = Um sin ωt начальная фаза тока на входе пассивного двухполюсника (рис. 1.3.) равна

Проекция напряжения на линию тока

называется активной составляющей напряжения.

Проекция напряжения на линию, перпендикулярную току,

называется реактивной составляющей напряжения.

Проекция тока на линию напряжения

называется активной составляющей тока.

Проекция тока на линию, перпендикулярную напряжению,

называется реактивной составляющей тока.

Имеют место очевидные соотношения:

; .

В цепи синусоидального тока для пассивного двухполюсника по определению вводятся следующие величины:

1. Полное сопротивление Z:

,

2. Эквивалентные активное Rэк и реактивное Xэк сопротивления:

, ,

3. Полная проводимость Y:

,

4. Эквивалентные активная Gэк и реактивная Bэк проводимости:

, .

Из треугольников сопротивлений и проводимостей (рис. 1.4) следует:

; ; ,

; ; ,

; ; .

Эквивалентные параметры являются измеряемыми величинами, поэтому могут быть определены из физического эксперимента (рис. 1.5).

Электрическая цепь по схеме рис. 1.5 должна содержать амперметр А и вольтметр U для измерения действующих значений напряжения и тока, фазометр φ для измерения угла сдвига фаз между мгновенными значениями напряжения и тока на входе пассивного двухполюсника П.

Угол сдвига фаз пассивного двухполюсника .

Физическая величина, численно равная среднему значению от произведения мгновенных значений напряжения u(t) и тока i(t), называется активной мощностью Р.По определению имеем:

Расчетные величины

;

называются полной мощностью S и реактивной мощностью Q в цепи синусоидального тока. Имеет место равенство

.

Коэффициент мощности kм в цепи синусоидального тока определяется выражением:

.

Единицей измерения активной мощности является Ватт [Вт]. Для измерения активной мощности служит ваттметр. Ваттметр включается по схеме рис. 1.6.

Единица измерения полной мощности [ВА], реактивной – [ВАр].

Для вычисления мощностей удобно использовать следующие выражения:

;

;

.

Решение типовых задач. Для измерения мгновенных значений напряжений u(t) и токов i(t) служит осциллограф. Поскольку сопротивление входа этого прибора очень большое, непосредственно для измерения тока осциллограф использовать нельзя. Измеряют не ток, а пропорциональное току напряжение на шунте Rш (рис. 1.7, а).

Задача 1.1. К источнику синусоидального напряжения частотой f = 50 Гц подключена катушка индуктивности (рис. 1.7, а). Активное сопротивление провода, из которого изготовлена катушка, R = 10 Ом, индуктивность L = 1,6 мГн. Осциллограмма напряжения uш(t) представлена на рис. 1.7, б. Сопротивление шунта Rш = 0,1 Ом. Масштаб по вертикальной оси осциллограммы mu = 0,02 В/дел (0,02 вольта на деление).

Рассчитать действующие значения напряжения uRL, составляющих uR и uL этого напряжения. Построить графики мгновенных значений напряжений uRL, составляющих uR и uL.

Решение. По осциллограмме рис. 1.7, б двойная амплитуда напряжения на шунте 2А = 10 дел. Находим амплитудное значение Im тока i:

.

Реактивное сопротивление Х индуктивности L на частоте

.

; .

Мгновенные значения составляющих напряжения на сопротивление R катушки индуктивности и индуктивности L соответственно равны (ψi = 0):

;

.

Мгновенное значение напряжения на активном сопротивлении в фазе с током, на индуктивности – опережает на угол .

Действующие значения напряжений:

;

;

.

Векторные диаграммы напряжений и тока приведены на рис. 1.8.

.

(т.к. ψi = 0),

.

Задача 1.2. К цепи со схемой рис.1.10 приложено синусоидальное напряжение u = 141 sin 314t B.

Найти мгновенные и действующие значения тока и напряжения на всех участках цепи, если R = 30 Ом,

Решение. Назначаем положительные направления тока и напряжений как на рис. 1.10. Определяем реактивное сопротивление ХС емкости C на частоте ω = 314с -1 :

.

Полное сопротивление цепи:

.

– тока i: ;

– напряжения на резисторе R: ;

– напряжения на емкости С: .

Угол сдвига фаз между напряжением u и током i:

.

Начальная фаза тока i определяется из соотношения . Откуда,

.

Мгновенные значения тока и напряжений на участках цепи:

;

;

.

; ; .

Задача 1.3. Для пассивного двухполюсника (рис. 1.5) экспериментально определены:

Найти полное и эквивалентные активное и реактивное сопротивления двухполюсника.

Решение. Имеем по определению:

;

;

.

Задача 1.4 По цепи по схеме рис. 1.10 действующие значения тока i на частотах

Определить параметры цепи R и C, если на этих частотах напряжение на входе U = 100 В.

Решение. По определению на частотах f1 и f2 имеем:

; .

Непосредственно по схеме цепи рис. 1.10 находим:

Значения параметров R и С найдем из решения системы уравнений

Программа расчета в пакете MathCAD.

U:=100 f1:=500 f2:=1000 I1:=1 I2:=1.8←Присвоение переменным заданных условием задачи величин.
←Расчет полных сопротивлений на частотах f1 и f2.
←Расчет угловой частоты.
←Задание приближенных значений параметров R и C цепи.
Giver
←Решение системы нелинейных уравнений. Для набора «=» нажмите [Ctrl]=.
←Присвоение вектору RC найденных значений параметров R и C цепи.

Значения параметров цепи: .

Задача 1.5. Вычислить действующее значение тока и активную мощность на входе пассивного двухполюсника с эквивалентными активной проводимостью

G = 0,011 Ом -1 и реактивной проводимостью B = 0,016 Ом -1 . Напряжение на входе двухполюсника U = 30 В.

Решение. Полная проводимость

.

Действующее значение тока

.

.

Задача 1.6. Действующее значение синусоидального тока ветви с резистором R равно 0, 1 А (рис. 1.11). Найти действующие значения напряжения u, и токов iL и i, если R = 430 Ом; XL = 600 Ом. Чему равна активная, реактивная и полная мощности этого двухполюсника?

Решение. Положительные направления напряжения и токов указаны на рис. 1.11.

Действующее значение тока IR = 0,1 А.

.

.

Действующее значение тока I можно вычислить, определив полную проводимость Y цепи. По виду схемы имеем

.

.

; , .

Выполняется соотношение .

Задача 1.7. Действующее значение синусоидального напряжения на емкости С в цепи со схемой рис. 1.10 UС = 24 В. Найти действующее значение напряжения u и тока i, если XC = 12 Ом; R = 16 Ом.

Решение. Определяем действующее значение тока i

.

Полное сопротивление цепи

.

Определяем действующее значение напряжения u

.

Задача 1.8. Для определения эквивалентных параметров пассивного двухполюсника в цепи синусоидального тока были сделаны измерения действующих значений напряжения, тока и активной мощности (рис. 1.12).

Для определения характера реактивного сопротивления (проводимости) параллельно двухполюснику была включена емкость С (ВС ? Вэк). При этом показания амперметра уменьшились. Рассчитать эквивалентные сопротивления и проводимости двухполюсника.

Решение.

Действующее значение: I = 0,5 A, U = 100 B. Активная мощность, потребляемая двухполюсником, P = 30 Вт. Полное сопротивление двухполюсника

.

Эквивалентное активное сопротивление

.

Эквивалентное реактивное сопротивление

.

Характер реактивного сопротивления индуктивный (Хэк = ХL, φ > 0). После включения параллельно двухполюснику емкости С, ток I’ ? I. Этому случаю соответствует векторная диаграмма рис. 1.13 а. Емкостному характеру соответствует векторная диаграмма рис. 1.13 б.

Полная проводимость двухполюсника

.

Эквивалентная активная проводимость

.

Эквивалентная реактивная проводимость

.

Следует обратить внимание, что треугольники сопротивлений и проводимостей для одного и того же двухполюсника подобны (рис. 1.4). Поэтому,

и .

; .

1.3. Задачи и вопросы для самоконтроля

1. Какими параметрами описываются синусоидальные токи в электрических цепях?

2. Как связаны между собой круговая частота ω и период Т синусоидального тока?

3. Что такое действующее значение переменного тока?

4. Запишите формулы для вычисления индуктивного и емкостного сопротивлений.

5. Объясните, как определить напряжение на участке цепи, если заданы и r и x.

6. Нарисуйте треугольник сопротивлений и треугольник проводимостей с необходимыми обозначениями.

7. Запишите формулы для вычисления активной и реактивной мощностей.

8. Напряжение на индуктивности L = 0,1 Гн в цепи синусоидального тока изменяется по закону . Найти мгновенное значение тока и индуктивности.

9. Ток в емкости С = 0,1 мкФ равен . Найти мгновенное значение напряжения на емкости.

10. На участке цепи с последовательно включенными активным сопротивлением R = 160 Ом и емкостью С = 26,54 мкФ мгновенное значение синусоидального тока . Найти мгновенные значения напряжений на емкости и на всем участке цепи. Чему равны действующие значения этих величин?

Дата добавления: 2016-01-29 ; просмотров: 101617 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Раздел 4. Однофазные электрические цепи синусоидального тока

Раздел 4. ОДНОФАЗНЫЕ ЭЛЕКТРИЧЕСКИЕ ЦЕПИ СИНУСОИДАЛЬНОГО ТОКА

Определить угловую частоту вращения ΩР, ротора генератора переменного тока при частоте питающего напряжения f = 50 Гц и угловую частоту ω ЭДС, если ротор вращается с частотой n1 = 1000 об/мин.

1. Число пар полюсов генератора: = 3

2. Угловая частота вращения ротора:

3. Угловая частота переменного тока:

или

Ответ: ΩР= 104,5 с-1; ω=314 с-1

Определить среднее значение синусоидального тока Iср по мгновенному его значению i=31,4sin(ωt+π/2)

Среднее значение синусоидального тока:

Для синусоидального напряжения и тока (рис. 4.4) запи­сать выражения для мгновенных их значений. Определить период Т и время t0, соответствующее начальной фазе тока Yi, а также мгновенные значения напряжений u1 и u2 для моментов времени t1 = 0,00167 с и t2 = 0,005 с, если частота тока f = 50 Гц.

Решение

1. Мгновенные значения напряжения и тока име­ют вид:

где Um, lm — амплитудные значения напряжения и тока.

2. Начальная фаза тока (в радианах):

3. Период переменного напряжения и тока:

4. Время начала отсчета, т. е. время, соответствующее начальной фазе тока:

5. Мгновенное значение напряжения в момент времени t1:

α1 = ωt1= 2πft1 = 2π×50×0,00167= π×0,167= π× = 30°;

6. Мгновенное значение напряжения в момент времени t2:

α1 = ωt1= 2πft1 = 2π×50×0,005= 0,5π = π× = 90°;

Ответ: T = 0,02 с; = и= 50 В; и2= 100 В

Определить максимальное Ет и действующее Е значе­ния ЭДС, наводимой в прямоугольной катушке с числом витков w = 200, вращающейся в однородном магнитном поле с постоян­ной частотой вращения п = 1500 об/мин. Размеры витка ка­тушки 3×3 (площадь витка SB = 3×3 = 9 см2). Индукция маг­нитного поля В= 0,8 Тл.

Построить кривые изменения магнитного потока и ЭДС во времени е, Ф(t), а также векторную диаграмму цепи.

1. Частота индуцированной в катушке ЭДС:

2. Максимальное значение магнитно­го потока:

3. Амплитуд­ное значение ЭДС, наводимой в катушке, находят исходя из мгновенного ее значения:

4. Действующее значение ЭДС катушки :

Е = Ет/ = 22.5/ = 16 В.

5. Изменение потока и ЭДС во времени и векторная диаграмма приведены на, рис. 4.4, а, б.

Переменный электрический ток задан уравнением

Определить период, частоту этого тока и мгновенные значения его при t0 = 0; t1=0,152 с. Построить график тока.

1. Уравнение синусоидального тока в общем случае имеет вид:

Сопоставляя это уравнение с заданным частным уравнением тока, устанавли­ваем, что амплитуда Im = 100 А, угловая частота w = 628 рад/с, начальная фаза

2. Период

3. Частота f =

4. Мгновенные значения тока найдем, подставив в уравнение тока заданные значения времени:

при t0 = 0: i0 = 100sin(wt0 — 60°)= 100sin(628×0 — 60°)= 100sin(-60°)= -86,5 А;

при t1 = 0,152 с: (значение ωt преобразуем в градусы, умножив на)

i1 = 100 sin(628×0,152 — 60° = 100 sin (15,2× 360°-60°),

Значения синусоидальной величины через 360° повторяются, поэтому мгновен­ное значение тока при угле ωt1= 15,2×360° будет таким же, как и при угле 0,2×360° = 72°;

5. Для построения графика i(ωt) нужно определить ряд значений тока, соответ­ствующих различным моментам времени (табл. 4.1 и рис. 4.8).

T

T

T

T

T

T

T

T

T

T

T

Рис. 4.5. Построение графика i(ωt) к задаче 4.5.

Ответ: ; f = ; i0 = -86,5 А; i1= 20,8 A.

Синусоидальный ток имеет амплитуду Im = 10 А, угловую частоту ω = 314 рад/с и начальную фазу Y = 30°.

По этим данным составить уравнение тока, начертbть график тока it), соот­ветствующий этому уравнению, и определить по графику и расчетом:

б) мгновенное значение тока при ωt = 0, ωt = 30°, ωt = 60°.

1. Составим уравнение мгновенного значения

2. Рассчитаем полный период тока

3. Определим мгновенные значения тока:

i1= 10sin(0 + 30°) = 10sin(30°) = 10×0,5 = 5 A

i2 = 10sin(30° + 30°) = 10sin(60°) = 10×0,865 = 8,65 A

i3= 10sin(60° + 30°) = 10sin(90°) = 10×1 = 10 A

Ответ: ; i1= 5 A; i2 = 8,65 A ; i3= 10 A

На рис. 4.7 изображены графики двух э. д.с. Написать уравнения кривых и определить угол сдвига фаз между ними. Определить из графиков мгновен­ные значения э. д.с. для момента времени t1 = 0,007 с и сравнить с результатами, полученными из уравнений.

Рис. 4.7. К задаче 4.7.

1. Составим уравнение мгновенного значения e1 и e2:

2. Вычислим угловую скорость:

=314 рад/c

3. Из графика e1 опережает e2 на ¼ периода, т. е.:

4. Рассчитаем e1 и e2 для момента времени t1 = 0,007 с:

e1= 40sin(ωtα) = 40sin(314×0,007 — π/2) = 40sin(0,628) = 40×0,59 = 23,5 В

5. Определим по графику значения e1 и e2 для момента времени t1 = 0,007 с:

Вывод: Значения ЭДС рассчитанные по формулам приблизительно равны значениям определенным по графику функций.

Э. д.с. электромашинного генератора выражается уравнением:

Определить число пар полюсов этого генератора, если известна скорость вращения ротора n = 75 об/мин.

На какой угол в пространстве поворачивается ротор генератора за ¼ периода?

Период э. д.с., наводимой в обмотке генератора, имеющего одну пару полюсов, равен времени одного полного оборота ротора. Угловая скорость вращения ротора может быть определена отношением полного угла, со­ответствующего одному обороту ротора, к периоду:

Однако генератор может иметь не одну пару, а p пар полюсов. Полный цикл изменения э. д.с. в этом случае совершается при движении проводника мимо одной пары полюсов (как за полный оборот ротора в генераторе с р = 1), по­этому при одинаковой скорости вращения ротора период э. д.с. будет в р раз короче а частота в р раз больше.

Уменьшение периода и соответствующее увеличение частоты при данном числе пар полюсов можно получить, увеличивая скорость вращения ротора.

Частота синусоидальной э. д.с. при р = 1 равна числу оборотов ротора в се­кунду, а при р > 1

f =;

где п частота вращения ротора, об/мин.

Из уравнения э. д.с. известна угловая частота ω = 314 рад/с;

При частоте вращения ротора n = 75 об/мин

При р= 1 за ¼ периода ротор повернется на ¼ окружности, т. е. в угловой мере на 90°. При р = 40 угол поворота ротора за ¼ периода будет в 40 раз меньше:

Написать уравнение э. д.с. генератора по следующим данным: за время, равное половине периода, ротор поворачивается в пространстве на угол φ0 = 45° при частоте вращения n = 750 об/мин.

Э. д.с. е переходит через нуль к отрицательному значению в момент времени t=8,34×10-3с от начала отсчета, а при t = 0 она равна 7000 В.

1. Определим число пар полюсов:

следовательно, за Т угол поворота Y = 90°.

Отсюда число пар полюсов

2. Вычислим частоту тока

f = = 50 Гц

3. Рассчитаем угловую частоту

4. Вычислим период

T =

5. Найдем начальную фазу Э. Д.С.

а) Э. Д.С. е переходит через нуль к отрицательному значению в момент времени t=8,34×10-3с от начала отсчета, т. е. время начальной фазы: .

б) Угол начальной фазы определим через отношение T/ tY

Y = 60°

6. Найдем значение Э. Д.С.

7. Запишем общее уравнение

Определить амплитудные Um и действующие U значения синусоидального напряжения, если его среднее значение Ucp = 198 В. Ответ округлить до целого.

1. Из формулы среднего значения найдем максимальное значение напряжения:

2. Вычислим действующее значение:

Определить амплитудное Um значение напряжения в электрической цепи синусоидального тока, частоту f, период Т переменного тока и начальный фазовый угол Yu, если мгновенное напряжение в сети и = 310sin(628 + π/3) В.

1. Из формулы мгновенного значения напряжения найдем:

2. Из формулы угловой частоты вычислим частоту тока f:

3. Вычислим период

T =

4. Начальный фазовый угол напряжения:

Задача 4.12.

Определить коэффициенты амплитуды Kа и формы Кф
периодического напряжения u(t), линейная диаграмма изменения
мгновенного значения во времени которого приведена на

1. Для синусоиды Ка:

В сеть переменного тока при напряжении U = 120 В и частоте f = 50 Гц включена катушка с индуктивностью L = 0,009 Г (RK = 0). Определить реактивную мощность Q ка­тушки и энергию WLm, запасаемую в магнитном поле катушки, записать выражения для мгновенных значений напряжения и, тока i, ЭДС самоиндукции eL за период, если начальная фаза напряжения Yu= π/2. Построить векторную и временную диаграммы.

Решение

1. Индуктивное сопротивление катушки:

2. Действующее значение тока:

3.Реактивная мощность цепи:

Q= UI = 120-40 = 4800 ВАр = 4,8 кВАр

4. Максимальная энер­гия, запасаемая в магнитном поле катушки:

WLm = LIm2/2

Im = I= 40×141= 56,4 A

WLm = 0,009×56,42 = 14 Дж

5. Амплитудное значение напряжения и тока:

Um =U= 120×1,41 =169 В

6. Амплитудные значения:

ЭДС самоиндукции катушки:

eL = uL = 169,2sin(314 t — π/2) В;

7. Построим векторную диаграмму для действующих значений:

— по оси абсцисс отложим вектор тока;

— вектор напряжения опережает ток на π/2;

— вектор ЭДС самоиндукции находится в противофазе напряжению и отстает от тока на π/2.

К сети переменного тока при напряжении U = 220 В и частоте f = 50 Гц подключен конденсатор с емкостью С = 20 мкФ.

Определить его реактивное сопротивление Хс, ток I, реактивную мощность Qc, максимальную энергию WCm, запасаемую в электрическом поле конденсатора.

Построить векторную диаграмму для данной цепи.

1. Реактивное сопротивление конденсатора:

2. Ток в цепи конденсатора:

3. Реактивная мощность цепи:

Qc= UI= 220×1,37 = 302 ВАр.

4. Максимальная энергия, запасаемая в электрическом поле конденсатора:

WCm = CU/2 = 20×10-6×2202/2 = 484×10-3 Дж.

7. Построим векторную диаграмму для действующих значений:

— по оси абсцисс отложим вектор тока;

— вектор напряжения отстает от вектора тока на π/2;

Символический (комплексный) метод расчета цепей переменного тока

Одним из способов расчета цепей переменного тока является комплексный, или еще как говорят, символический метод расчета. Этот метод применяется при анализе схем с гармоническими ЭДС, напряжениями и токами. В результате решения получают комплексное значение токов и напряжений, используя для решения любые методы (эквивалентных преобразований, контурных токов, узловых потенциалов и т.п.). Но для начала необходимо иметь понятие, в каких именно формах может представляться синусоидальная величина. 1. Одна из форм представления – это вращающийся вектор (см. рис.1):

Рис.1. Вращающийся вектор

С помощью рисунка ясно видно, как с течением времени меняется значение синусоидальной величины. В нашем случае – это величина а на графике, которая может быть, например, входным напряжением. Величина имеет некоторое начальное значение при t = 0 при начальной фазе φ

имеет положительное максимальное значение при угле ωt3, когда при времени t3 сумма ωt3 + φ = 90° и соответственно,

имеет отрицательное максимальное значение при угле ωt7, когда при времени t7 сумма углов ωt7 + φ = 270° и, соответственно,

и имеет два нулевых значения при ωtn + φ = 0, когда ωtn = —φ (на рис.1 эта область не показана и находится слева от начала координат)

и имеет нулевое значение при угле ωt11, когда при времени t11 сумма ωt11 + φ = 360° и соответственно,

Именно по такому закону и меняется привычное нам переменное напряжение 220 В, изменяясь по синусоидальному закону от значения 0 В до максимальных 311 В и обратно.

2. Другая форма представления – это комплексное число. Чтобы представить ранее рассмотренную форму представления синусоидальной величины, которая имеет некоторую начальную фазу φ, создают комплексную плоскость в виде графика зависимости двух величин (рис.2)

Рис.2. Комплексное число на комплексной плоскости

Длина вектора Am на такой комплексной плоскости равна амплитуде (максимальному значению) рассматриваемой величины. С учетом начальной фазы φ такое число записывают как .

На практике при использовании для расчетов символического (комплексного) метода расчета используют для некоторых удобств не амплитудное значение величины, а так называемое действующее значение. Его величина в корень из двух раз меньше амплитудного и обозначается без индекса m, т.е. равна

На рисунке выше этот вектор также показан.
Например, при том же нашем напряжении в сети, максимальное значение синусоидально изменяющегося напряжения равно 311 В, а действующее значение, к значению которого мы привыкли

При работе с комплексными числами и расчетов применяют различные формы записи комплексного числа. Например, при сложении комплексных чисел удобнее использовать алгебраическую форму записи таких чисел, а при умножении или делении – показательную форму записи. В некоторых случаях пишут тригонометрическую форму.
Итак, три формы записи комплексного числа:

1) показательная форма в виде

2) тригонометрическая форма в виде

3) алгебраическая форма

где ReA — это действительная составляющая комплексного числа, ImA — мнимая составляющая.

Например, имеем комплексное число в показательной форме вида

в тригонометрической форме записи это запишется как

при подсчете получим число, плавно переходящее в алгебраическую форму с учетом того, что

В итоге получим

При переходе от алгебраической формы к показательной комплексное число вида

переходит к показательному виду по следующим преобразованиям

Таким образом, и получим

Перейдем к рассмотрению несложных примеров использования символического, или по-другому, комплексного метода расчета электрических цепей. Составим небольшой алгоритм комплексного метода:

      • Составить комплексную схему, заменяя мгновенные значения ЭДС, напряжений и токов их комплексным видом
      • В полученной схеме произвольно выбирают направления токов в ветвях и обозначают их на схеме.
      • При необходимости составляют комплексные уравнения по выбранному методу решения.
      • Решают уравнения относительно комплексного значения искомой величины.
      • Если требуется, записывают мгновенные значения найденных комплексных величин.

Пример 1. В схеме рис.3 закон изменения ЭДС e = 141sin*ωt. Сопротивления R1 = 3 Ом, R2 = 2 Ом, L = 38,22 мГн, С = 1061,6 мкФ. Частота f = 50 Гц. Решить символическим методом. Найти ток и напряжения на элементах. Проверить 2-ой закон Кирхгофа для цепи.

Рис.3. Схема с последовательным соединением элементов

Составляем комплексную схему, обозначив комплексные токи и напряжения (рис.4):

Рис.4. Схема с комплексными обозначениями

По закону Ома ток в цепи равен

где U — комплексное входное напряжение, Z — полное сопротивление всей цепи. Комплекс входного напряжения находим как

Пояснение: здесь начальная фаза φ = 0°, так как общее выражение для мгновенного значения напряжение вида при φ = 0° равно

Соответственно, комплекс входного напряжения в показательной форме запишется как

Полное комплексное сопротивление цепи в общем виде

Находим комплексное сопротивление индуктивности

Находим комплексное сопротивление емкости

Соответственно, общее комплексное сопротивление цепи

Комплексные напряжения на элементах

Проверяем второй закон Кирхгофа для замкнутого контура, т.е. должно выполняться равенство

С небольшим расхождением из-за округлений промежуточных вычислений всё верно.

Пример 2. В электрической цепи (рис.5) однофазного синусоидального тока, схема и параметры элементов которой заданы для каждого варианта в таблице, определить:
1) полное сопротивление электрической цепи и его характер;
2) действующие значения токов в ветвях;
3) показания вольтметра и ваттметра;

      Исходные данные: Е = 220 В, f = 50 Гц, L1 = 38,2 мГн, R2 = 6 Ом, С2 = 318 мкФ, L2 = 47,7 мГн, R3 = 10 Ом, С3 = 300 мкФ.

Рис.5.Цепь однофвзного синусоидального тока

Решение:
1. Находим комплексные сопротивления ветвей и всей цепи:
Учитываем, что

Комплексное сопротивление первой ветви:

Комплексное сопротивление второй ветви:

Комплексное сопротивление третьей ветви:

Общее сопротивление цепи

— нагрузка носит активно-индуктивный характер

2. Находим действующие значения токов в ветвях:

Рис.6. Схема с обозначенными комплексными токами

Действующие значения, соответственно,

3. Определим показания приборов:
Вольтметр подключен по схеме параллельно источнику питания. Соответственно его показание равно:
U=220 В
Ваттметр включен токовой обмоткой в разрыв третьей ветви, а обмоткой напряжения также к выводам третьей ветви, измеряя, таким образом, активную мощность третьей ветви. Эта мощность равна мощности на сопротивлении R3. Его показания:


источники:

http://pandia.ru/text/80/230/72557.php

http://electrikam.com/simvolicheskij-kompleksnyj-metod-rascheta-cepej-peremennogo-toka/