Микрочастица в одномерной потенциальной яме уравнение шредингера

Микрочастица в одномерной потенциальной яме уравнение шредингера

Аналог классического волнового уравнения был предложен Э. Шредингером в 1925 г. Как и классическое уравнение, уравнение Шредингера связывает производные волновой функции по времени и координате. Уравнение Шредингера описывает поведение любых нерелятивистских систем. На примерах частицы, находящейся в бесконечно глубокой яме, и гармонического осциллятора рассмотрены простейшие квантовые системы, получены дискретные спектры состояний. Возможности описания динамики данных систем ограничены набором квантовых чисел, отражающих универсальные и внутренние симметрии квантовых систем.

4.1. Уравнение Шредингера

В квантовой физике изменение состояния частицы описывается уравнением Шредингера

(4.1)

где – оператор Гамильтона – аналог классической функции Гамильтона

в которой и заменены операторами импульса x, y, z и координаты , , :

х → = х, y → = y, z → = z,

(4.2)

Уравнение Шредингера

Зависящее от времени уравнение Шредингера:

где – гамильтониан системы.

Разделение переменных. Запишем Ψ(,t) = ψ()θ(t), где ψ является функцией координат, а θ – функция времени. Если не зависит от времени, тогда уравнение ψ = iћψ принимает вид θψ = iћψθ или

Левая часть является функцией только координат, а правая не зависит от переменной x. Поэтому обе части последнего уравнения должны быть равны одной и той же постоянной, которую обозначим E

θ(t) = exp(−iEt/ћ), ψ() = Eψ() и Ψ(,t) = ψ()exp(−iEt/ћ).

Уравнение ψ() = Eψ() называют стационарным уравнением Шредингера. Для одномерной системы с массой m в поле с потенциалом U(x) оно принимает вид:

или

Для трехмерной системы с массой m в поле с потенциалом U():

−(ћ 2 /2m)Δψ() + U()ψ() = Eψ(),

где Δ – лапласиан.

Так как уравнение Шредингера является линейным уравнением первого порядка по времени, то с его помощью по заданному значению волновой функции Ψ(x, y, z, 0) в момент времени t = 0 можно найти её значение в произвольный момент времени t − Ψ(x, y, z, t).

Уравнение Шредингера для стационарного состояния, когда потенциальная энергия частицы не зависит от времени, имеет вид

ψ() = Eψ().(4.3)

Это уравнение называют стационарным уравнением Шредингера.

Так как в стационарном состоянии

Ψ(,t) = ψ()exp(−iEt/ћ)(4.4)

и вероятность найти частицу в момент t в точке x, y, z пропорциональна |Ψ(,t)|, то она

|ψ(x,y,z)| 2 , т.е. не зависит от времени. Аналогично, вероятность обнаружить значение физической величины, характеризующей систему, также не изменяется со временем, поскольку выражается через квадрат модуля волновой функции.

4.2. Частица в одномерной прямоугольной яме с бесконечными стенками

Потенциальная энергия U(x) в прямоугольной яме удовлетворяет следующим условиям:

(4.5)


Рис.4.1. Прямоугольная яма с бесконечными стенками

Частица находится в области 0 ≤ x ≤ L. Вне этой области ψ(x) = 0. Уравнение Шредингера для частицы, находящейся в области 0 ≤ x ≤ L

(4.6)

Волновая функция, являющаяся решением уравнения (4.9), имеет вид

ψ(x)= Аsin kx + Bcos kx,(4.7)

где k = (2mE/ћ 2 ) 1/2 . Из граничных условий ψ(0) = 0, ψ(L) = 0 и условий непрерывности волновой функции следует

Аsin kL = 0.(4.8)

kL = nπ, n = 1, 2, 3, … , то есть внутри потенциальной ямы с бесконечно высокими стенками устанавливаются стоячие волны, а энергия состояния частиц имеет дискретный спектр значений En

n = 1, 2, 3, …(4.9)

Частица может находиться в каком-то одном из множества дискретных состояний, доступных для неё.
Каждому значению энергии En соответствует волновая функция ψn(x), которая с учетом условия нормировки

(4.10)

В отличие от классической, квантовая частица в прямоугольной яме не может иметь энергию
E 2 π 2 /(2mL 2 ). Состояния частицы ψn в одномерном поле бесконечной потенциальной ямы полнос­тью описывается с помощью одного квантового числа n. Спектр энергий дискретный.

Рис. 4.2. Уровни энергии и волновые функции частицы Ψ в бесконечной прямоугольной яме. Квадрат модуля волновой функции |Ψ| 2 определяет вероятность нахождения частицы в различных точках потенциальной ямы.

4.3. Гармонический осциллятор

Положение уровней частицы в потенциальной яме зависит от вида потенциальной ямы. В одномерной потенциальной яме гармонического осциллятора потенциальная энергия имеет вид

(4.11)

В этом случае одномерное уравнение Шредингера имеет вид

(4.12)

Допустимые значения полной энергии определяются формулой

En = ћω0(n + 1/2), n = 0, 1, 2,(4.13)

В отличие от бесконечной прямоугольной ямы, спектр уровней гармонического осциллятора эквидистантный.
С увеличением массы частицы или размеров области ее локализации квантовое описание частицы переходит в классическое.

Частица в одномерной потенциальной яме

Одномерная прямоугольная яма шириной L:

n = 1, 2, …

Одномерный гармонический осциллятор:

En = ћω0(n + 1/2), n = 0, 1, 2,

4.4. Частица в поле с центральной симметрией

В сферических координатах стационарное уравнение Шредингера для частицы в центральном потенциале U(r) имеет вид

(4.14)

Решение уравнения (4.14) записываются в виде произведения радиальной и угловой функций

ψ(r,θ,φ) = Rnl(r)Ylm(θ,φ),(4.15)

где радиальная функция Rnl(r) и угловая функция Ylm(θ,φ), называемая сферической, удовлетворяют уравнениям

2 Ylm(θ,φ) = ћ 2 l(l +1)Ylm(θ,φ)(4.16)
Ylm(θ,φ) = ћ 2 l(l +1)Ylm(θ,φ)
(4.17)

Уравнение (4.16) определяет возможные собственные значения l и собственные функции Ylm(θ,φ) оператора квадрата момента 2 . Уравнение (4.17) определяет собственные значения энергии Е и радиальные собственные функции Rnl(r), от которых зависит энергия системы (рис. 4.3).
Схема уровней (последовательность и абсолютные значения энергий) зависит от радиальной функции Rnl(r), которая в свою очередь определяется потенциалом U(r), в котором находится частица.

Рис. 4.3. Радиальное распределение вероятности нахождения электрона в кулоновском поле протона (атом водорода). Расстояния даны в боровских радиусах
r0 = ћ 2 /mee 2 ≈ 0.529·10 8 cм.

Решения уравнения

существуют лишь при определенных значениях квантовых чисел n (радиальное квантовое число), l (орбитальное квантовое число) и m (магнитное квантовое число).
Возможные энергетические состояния системы (уровни энергии) определяются числами n и l и в случае сферически симметричных состояний не зависят от квантового числа m. Число n может быть только целым:
n = 1, 2, …, ∞. Число l может принимать значения 0, 1, 2, …, ∞.

4.5. Орбитальный момент количества движения

Собственные значения L 2 и Lz являются решением уравнений

2 Ylm(θ,φ) = L 2 Ylm(θ,φ) и zYlm(θ,φ) = LzYlm(θ,φ).

Они имеют следующие дискретные значения

L 2 = ћ 2 l(l + 1), где l = 0, 1, 2, 3, …,
Lz = ћm, где m = 0, ± 1, ± 2, ± 3,…, ± l.

Для характеристики состояний с различными значениями орбитального момента l обычно используют следующие обозначения:

Спектроскопические названия орбитальных моментов l

l = 0s-состояние
l = 1p-состояние
l = 2d-состояние
l = 3f-состояние
l = 4g-состояние
l = 5h-состояние
и. т. д.

Состоянию с l = 0 отвечает сферически симметричная волновая функция. В тех случаях, когда l ≠ 0 волновая функция не имеет сферической симметрии. Симметрия волновой функции определяется симметрией сферических функций Ylm(θ,φ). Имеет место интересное квантовое явление, когда решение сферически симметричной задачи (потенциал описывает сферически симметричную систему) приводит к состояниям, не обладающим сферической симметрией. Таким образом, симметрия уравнений не обязательно должна отражаться в симметрии каждого отдельно взятого решения этих уравнений, а лишь во всей совокупности этих решений.
Для частицы, находящейся в сферически симметричном потенциале, величина орбитального момента количества движения L:

(4.18)

Обычно, для упрощения, когда говорят о величине орбитального момента количества движения, называют этой величиной квантовое число l, имея в виду, что между l и L имеется однозначная связь (4.18).

Рис. 4.4 Возможные ориентации вектора при квантовом числе l = 2.

Так как величина l может принимать только целочисленные значения 0, 1, 2, 3,…, то и орбитальный момент количества движения L квантуется. Например, для частицы с l = 2 момент количества движения

=
= 6.58·10 -22 √6 МэВ·сек ≈ 2.6·10 — 34 Дж·сек.

Пространственное квантование. Орбитальный момент количества движения является векторной величиной. Так как величина орбитального момента количества движения квантуется, то и направление по отношению к выделенному направлению z, например, к внешнему магнитному полю, также квантуется и принимает дискретные значения Lz = ћm, где m изменяется от +l до –l, т. е. имеет 2l + 1 значений. Например, при l = 2 величина m принимает значения +2, +1, 0, -1, -2 (см. рис. 4.4). Вместе с тем энергия системы не зависит от m, т. е. от направления вектора , что является очевидным следствием сферической симметрии системы.
Состояние частицы, находящейся в сферически симметричном поле, полностью описывается тремя квантовыми числами: n, l и m.
Появление квантовых чисел связано со свойствами симметрии системы. Характер этой симметрии определяет возможные значения квантовых чисел. Очевидно, что система, описываемая функцией e im φ , примет прежнее значение только тогда, когда азимутальный угол φ в результате поворота вокруг оси z примет прежнее значение φ. Этому условию функция e im φ удовлетворяет только в случае, когда величина mφ кратна 2π. Т.е. величина m должна иметь целые значения. Так как необходимо учитывать вращение в двух противоположных направлениях и отсутствие вращения, единственно возможными значениями оказываются m = 0, ±1, ±2, … .

4.6. Спин

Спин − собственный момент количества движения частицы. Между значением вектора спина и квантовым числом спина s выполняется такое же соотношение, как между величиной значением вектора орбитального момента и орбитальным квантовым числом l:

2 = ћ 2 s(s + 1)(4.19)

В отличие от орбитального квантового числа l, которое может быть лишь целым числом или нулем, спиновое квантовое число s (в дальнейшем просто спин) может быть как целым (включая нуль), так и полуцелым, т. е. s = 0, 1/2, 1, 3/2, 2, 5/2, … , но при этом для каждой элементарной частицы спин может принимать единственное присущее этому типу частиц значение. Так, спины π-мезонов и К-мезонов равны 0. Спины электрона, протона, нейтрино, кварков и их античастиц равны 1/2. Спин фотона равен 1. Бозоны составляют класс частиц с целым значением спина, спин фермионов имеет полуцелое значение. Спин частицы невозможно изменить, также как её заряд или массу. Это её неизменная квантовая характеристика.
Как и в случае других квантовых векторов, проекция вектора спина на любое фиксированное направление в пространстве (например, на ось z) может принимать 2s + 1 значение:

szћ = ±sћ, ±(s − 1)ћ, ±(s − 2)ћ. ±1/2ћ или 0.

Число sz − это квантовое число проекции спина. Максимальная величина sz совпадает с s. Так как спин электрона равен 1/2, то проекция этого спина может принимать лишь два значения sz = ±1/2. Если проекция +1/2, то говорят, что спин направлен вверх, если проекция -1/2, то говорят, что спин направлен вниз.

4.7. Полный момент количества движения

Полный момент количества движения частицы или системы частиц является векторной суммой орбитального и спинового моментов количества движения.

= + .

Квадрат полного момента имеет значение:

2 = ћ 2 j(j + 1).

Квантовое число полного момента j, соответствующее сумме двух векторов и , может принимать ряд дискретных значений, отличающихся на 1:

j = l + s, l + s −1. |l − s|

Проекция на выделенную ось Jz также принимает дискретные значения:

Число значений проекции Jz равно 2j + 1. Если для и определены единственные значения проекций на ось z lz и sz, то jz также определена однозначно: jz = lz + sz.

4.8. Квантовые числа

Квантовые числа – это целые или дробные числа, которые определяют все возможные значения физической величины, характеризующей различные квантовые системы – атомы, атомные ядра, кварки и другие частицы.

Таблица квантовых чисел

nРадиальное квантовое число. Определяет число узлов волновой функции и энергию системы. n = 1, 2, …, ∞.
J, jПолный угловой момент J и его квантовое число j. Последнее никогда не бывает отрицательным и может быть целым или полуцелым в зависимости от свойств рассматриваемой системы. 2 = ћ 2 j(j + 1).
L, lОрбитальный угловой момент L и его квантовое число l. Интерпретация l такая же, как j, но l может принимать только целые значения, включая нуль: l = 0, 1, 2,…. L 2 = ћ 2 l(l + 1).
mМагнитное квантовое число. Проекция полного или орбитального углового момента на выделенную ось (обычно ось z) равна mћ. Для полного момента m = ±j, ±(j-1), …, ±1/2 или 0. Для орбитального m = ± l, ± (l-1), …, ±1, 0.
S, sСпиновый угловой момент S и его квантовое число s. Оно может быть либо положительным целым (включая нуль), либо полуцелым. s – неизменная характеристика частицы опреде­лен­ного типа. S 2 = ћ 2 s(s + 1).
szКвантовое число проекции спинового момента частицы на выделенную ось. Эта проекция может принимать значения szћ, где sz = ± s, ± (s -1), …, ±1/2 или 0.
P или πПространственная четность. Характеризует поведение системы при пространственной инверсии → — (зеркальном отражении). Полная четность частицы Р = π(-1) l , где π – её внутренняя четность, а (-1) l – её орбитальная четность. Внутренние четности кварков положительные, антикварков — отрицательные.
IИзоспин. Характеризует свойство зарядовой инвариантности сильных взаимодействий

Для обозначения спинового момента часто используют букву J.

Все состояния, в которых может находиться квантовая система, описываются с помощью полного набора квантовых чисел. Так в случае протона в ядре состояние протона описывается с помощью четырех квантовых чисел, соответствующих четырем степеням свободы – трем пространственным координатам и спину. Это

  • Радиальное квантовое число n ( 1, 2, …, ∞),
  • Орбитальное квантовое число l (0, 1, 2, …),
  • Проекция орбитального момента m (± l, ± (l-1), …, ±1, 0),
  • Спин протона s =1/2.

Для описания сферически-симметричных систем в квантовой физике используются различные сферически симметричные потенциалы с различной радиальной зависимостью:

  • Кулоновский потенциал U = Q/r,
  • Прямоугольная потенциальная яма
  • Потенциал типа гармонического осциллятора U = kr 2 ,
  • Потенциал Вудса-Саксона (с его помощью описываются внутриядерные взаимодействия):

где U0, а и R – положительные константы (R – радиус ядра). Во всех случаях сферически симметричные системы можно описать с помощью набора квантовых чисел n, l, j, jz, однако, в зависимости от радиального вида потенциала энергетический спектр состояний системы будет различным.
Существование сохраняющихся во времени физических величин тесно связано со свойствами симметрии гамильтониана системы. Например, в случае, если квантовая система обладает центральной симметрией U = U(r), то этой системе соответствует сохранение орбитального момента количества движения l и одной из его проекций m. При этом из-за сферической симметрии задачи энергия состояний не будет зависеть от величины m, т. е. состояния будут вырожденными по m.
Наряду с пространственными симметриями, связанными с непрерывными преобразованиями, в квантовой физике существуют и другие симметрии – дискретные. Одной из них является зеркальная симметрия волновой функции относительно инверсии координат (→ —). Оператору инверсии соответствует квантовое число четность, которое может принимать два значения +1 и -1 в зависимости от того, сохраняется ли знак волновой функции при инверсии или меняется на противоположный.
Система тождественных частиц характеризуется еще одной симметрией – симметрией относительно перестановок тождественных частиц. Эта симметрия определяется свойствами частиц, образующих систему. Системы частиц с целым спином (бозонов) описываются симметричными волновыми функциями, системы частиц с полуцелым спином (фермионов) − антисимметричными волновыми функциями.

Задачи

4.1. Вычислите допустимые уровни энергии электрона, находящегося в одномерной прямоугольной потенциальной яме шириной 10 -8 см, протона, находящегося в потенциальной яме 5 Фм, и шарика массой 1 г, находящегося в потенциальной яме 1 см.

4.2. Рассчитать энергию перехода между состояниями 1s и 2s в атоме водорода.

4.3. Найти значение полного момента j для протона в d-состоянии. Каким будет результат измерения полного момента протона в состоянии 1d5/2?

4.4. Найти полный момент (квантовое число j) системы двух нуклонов в s‑состоянии (l = 0).

4.5. Какие значения может иметь полный момент системы j, если
А. Нейтрон и протон находятся в состояниях с |l,s:j>n = |1, 1 /2: 3 /2>, |l,s:j>p = |1, 1 /2: 3 /2>?
Б. Два нейтрона находятся в состояниях с |l,s:j>1 = |1, 1 /2: 3 /2> и |l,s:j>2 = |1, 1 /2: 3 /2>?

4.6. А) Нейтрон находится в p-состоянии. Найти значения полного момента j и возможные значения проекции момента jz. Каким будет результат измерения орбитального момента частицы в этом состоянии? Б) Рассмотрите задачу А) для протона в d-состоянии.
Ответ: А) j = 3/2, 1/2; jz = ±3/2, ±1/2; L = ћ√ l(l +1) = √ 2 ћ;
Б) j = 5/2, 3/2; jz = ±5/2, ±3/2, ±1/2; L = ћ√ l(l +1) = √ 6 ћ

4.7. А) Частица с собственным моментом s = 3/2 находится в состоянии с орбитальным моментом
l = 2. Найти полный момент частицы j.
Б) Частица с собственным моментом s = 1/2 находится в состоянии с орбитальным моментом
l = 3. Определите полный момент частицы j
Ответ: А) j = 7/2 ÷ 1/2; Б) j = 7/2, 5/2

4.8. Протон и нейтрон находятся в состоянии с относительным орбитальным моментом L = 1. Найти полный момент системы J.
Ответ: J = 0, 1, 2

4.9. На оболочке с квантовым числом n = 1, l = 2 находятся протон и нейтрон. Определить их суммарный полный момент J и его проекцию Jz. Изменится ли результат, если на оболочке n = 1,
l = 2 будут находиться два нейтрона?

4.10. Почему возникают вырожденные состояния?

4.11. Написать оператор Гамильтона электронов в атоме He.

4.12. Напишите стационарное уравнение Шредингера в сферической системе координат.

4.13. Какие квантовые числа характеризуют частицу в центрально-симметричной потенциальной яме?

4.14. Покажите, что волновые функции ψ = Aexp(kx −ωt) и ψ = Asin(kx −ωt) не удовлетворяют зависящему от времени уравнению Шредингера.

4.15. Покажите, что волновые функции ψ = Ae i(kx −ωt) и ψ = A(cos(kx −ωt) − sin(kx −ωt))удовлетворяют зависящему от времени уравнению Шредингера.

4.16. Частица находится в низшем состоянии n = 1 в бесконечно глубокой одномерной прямоугольной потенциальной яме размера L.
А) Рассчитайте вероятность обнаружить частицу в интервале Δx = 0.001L при x = 1 /2L, x = 2 /3L, x = L.
Б) Рассмотрите случай, когда частица находится в состоянии n = 2 при тех же значениях x.
Ответ: А) P(L/2) = 0.002; P(2L/3) = 0.0015; P(L) = 0; Б) P(L/2) = 0; P(2L/3) = 0.0015; P(L) = 0

4.17. Частица находится в состоянии n = 2 в бесконечно глубокой одномерной прямоугольной потенциальной яме размера L. Рассчитайте вероятность обнаружить частицу в интервале ( 1 /3L, 2 /3L).
Ответ: P(L/3, 2L/3) = 0.2

4.18. Электрон находится всостонии n = 5 в бесконечно глубокой одномерной прямоугольной потенциальной яме размера L. Рассчитайте вероятность обнаружить электрон в области x от 0.2L до 0.5L.
Ответ: P(0.2L, 0.5L) = 0.3

4.19. Электрон находится в бесконечно глубокой одномерной потенциальной яме. Рассчитайте ширину потенциальной ямы, если энергия состояния n = 1 равна 0.1 эВ.
Ответ: L = 1.9 нм

4.20. Рассчитайте средние значения и 2 > для состояний n = 1, 2, 3 в бесконечно глубокой прямоугольной потенциальной яме.

4.21. Что общего и в чем различие в описании атома водорода в теории Шредингера и в модели Бора?

4.22. Почему энергии атома водорода в теории Шредингера не зависят от орбитального квантового числа l?

4.23. Угловой момент характеризуется квантовым числом l = 3. Какие значения могут принимать Lz и L 2 ?
Ответ: Lz = -3ћ, -2ћ. 3ћ; L 2 = 12ћ 2

4.24. Угловой момент характеризуется квантовым числом l = 3. Какие значения могут принимать Lz и L 2 ?

ДВИЖЕНИЕ МИКРОЧАСТИЦ В СТАЦИОНАРНЫХ ПОЛЯХ

Рассмотрим некоторые простейшие задачи квантовой механики, связанные с решением стационарного уравнения Шредингера для частицы, движущейся в конкретных потенциальных силовых полях. Анализировать полученные решения будем, главным образом, применительно к электрону, поскольку закономерности его движения лежат в основе действия почти всех приборов современной электроники, нашедших применение в технике.

2.5.1. МИКРОЧАСТИЦА В «ПОТЕНЦИАЛЬНОЙ ЯМЕ»

Для описания поведения микрочастицы с помощью уравнения Шредингера необходимо знать зависимость потенциальной энергии частицы от координат, т.е. Wp (x, y, z) . Во многих практически важных случаях силовые поля, воздействующие на частицу, оказываются такими, что зависимость может быть представлена графически в виде «потенциальной ямы» той или иной конфигурации. «Потенциальной ямой» называется ограниченная область силового поля, в которой потенциальная энергия объекта значительно меньше, чем за ее пределами. Например, для электрона в поле сил притяжения к ядру зависимость Wp от x (одномерная «потенциальная яма») – имеет

вид кривой, представленной на рис.2.4, где х — расстояние между электроном и ядром атома.

Потенциальная энергия электрона в области такой ямы Wp l) равна нулю. На границах «ящика» ( при X=0 и X=l) непрерывная и однозначная волновая функция тоже должна обращаться в нуль:

. (2.34)

В пределах «ящика» (0 ) уравнение (2.33) с учетом (2.34) примет вид:

, (2.35)

. (2.36)

Общее решение дифференциального уравнения (2.35) будем искать в виде

, (2.37)

где А и a — произвольные константы.

Используя первое граничное условие (2.34), т.е. ψ (0) = 0, находим, что a =0.

Подставив это значение в (2.37), получим уравнение

, (2.38)

Воспользовавшись вторым граничным условием ψ(l)=0, получим , что выполняется не при любом значении параметра k, а лишь в том случае, если

,(2.39)

Подставив это значение k в формулу (2.38), найдем волновую функцию микрочастицы

. (2.40)

Неизвестная пока величина А может быть найдена из условия нормировки (2.16) ψ — функции:

.

Учитывая, что y (x) не обращается в нуль лишь на отрезке 0

. (2.41)

Вычислив интеграл (2.41), получим амплитуду А волновой функции (формула (2.40)) в виде:

А = .

Таким образом, собственные волновые функции микрочастицы в потенциальной «яме» шириной l с бесконечно высокими стенками определяются выражением

. (2.42)

Плотность вероятности нахождения частицы на различных расстояниях от «стенок» ямы равна

.

Эти результаты представлены графически на рис. 2.6.

Интересно отметить, что при любом n в пределах ямы укладывается целое число полуволн де Бройля. Действительно, с учетом формулы де Бройля и соотношения (2.29), получаем

,

откуда следует, что , (n=1,2,3. ).

Вероятность нахождения микрочастицы неодинакова для разных точек ямы и зависит от числа n. При n = 1 наиболее вероятным местом локализации частицы является середина ямы, а при n=2 вероятность обнаружить частицу в точке х = равна нулю. Таким образом, нельзя говорить о траектории частицы.

Возможные значения энергии Wn микрочастицы можно найти подстановкой (2.39) в формулу (2.36):

, (n=1,2,3. ). (2.43)

Итак, поставленная задача полностью решена – найден энергетический спектр (2.43) частицы в яме и соответствующие стационарные функции (2.42).

Анализ соотношения (2.43) показывает, что энергия микрочастицы в потенциальной яме может принимать не любые значения, а лишь набор разрешенных значений — энергетических уровней, соответствующих значениям числа n =1,2,3, …, которое называется главным квантовым числом. Таким образом, энергия микрочастицы в яме квантована, ее энергетический спектр – дискретный (или линейчатый) — рис. 2.7.

Минимальное значение энергии микрочастицы соответствует значению n=1 (основное квантовое состояние):

. (2.44)

Частица, находясь в яме, не может пребывать в состоянии покоя, поскольку . Этот же вывод следует и из соотношения неопределенностей (2.18). Действительно, поскольку неопределенность координаты микрочастицы в яме Dx=l (ширина ямы), а неопределенность импульса , то минимальная кинетическая энергия (соответствует разбросу значений энергии) получается равной

,

что по порядку величины соответствует значению, определяемому формулой (2.44).

Существование дискретных энергетических уровней энергии доказано здесь лишь для весьма частного и физически нереального случая. Однако, квантованность энергии характерна для всех задач, где движение частицы ограничено конечной областью пространства. Если эта область имеет макроскопические размеры, то уровни энергии будут расположены столь густо, что дискретный спектр оказывается неотличим от сплошного.

Как следует из соотношения (2.43), энергетический интервал между двумя соседними разрешенными энергетическими уровнями равен

, (2.45)

то есть, согласно (2.45) квантование сказывается тем меньше, чем больще l (чем шире потенциальной ящик (рис.2.7)); при l®¥ спектр будет сплошной. Относительный скачок энергии при переходе между соседними уровнями убывает с увеличением квантового числа n:

. (2.46)

Как следует из (2.46), при больших значениях n (n>>1)

то есть, чем больше n, тем теснее расположены соседние уровни – дискретность спектра становится несущественной. Сделанные выводы подтверждают принцип соответствия квантовых и классических закономерностей в предельных условиях.

Физическая причина квантованности энергии лежит вне рамок квантовой механики. Квантовая механика дает лишь метод правильного отражения реально существующей квантованности с помощью определенного математического аппарата, и в этом ее основное преимущество перед классической механикой.

В случае двухмерного «потенциального ящика» с бесконечно высокими стенками система будет характеризоваться уже двумя квантовыми числами n1 и n2 , поэтому

,

где lх и lу — размеры ящика по осям Х и U.

Потенциальная яма, подобная рассмотренной, но с W

Дата добавления: 2015-07-24 ; просмотров: 2171 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Движение частиц в прямоугольной потенциальной яме

Конспект лекции с демонстрациями

Аннотация: изучение качественной стороны решений уравнения Шредингера, выяснение отличий получаемых результатов от выводов классической механики. Традиционное изложение темы, дополненное двумя демонстрациями на компьютерных моделях.

Одна из простейших задач о движении микрочастиц – это задача о движении в прямоугольной потенциальной яме с очень высокими стенками. Рассмотрим одномерный случай. (Трехмерные задачи сложны в математическом отношении, а практически все принципиальные особенности движения микрочастиц можно выявить и на одномерных задачах.) Изменение потенциальной энергии по оси x описывается формулой

Какие примеры движения окружающего мира хотя бы приближенно описываются такой потенциальной функцией?

  • Вспомним «Кавказского пленника» (Л.Н.Толстой). Попавшего в плен Жилина держали в яме и требовали выкупа. Можно сказать, что для человека яма глубиной три метра – это яма с бесконечно высокими стенками. В ней человек может находиться в любом из состояний – от состояния покоя до интенсивного движения в бессильной ярости от невозможности выбраться на поверхность.
  • Другой пример – лототрон. В нем шарики либо лежат на дне, либо скачут в ограниченном стенками пространстве.

В мире микрочастиц взаимодействие протона и нейтрона в ядре тяжелого водорода приближенно описывается прямоугольным потенциалом. Этот же потенциал – чрезвычайно грубое приближение к задаче о движении электрона в атоме. Существенным для всех примеров является ограничение движения некоторой областью значений x. Стенки «ящика» бесконечно круты и бесконечно высоки. Частица не может покинуть такую яму.

Всю область изменения переменной x разобьем на три (см. рисунок 1). Вероятность нахождения частицы в областях x a равна нулю, так что волновая функция Ψ(x) = 0. В центральной части мы положили для удобства U(x) = 0 (известно, что потенциальная энергия определена с точностью до константы). В этом случае уравнение Шредингера принимает вид

,

где m и E – масса и полная энергия частицы, соответственно. Введем обозначение

.

Уравнение приобретает вид и имеет решение

.

Постоянные A, α и β мы найдем из условий непрерывности волновой функции и нормировки. На левой границе Ψ(0) = Asin(α) = 0 дает α = 0. На правой границе Ψ(a) = Asin(βa) = 0 приводит к βa = πn, где n = 1, 2, 3, . Нулевое значение n в ряд допустимых значений не входит, т.к. иначе волновая функция везде бы обращалась в ноль. Движение частицы в потенциальной яме описывается набором волновых функций

.

.

Окончательный вид волновой функции

.

Возведем в квадрат левую и правую части равенства βa = πn, и вспомним, что значит β 2 . Тогда получим выражение для энергии

(1).

Самым важным результатом является то, что возможны только такие состояния, для которых E принимает одно из дискретных значений. Введенное выше число n называют квантовым числом. Значения En называют уровнями энергии. Говорят, что частица находится в квантовом состоянии n, если ее движение описывается волновой функцией Ψn(x). Три первых уровня энергии, соответствующие им волновые функции Ψ(x) и квадраты волновых функций изображены на рисунке 2.

Состояние с минимальной энергией (n = 1) называют основным, остальные — возбужденными. Обратите внимание на то, что энергия основного состояния не равна нулю. Про микрочастицы можно сказать – «покой им только снится». Это – общий результат квантовой механики, справедливый для всех ее задач и полностью чуждый классической механике.

Распределение плотности вероятности по координате |Ψ(x)| 2 неоднородно и зависит от n. Чем больше n, тем сильнее неоднородность. С классической точки зрения на частицу в яме не действуют никакие силы, и она с равной вероятностью может находиться в любой точке.

Расстояние между соседними уровнями энергии

.

Чем меньше масса частицы и ширина области движения, больше ΔE. Для электрона (масса порядка 10 -30 кг) в атоме (размер порядка 10 -10 м) получим ΔE

10 эВ, а для молекулы (масса

10 -27 кг) в сосуде (размер порядка 10 -1 м) – ΔE

10 -20 эВ. В последнем случае (ширина ямы макроскопических масштабов) энергию молекулы можно считать непрерывно изменяющейся величиной.

Найдем еще относительное расстояние между уровнями

.

При больших значениях квантового числа (большие возбуждения) дискретность состояний перестает проявляться. Фактически наблюдаем переход к непрерывному изменению энергии.

Посмотрим на иллюстрации движения частиц. Они выполнены в виде апплета, который будет работать в отдельном окне. Положение подвижной стрелки задает энергию частицы Е. Плавно передвиньте ее в верхнее положение. Если текущее значение Е разрешено законами физики, то строится график зависимости плотности вероятности P нахождения частицы от ее координаты. Слева графики строятся по формулам, полученным выше в результате решения уравнения Шредингера. Справа – предсказания классической физики. Одновременно наблюдайте за иллюстрацией одномерного движения частицы в нижней части окна. (Беру, как говорится, «грех на душу», изображая движение микрочастиц. Для них не применимо понятие траектории. Но об этом в следующих лекциях.) Если щелкнуть мышкой по ссылке, откроется демонстрация (После щелчка по кнопке «Старт» Вы только наблюдаете).

После прочитанного и увиденного рассортируйте 6 утверждений, приведенных ниже, по двум столбцам. Для этого щелкайте по нужной стрелке.

Квантовая физикаКлассическая физика

Движение частиц в потенциальной яме конечной глубины

Посмотрим, что изменится, если потенциальная яма будет иметь конечную глубину

.

Появляется возможность рассматривать две задачи: энергия E U0 – задача о рассеянии частиц. Займемся первой, оставив вторую для последующих лекций. Теперь нет оснований полагать, что волновая функция равна нулю в первой и третьей областях. Посмотрим, как будет выглядеть уравнение Шредингера для этих областей

.

Во втором слагаемом коэффициент перед Ψ отрицателен. Обозначим его

.

Уравнения Шредингера вне и внутри ямы отличаются знаком перед Ψ

и имеют решения

.

Надо сразу положить A1 = B3 =0, чтобы решения не увеличивались беспредельно в области больших отрицательных и больших положительных значениях x. Для нахождения остальных коэффициентов надо использовать условия непрерывности волновой функции Ψ и ее первой производной dΨ/dx в точках x = 0 и x = a. Здесь мы ограничимся обсуждением качественно новых результатов. Решения вне ямы – апериодические, быстро спадающие. Например, в области 3

.

Отличие от нуля волновой функции Ψ(x) (а, следовательно, и |Ψ| 2 )в первой и третьей областях – это новый результат, которого нельзя было ожидать на основе классической теории. Напомним, что на рисунке 4 в области x > a энергия E -34 Дж·с, ожидать заметного эффекта для тел с макроскопической массой m или энергией U0 — E не приходится (при этом l → 0).

Возможные значения энергии, как и для ямы бесконечной глубины, квантованы. И полученная нами формула (1) остается хорошей аппроксимацией, особенно для больших U0 — E. Для получения точного значения необходимо решить численно трансцендентное уравнение. Отметим только, что число уровней в яме зависит от ее ширины и глубины. И может статься, в яме не окажется ни одного уровня. Это означает, что связанного состояния при данных параметрах не существует. Для дейтрона (U0

10 -15 м) существует только одно связанное состояние с энергией -2.2 МэВ.

Компьютерная модель проиллюстрирует характер движения микрочастицы (электрона) в потенциальной яме конечной глубины.

Возможности этой программы: после того, как Вы зададите ширину (в нм) и глубину (в эВ) ямы, компьютер проведет необходимые расчеты и будет готов показать разрешенные значения энергии и соответствующие им распределения плотности вероятности нахождения частицы по ширине ямы. При неудачной комбинации параметров (слишком высока плотность уровней, их отсутствие. ) компьютер выдаст предупреждение. После ввода параметров двигайте указатель вдоль оси энергий (мышкой или клавишами со стрелками) и наблюдайте.

Определите:

  • как число уровней в яме зависит от ширины и глубины ямы;
  • как энергия частицы зависит от квантового числа n (правый график);
  • как вероятность обнаружить частицу в интервале 0 2 ;
  • вероятность обнаружить частицу меняется от точки к точке;
  • если значение квантового числа n устремить к бесконечности, решение переходит в классическое.

Если возникли какие-либо вопросы, напишите мне.


источники:

http://helpiks.org/4-26589.html

http://teachmen.csu.ru/work/lectureSQ/