Модель в форме зависимости уравнение

Информационный лист на тему: «Процесс и его моделирование в математике»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Процесс и его моделирование в математике

1.Что изучает математический анализ?

В основе математического анализа лежит идея движения, изменения процесса. Он предлагает набор некоторых стандартных математических моделей, с помощью которых можно описать различные процессы, разнообразные связи между меняющимися величинами, переменными.

1. Дискретная модель — последовательность.

Стандартный пример — банковский вклад.
При начальном вкладе А 0 , годовом проценте роста вклада р и при условии капитализации вклада (в конце годового срока накопленный процент добавляется к вкладу и последующее начисление производится с увеличенной суммы) изменения вклада происходят один раз в год. Моделью этого процесса является числовая последовательность А 0 , A 1 А 2 , где А п — сумма вклада через n лет ( n — натуральное число).

2. Непрерывная модель — функция, заданная формулой.

Стандартный пример — закон движения материальной точки под действием силы тяжести. По этому закону положение г точки, движущейся в пространстве под действием силы тяжести в момент времени t , может быть описано формулой:

где г 0 — вектор начального положения точки (при t = 0);

v 0 — вектор начальной скорости;
g — некоторый постоянный вектор (ускорение свободного падения).

В этой модели время — переменная t — меняется непрерывно в течение некоторого промежутка. Модель позволяет вычислить положение точки в любой момент времени.

3. Модель в форме зависимости — уравнение.

Стандартный пример — второй закон Ньютона. Масса тела m , действующая на него сила F и его ускорение а связаны зависимостью F = m а . Если нам явно заданы выражения для определения силы и массы, то нахождение ускорения является задачей решения алгебраического уравнения. Если при тех же данных требуется найти закон движения, необходимо не только определить ускорение, но и знать новый вид связи между положением точки r и ее ускорением — а в момент времени t . Моделирование этого вида связи происходит с помощью новой, не алгебраической, операции дифференцирования, — а само уравнение становится дифференциальным уравнением.

4. Интегральная модель — плотность.
Стандартный пример — масса тела с переменной плотностью. В простейших случаях
масса тела m пропорциональна его объему V: m = ρ V , где ρ — некоторое постоянное число (плотность). Так, для ртути ρ = 13 600 кг/м 3 и банка ртути объемом

1 л = 1 дм 3 = 10 − 3 м 3 имеет массу m = 13,6 кг. Во многих случаях плотность вещества может меняться при переходе от одной точки к другой. Тогда удается записать лишь приближенное равенство m ≪ ρ V , которое верно только вблизи рассматриваемой точки и при переходе от одной точки А данного тела к другой коэффициент ρ будет меняться по закону : ρ = ρ(А). Исследование модели такого рода требует еще одной новой операции — интегрирования.

Таким образом, математический анализ создает модели для описания различных процессов, исследование которых требует применения наряду с известными методами и новых операций — дифференцирования и интегрирования.

Прогрессия, как простая математическая модель.

Арифметические и геометрические прогрессии являются самыми простыми и наиболее часто встречающимися примерами числовых последовательностей.

Арифметическая прогрессия — последовательность, задаваемая рекуррентной формулой: где d — разность прогрессии .

Сумма n -членов арифметической прогрессии

Геометрическая прогрессия — последовательность, задаваемая рекуррентной формулой , где q -знаменатель прогрессии.

Сумма n -членов геометрической прогрессии

Функция, как математическая модель.

Линейные функции. Линейной функцией называется функция, значения которой могут быть вычислены по формуле: у = kx + b .

Область определения. Линейная функция, заданная формулой у = kx + b , имеет областью определения множество R всех действительных чисел.

Обращение в нуль. Линейная функция при k ≠ 0 имеет единственный нуль:

Промежутки постоянного знака. Линейная функция

у = kx + b , k ≠ 0 , сохраняет постоянный знак на каждом из промежутков в зависимости от k

Векторные уравнения движения, как математическая модель.

Векторное уравнение движения. С движением точки по некоторой кривой связан ряд векторных величин: г — радиус-вектор; характеризующий положение точки; v — скорость точки; а — ускорение.

Зафиксируем некоторую точку отсчета О и будем положение движущейся точки в момент времени t задавать радиусом-вектором относительно О. Если в моменты времени t 1 t 2 , t 3 точка занимает положения A 1 А 2 , А 3 , то ее радиус векторы:

При решении задач от векторных уравнений переходят к координатным. Примером может служить уравнение равноускоренного движения (свободного падения) материальной точки:

1) Какие виды математических моделей существуют?

2)К каким видам математических моделей относятся: прогрессия, функция, уравнение?

Математические модели в процедурах анализа на макроуровне

Исходные уравнения моделей.Исходное математическое описание процессов в объектах на макроуровне представлено системами обыкновенных дифференциальных и алгебраических уравнений. Аналитические решения таких систем при типичных значениях их порядков в практических задачах получить не удается, поэтому в САПР преимущественно используются алгоритмические моде­ли. В этом параграфе изложен обобщенный подход к формированию алгоритмических моделей на макроуровне, справедливый для большинства приложений.

Исходными для формирования математических моделей объектов на макроуровне являются компонентные и топологические уравнения.

Компонентными уравнениями называют уравнения, описывающие свойства элементов (компонентов), другими словами, это уравнения математических моделей элементов (ММЭ).

Топологические уравнения описывают взаимосвязи в составе моделируемой системы.

В совокупности компонентные и топологические уравнения конкретной физической системы представляют собой исходную математическую модель системы (ММС).

Очевидно, что компонентные и топологические уравнения в системах различной физической природы отражают разные физические свойства, но могут иметь одинаковый формальный вид. Одинаковая форма записи математических соотношений позволяет говорить о формальных аналогиях компонентных и топологических уравнений. Такие аналогии существуют для механических поступательных, механических вращательных, электрических, гидравлических (пневматических), тепловых объектов. Наличие аналогий приводит к практически важному выводу: значительная часть алгоритмов формирования и исследования моделей в САПР оказывается инвариантной и может быть применена к анализу проектируемых объектов в разных предметных областях. Единство математического аппарата формирования ММС особенно удобно при анализе систем, состоящих из физически разнородных подсистем.

В перечисленных выше приложениях компонентные уравнения имеют вид:

и топологические уравнения

Различают фазовые переменные двух типов, их обобщенные наименования – фазовые переменные типа потенциала (например, электрическое напряжение) и типа потока (например, электрический ток). Каждое компонентное уравнение характеризует связи между разнотипными фазовыми переменными, относящимися к одному компоненту (например, закон Ома описывает связь между напряжением и током в резисторе), а топологическое уравнение – связи между однотипными фазовыми переменными в разных компонентах.

Модели можно представлять в виде систем уравнений или в графической форме, если между этими формами установлено взаимно однозначное соответствие. В качестве графической формы часто используют эквивалентные схемы.

Примеры компонентных и топологических уравнений.Рассмотрим несколько типов систем.

Электрические системы. В электрических системах фазовыми переменными являются электрические напряжения и токи. Компонентами систем могут быть простые двухполюсные элементы и более сложные двух- и многополюсные компоненты. К простым двухполюсникам относятся следующие элементы: сопротивление, емкость и индуктивность, характеризуемые одноименными параметрами R, С, L. В эквивалентных схемах эти элементы обозначают в соответствии с рис. 3.2,а.

Компонентные уравнения простых двухполюсников:

для R: u = i R (закон Ома), (3.3)

для C: i = C du/dt, (3.4)

для L: u = L di/dt, (3.5)

где и – напряжение (точнее, падение напряжения на двухполюснике), i – ток.

Эти модели лежат в основе моделей других возможных более сложных компонентов. Большая сложность может определяться нелинейностью уравнений (3.3) – (3.5) (т.е. зависимостью R, С, L от фазовых переменных), или учетом зависимостей параметров R, С, L от температуры, или наличием более двух полюсов. Однако многополюсные компоненты могут быть сведены к совокупности взаимосвязанных простых элементов.

Топологические уравнения выражают законы Кирхгофа для напряжений (ЗНК) и токов (ЗТК). Согласно ЗНК, сумма напряжений на компонентах вдоль любого замкнутого контура в эквивалентной схеме равна нулю, а в соответствии с ЗТК сумма токов в любом замкнутом сечении эквивалентной схемы равна нулю:

где Кр – множество номеров элементов р-гоконтура, Jq – множество номеров элементов, входящих в q-есечение.

Примером ММ сложного компонента может служить модель транзистора. На рис. 3.3 представлена эквивалентная схема биполярного транзистора, на которой зависимые от напряжений источники тока iэд = iтэехр(uэ/(mφT)) и iкд = iткехр(uк/(mφT)) отображают статические вольтамперные характеристики p-n переходов, iтэ и iтк – тепловые токи переходов, mφT – температурный потенциал, иэ и ик_ напряжения на эмиттерном и коллекторном переходах, Сэ и Ск – емкости переходов, Rуэ и Rук – сопротивления утечки переходов, R6 и RK – объемные сопротивления тел базы и коллектора, iг = BiэдBиiкд _источник тока, моделирующий усилительные свойства транзистора, В и Ви прямой и инверсный коэффициенты усиления тока базы. Здесь иэ, ик, iэд, iкд, iг– фазовые переменные, а остальные величины – параметры модели транзистора.

Механические системы. Фазовыми переменными в механических поступательных системах являются силы и скорости. Используют одну из двух возможных электромеханических аналогий. В дальнейшем будем использовать ту из них, в которой скорость относят к фазовым переменным типа потенциала, а силу считают фазовой переменной типа потока. Учитывая формальный характер подобных аналогий, в равной мере можно применять и противоположную терминологию.

Компонентное уравнение, характеризующее инерционные свойства тел, в силу второго закона Ньютона имеет вид

F= M du/dt (3.8)

где F – сила; M – масса; u – поступательная скорость.

Упругие свойства тел описываются компонентным уравнением, которое можно получить из уравнения закона Гука. В одномерном случае (если рассматриваются продольные деформации упругого стержня)

где G – механическое напряжение; Е – модуль упругости; ε = Δl/l – относительная деформация; Δl – изменение длины l упругого тела под воздействием G. Учитывая, что G = F/S, где F – сила, S – площадь поперечного сечения тела, и дифференцируя (3.9), имеем

где g =(SE/l)- жесткость (величину, обратную жесткости, называют гибкостью LM); и = d(Δl)/dt – скорость.

Диссипативные свойства в механических системах твердых тел выражаются соотношениями, характеризующими связь между силой трения и скоростью взаимного перемещения трущихся тел, причем в этих соотношениях производные сил или скоростей не фигурируют, как и в случае описания с помощью закона Ома диссипативных свойств в электрических системах.

Топологические уравнения характеризуют, во-первых, закон равновесия сил: сумма сил, приложенных к телу, включая силу инерции, равна нулю (принцип Даламбера), во-вторых, закон скоростей, согласно которому сумма относительной, переносной и абсолютной скоростей равна нулю.

В механических вращательных системах справедливы компонентные и топологические уравнения поступательных систем с заменой поступательных скоростей на угловые, сил – на вращательные моменты, масс – на моменты инерции, жесткостей – на вращательные жесткости.

Условные обозначения простых элементов механической системы показаны на рис. 3.2,б.

Нетрудно заметить наличие аналогий между электрической и механической системами. Так, токам и напряжениям в первой из них соответствуют силы (либо моменты) и скорости механической системы, компонентным уравнениям (3.4) и (3.5) и фигурирующим в них параметрам С и L, – уравнения (3.8) и (3.10) и параметры М и LM, очевидна аналогия и между топологическими уравнениями. Далее параметры С и М будем называть емкостными (емкостного типа), параметры L и LM индуктивными (индуктивного типа), а параметры R и Rтр = – резистивными (резистивного типа).

Имеется и существенное отличие в моделировании электрических и механических систем: первые из них одномерны, а процессы во вторых часто приходится рассматривать в двух- (2D) или трехмерном (3D) пространстве. Следовательно, при моделировании механических систем в общем случае в пространстве 3D нужно использовать векторное представление фазовых переменных, каждая из которых имеет шесть составляющих, соответствующих шести степеням свободы.

Однако отмеченные выше аналогии остаются справедливыми, если их относить к проекциям сил и скоростей на каждую пространственную ось, а при графическом представлении моделей использовать шесть эквивалентных схем – три для поступательных составляющих и три для вращательных.

Гидравлические системы. Фазовыми переменными в гидравлических системах являются расходы и давления. Как и в предыдущем случае, компонентные уравнения описывают свойства жидкости рассеивать или накапливать энергию.

Рассмотрим компонентные уравнения для жидкости на линейном участке трубопровода длиной Δl и воспользуемся уравнением Навье-Стокса в следующей его форме (для ламинарного течения жидкости)

где р – плотность жидкости; U– скорость; Р – давление; а – коэффициент линеаризованного вязкого трения. Так как U = Q/S, где Q – объемный расход; S – площадь поперечного сечения трубопровода, то, заменяя пространственную производную отношением конечных разностей, имеем

,

где ΔР – падение давления на рассматриваемом участке трубопровода. Lг= Δlρ/S – гидравлическая индуктивность, отражающая инерционные свойства жидкости, Rг= 2a/ρ – гидравлическое сопротивление, отражающее вязкое трение.

Примечание.В трубопроводе круглого сечения радиусом r удобно использовать выражение для гидравлического сопротивления при ламинарном течении: Rг = δυΔl/πr 4 ), где υ – кинематическая вязкость; в случае турбулентного характера течения жидкости компонентное уравнение для вязкого трения имеет вид при .

Интерпретация уравнения (3.11) приводит к эквивалентной схеме рис. 3.4.

Явление сжимаемости жидкости описывается компонентным уравнением, вытекающим из закона Гука

Дифференцируя (3.12) и учитывая, что объемный расход Q связан со скоростью U= d(Δl)/dt соотношением Q = U S, получаем

Связь подсистем различной физической природы. Используют следующие способы моделирования взаимосвязей подсистем: с помощью трансформаторной, гираторной связей и с помощью зависимости параметров компонентов одной подсистемы от фазовых переменных другой. В эквивалентных схемах трансформаторные и гираторные связи представлены зависимыми источниками фазовых переменных, показанными на рис. 3.5. На этом рисунке k и п – коэффициенты трансформации; g – передаточная проводимость; Uj и Ij ,- фазовые переменные в j-й цепи; j=1 соответствует первичной, а j=2 – вторичной цепи.

Представление топологических уравнений.Известен ряд методов формирования ММС на макроуровне. Получаемые с их помощью модели различаются ориентацией на те или иные численные методы решения и набором базисных, переменных, т.е. фазовых переменных, остающихся в уравнениях итоговой ММС. Общим для всех методов является исходная совокупность топологических и компонентных уравнений (3.1)-(3.2).

При записи топологических уравнений удобно использовать промежуточную графическую форму – представление модели в виде эквивалентной схемы, состоящей из двухполюсных элементов. Общность подхода при этом сохраняется, так как любой многополюсный компонент можно заменить подсхемой из двухполюсников. В свою очередь эквивалентную схему можно рассматривать как направленный граф, дуги которого соответствуют ветвям схемы. Направления потоков в ветвях выбираются произвольно (если реальное направление при моделировании окажется противоположным, то это приведет лишь к отрицательным численным значениям потока).

Примернекоторой простой эквивалентной схемы и соответствующего ей графа приведен на рис. 3.6. Для конкретности и простоты изложения на рис. 3.6 использованы условные обозначения, характерные для электрических эквивалентных схем, по той же причине далее в этом параграфе часто применяется электрическая терминология. Очевидно, что поясненные выше аналогии позволяют при необходимости легко перейти к обозначениям и терминам, привычным для механиков.

Для получения топологических уравнений все ветви эквивалентной схемы разделяют на подмножества хорд и ветвей дерева. Имеется в виду покрывающее (фундаментальное) дерево, т.е. подмножество из (β-1 дуг, не образующее ни одного замкнутого контура, где β – число вершин графа (узлов эквивалентной схемы). На рис. 3.6,б показан граф эквивалентной схемы рис. 3.6,а, толстыми линиями выделено одно из возможных покрывающих деревьев.

Выбор дерева однозначно определяет вектора напряжений Ux и токов Ix хорд, напряжений Uвд и токов Iвд ветвей дерева и приводит к записи топологических уравнений в виде

где М– матрица контуров и сечений, М Т – транспонированная М-матрица.

В М-матрице число строк соответствует числу хорд, число столбцов равно числу ветвей дерева. М-матрица формируется следующим образом. Поочередно к дереву подключаются хорды. Если при подключении к дереву р-й хорды q-я ветвь входит в образовавшийся контур, то элемент Mpq матрицы равен +1 при совпадении направлений ветви и подключенной хорды, Mpq= -1 при несовпадении направлений. В противном случае Mpq = 0.

Для схемы на рис. 3.6 М-матрица представлена в виде табл. 3.1

Особенности эквивалентных схем механических объектов.Для каждой степени свободы строят свою эквивалентную схему. Каждому телу с учитываемой массой соответствует узел схемы (вершина графа). Один узел, называемый базовым, отводится телу, отождествляемому с инерциальной системой отсчета.

Каждый элемент массы изображают ветвью, соединяющей узел соответствующего массе тела с базовым узлом; каждый элемент упругости – ветвью, соединяющей узлы тел, связанных упругой связью; каждый элемент трения – ветвью, соединяющей узлы трущихся тел. Внешние воздействия моделируются источниками сил i

В качестве примера на рис. 3.7,а изображена некоторая механическая система – тележка, движущаяся по дороге и состоящая из платформы А, колес В1, В2 и рессор С1, C2. На рис. 3.7,б приведена эквивалентная схема для вертикальных составляющих сил и скоростей, на которой телам системы соответствуют одноименные узлы, учитываются массы платформы и колес, упругость рессор, трение между колесами и дорогой; неровности дороги вызывают воздействие на систему, изображенное на рис. 3.7,б источниками силы.

Характеристика методов формирования ММС.Исходную систему компонентных и топологических уравнений (3.1) и (3.2) можно рассматривать как окончательную ММС, которая и подлежит численному решению. Численное решение этой системы уравнений предполагает алгебраизацию дифференциальных уравнений, например, с помощью преобразования Лапласа или формул численного интегрирования. В программах анализа нелинейных объектов на макроуровне, как правило, применяются формулы численного интегрирования, примером которых может служить неявная формула Эйлера

где Vi— – значение переменной V на i-м шаге интегрирования; hn= tntn-1 – шаг интегрирования. Алгебраизация подразумевает предварительную дискретизацию независимой переменной t (вместо непрерывной переменной t получаем конечное множество значений tn), она заключается в представлении ММС в виде системы уравнений

с неизвестными Vn и Zn, где использовано обозначение Z = dV/dt. Эту систему алгебраических уравнений, в общем случае нелинейных, необходимо решать на каждом шаге численного интегрирования исходных дифференциальных уравнений.

Однако порядок этой системы довольно высок и примерно равен 2α+γ, где α – число ветвей эквивалентной схемы (каждая ветвь дает две неизвестные величины – фазовые переменные типа потока и типа потенциала, за исключением ветвей внешних источников, у каждой из которых неизвестна лишь одна фазовая переменная), γ – число элементов в векторе производных. Чтобы снизить порядок системы уравнений и тем самым повысить вычислительную эффективность ММС, желательно выполнить предварительное преобразование модели (в символическом виде) перед ее многошаговым численным решением. Предварительное преобразование сводится к исключению из системы части неизвестных и соответствующего числа уравнений. Оставшиеся неизвестные называют базисными. В зависимости от набора базисных неизвестных различают несколько методов формирования ММС.

Согласно методу переменных состояния (более полное название метода – метод переменных, характеризующих состояние), вектор базисных переменных W состоит из переменных состояния. Этот вектор включает неизбыточное множество переменных, характеризующих накопленную в системе энергию. Например, такими переменными могут быть скорости тел (кинетическая энергия определяется скоростью, так как равна Ми 2 /2), емкостные напряжения, индуктивные токи и т.п. Очевидно, что число уравнений не превышает γ. Кроме того, итоговая форма ММС оказывается приближенной к явной форме представления системы дифференциальных уравнений, т.е. к форме, в которой вектор dW/dt явно выражен через вектор W, что упрощает дальнейшее применение явных методов численного интегрирования. Метод реализуется путем особого выбора системы хорд и ветвей дерева при формировании топологических уравнений. Поскольку явные методы численного интегрирования дифференциальных уравнений не нашли широкого применения в программах анализа, то метод переменных состояния также теряет актуальность и его применение оказывается довольно редким.

В классическом варианте узлового метода в качестве базисных переменных используются узловые потенциалы (т.е. скорости тел относительно инерциальной системы отсчета, абсолютные температуры, перепады давления между моделируемой и внешней средой, электрические потенциалы относительно базового узла). Число узловых потенциалов и соответственно уравнений в ММС оказывается равным β-1, где β – число узлов в эквивалентной схеме. Обычно β заметно меньше α и, следовательно, порядок системы уравнений в ММС снижен более чем в два раза по сравнению с поряд­ком исходной системы.

Однако классический вариант узлового метода имеет ограничения на применение и потому в современных программах анализа наибольшее распространение получил модифицированный узловой метод.

Узловой метод. Матрицу контуров и сечений М в узловом методе формируют следующим образом. Выбирают базовый узел эквивалентной схемы и каждый из остальных узлов соединяют с базовым фиктивной ветвью. Именно фиктивные ветви принимают в качестве ветвей дерева, а все реальные ветви оказываются в числе хорд. Поскольку токи фиктивных ветвей равны нулю, а вектор напряжений фиктивных ветвей есть вектор узловых потенциалов φ, то уравнения (3.13) и (3.14) принимают вид

U + Mφ = 0 (3.16)

M T I = 0 (3.17)

где U и I- векторы напряжений и токов реальных ветвей.

Компонентные уравнения алгебраизуются с помощью одной из формул численного интегрирования, линеаризуются с помощью разложения в ряд Тейлора с сохранением только линейных членов, и их представляют в виде

где Gn – диагональная матрица проводимостей, рассчитанная в точке tn; An – вектор, зависящий от значений фазовых переменных на предшествующих шагах интегрирования и потому уже известный к моменту времени tn. Каждая ветвь (за исключением идеальных источников напряжения) имеет проводимость, которая занимает одну из диагональных клеток матрицы проводимостей. Окончательно ММС получаем, подставляя (3.18) и затем (3.16) в (3.17):

M T In=M T (GnUn + An) =-M T Gnn +M T An = 0

где Яn=М Т GnM – матрица Якоби, Вn = М Т Аn – вектор правых частей. Отметим, что матрица М имеет размер равен α×(β-1), матрица Gn –α×α, а матрица Якоби имеет размер – (β-1)×(β-1).

Система (3.19) является системой линейных алгебраических уравнений, полученной в результате дискретизации независимой переменной, алгебраизации дифференциальных уравнений и линеаризации алгебраических уравнений. Алгебраизация приводит к необходимости пошагового вычислительного процесса интегрирования, линеаризация – к выполнению итерационного вычислительного процесса на каждом шаге интегрирования.

Рассмотрим, каким образом определяются проводимости ветвей.

Для резистивных ветвей проводимость – величина, обратная сопротивлению R.

При использовании неявного метода Эйлера проводимость емкостной ветви получается из ее компонентного уравнения следующим образом.

На п-мшаге интегрирования

проводимость и при С = const получаем

при этом в вектор правых частей входит элемент

Проводимость индуктивной ветви можно найти аналогично:

Аналогично определяют проводимости и при использовании других разностных формул численного интегрирования, общий вид которых

где μn зависит от шага интегрирования, ηn от значений вектора U на предыдущих шагах.

Классический вариант узлового метода имеет ограничения на применение. Так, недопустимы идеальные (с бесконечной проводимостью) источники напряжения, зависимые источники, аргументами которых являются токи, а также индуктивности, поскольку в классическом варианте токи не входят в число базисных переменных. Устранить эти ограничения довольно просто – нужно расширить совокупность базисных координат, включив в нее токи-аргументы зависимых источников, а также токи ветвей индуктивных и источников напряжения. Полученный вариант метода называют модифицированным узловым методом.

Согласно модифицированному узловому методу, в дерево при построении матрицы М включают ветви источников напряжения и затем фиктивные ветви. В результате матрица М принимает вид (табл. 3.2), где введены обозначения: UИCT(I) – источники напряжения, зависящие от тока; Е(t) – независимые источники напряжения; IИСТ(I) – источники тока, зависящие от тока; L – индуктивные ветви; Mij – подматрица контуров хорд группы i и сечений фиктивных ветвей группы j.

Те же обозначения UИCT, I, E, IИСТ будем использовать и для соответствующих векторов напряжений и токов. Назовем ветви, токи которых являются аргументами в выражениях для зависимых источников, т.е. входят в вектор I, особыми ветвями. Остальные ветви (за исключением индуктивных) – неособые. Введем также обозначения: IL – вектор индуктивных токов; Ix и Ux. – векторы токов и напряжений неособых ветвей; Gx, GL, GI– диагональные матрицы проводимостей ветвей неособых, индуктивных, особых.

Уравнение закона токов Кирхгофа (3.17) для фиктивных ветвей имеет вид

Исключим вектор IХ с помощью компонентного уравнения (3.18), а вектор IИСТ с помощью очевидного уравнения

IИСТ=KI

где – матрица передаточных коэффициентов источников тока. Используем также выражение (3.16), принимающее вид

Получаем систему из трёх матричных уравнений с неизвестными векторами φ,I, IL:

; (3.20)

; (3.21)

, (3.22)

где обозначено . Эта система и является итоговой ММ в узловом модифицированном методе.

Замечания:

1. Вектор индуктивных токов нельзя исключить из итоговой системы уравнений, так как его значения входят в вектор AL на последующих шагах численного интегрирования.

2. Источники тока, зависящие от напряжений, относятся к неособым ветвям, их проводимости входят в матрицу Gx, которая при этом может иметь недиагональный вид.

3. Источники напряжения, зависящие от напряжений, в приведенных выше выражениях не учитываются, при их наличии нужно в матрице М выделить столбец для этих ветвей, что приводит к появлению дополнительных слагаемых в правых частях уравнений (3.19) – (3.21).

Дата добавления: 2017-03-29 ; просмотров: 909 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Реализация моделей динамических систем средствами контроллера

За основу задания динамических свойств систем может быть принята любая из форм представления операторов: дифференциальные уравнения (ДУ), передаточные функции (ПФ), временные характеристики (ВХ) или частотные характеристики (ЧХ), однако для конкретных задач целесообразно выбирать наиболее рациональную форму [1].

Возможные преобразования форм представления моделей вход-выход показаны на Рисунок 1. Сплошные линии орграфа показывают однозначные преобразования, штриховые — неоднозначные преобразования экспериментальных данных. Результаты последних преобразований зависят от выбора структуры оператора и алгоритма обработки данных.

Рисунок 1. Орграф взаимосвязи форм представления моделей. Модели могут описывать поведение регуляторов систем управления [4], наблюдателей [3], корректирующих звеньев, фильтров [5], и др. динамических систем. В этой работе рассматриваются MATLAB преобразования форм представления моделей и реализация моделей средствами контроллеров.

Дискретная модель объекта

Для сравнения результатов преобразования моделей будем использовать одну и ту же систему — объект третьего порядка, дискретная модель которого в форме пространства состояний имеет следующие коэффициенты.

Дискретная модель в форме пространства состояний представляется разностными уравнениями первого порядка

Связь переменных уравнений (2) показана на блок схеме Рисунок 2, где X – переменные состояния; 1/z – задержка на один такт.

Рисунок 2. Структура дискретной модели объекта в форме пространства состояний.

Система разностных уравнений

Раскроем уравнения (2) подстановкой в уравнения матриц (1) объекта:

По разностным уравнениям (3) построим Simulink модель дискретного объекта с периодом дискретизации 1 с (см. Рисунок 3).

Рисунок 3. Дискретная модель объекта (1) и реакция y[n] объекта на синусоидальное u[n] воздействие.

Импульсная передаточная функция

Воспользуемся преобразованием форм MATLAB для перевода дискретной модели из пространства состояний в формат импульсной передаточной функции, затем в формат непрерывной ПФ и, наконец, в формат пространства состояний непрерывной модели. Ниже показан код m-программы c промежуточными результатами, сдвинутыми вправо на 1 Tab.
Ad = [1.1 -0.5 0.12
1.0 0.0 0.0
0.0 1.0 0.0];

Wo_ss_d = ss(Ad,Bd,Cd,Dd,1); % структура дискретной модели с периодом 1 с
Wo_tf_d = tf(Wo_ss_d) % дискретная ПФ

Непрерывная передаточная функция

Wo_tf_c = d2c(Wo_tf_d) % непрерывная ПФ

Непрерывная модель в форме пространства состояний

Wo_ss_c = ss(Wo_tf_c) % непрерывная модель в форме пространства состояний
Wo_ss_c =
A =
x1 x2 x3 (4)
x1 -2.12 -1.213 -0.819
x2 2 0 0
x3 0 0.5 0
B =
u1
x1 2
x2 0
x3 0
C =
x1 x2 x3
y1 0.009016 -0.2697 -0.8307
D =
u1
y1 0

Continuous-time state-space model.

ВНИМАНИЕ. Изменение шага дискретизации приводит к соответствующему изменению динамики модели. Для того, чтобы эквивалентная непрерывная модель “не отставала” и “не убегала” от дискретной модели с новым шагом дискретизации, необходимо пересчитать коэффициенты непрерывной модели.

Приведенный многоступенчатый перевод дискретной модели (1, 2, 3) в непрерывную модель пространства состояний (4) можно выполнить одной командой d2c: Wo_ss_c = d2c(Wo_ss_d). В этом варианте получится набор матриц с другими коэффициентами относительно многоступенчатого варианта, но это не является ошибкой, поскольку одна и та же ПФ (с одинаковым составом нулей и полюсов) может быть представлена в форме пространства состояний разными вариантами коэффициентов матриц A, B, C, D. Нули и полюса ПФ можно вычислить командами MATLAB: zeros, poles, eig.

Система дифференциальных уравнений

Матрицы (4) непрерывной модели связывают переменные состояния x(t) с входом y(t) и выходом u(t) модели следующим образом.

Раскроем систему дифференциальных уравнений (5) подстановкой коэффициентов матриц (4):

Как в случае построения дискретной Simulink модели (Рисунок 3) по разностным уравнениям (3), построим Simulink модель непрерывного объекта (см. Рисунок 4) по дифференциальным уравнениям (6).

Рисунок 4. Непрерывная модель объекта (1) и реакция y(t) объекта на синусоидальное u(t) воздействие (синий график). Для сравнения, показан коричневый график y[n] дискретного объекта Рисунок 3, график y(t) сдвинут вправо на 0.5 с — половину дискреты.

Перевод модели в частотную область

В MATLAB по данным модели пространства состояний или передаточным функциям можно построить соответствующие амплитудно-фазовые частотные характеристики (АФЧХ). Примеры перевода для рассматриваемого объекта показаны ниже.

bode(Wo_ss_d) % АФЧХ дискретного объекта представленного в форме пространства состояний
bode(Wo_tf_d) % АФЧХ дискретного объекта представленного в форме ПФ
bode(Wo_ss_c) % АФЧХ непрерывного объекта представленного в форме пространства состояний
bode(Wo_tf_c) % АФЧХ непрерывного объекта представленного в форме ПФ
grid % нанесение координатной сетки

Рисунок 5. Амплитудно-фазовые частотные характеристики непрерывного объекта (слева) и дискретного объекта (справа).

Построение передаточной функции по частотным характеристикам

Имеется множество вариантов обратного перевода модели из частотной области. Вот один из них.
[mag,phase,freq] = bode(Wo_tf_c) % выделение амплитуды, фазы и частоты АФЧХ
complex_f = frd(mag.exp(jphase.pi/180),freq) % модель объекта в частотной области tfest(complex_f,3) % ПФ непрерывного объекта, 3 — порядок объекта

В этом примере зависимости амплитуды mag и фазы phase от частоты freq вычислены оператором bode для ПФ Wo_tf_c. Оператор frd сформировал структуру complex_f — зависимость комплексных аргументов mag.exp(jphase.pi/180) от частоты, которая использовалась оператором tfest для построения ПФ непрерывного объекта третьего порядка. Полученная ПФ точно совпадает с исходной ПФ Wo_tf_c. Как упоминалось во введении, при использовании экспериментальных зависимостей (амплитуды и фазы от частоты) мы бы получили неоднозначный вариант ПФ.

Перевод модели во временную область

MATLAB предлагает множество вариантов вычисления реакции объекта на входное воздействие. Вот один из них – реакция (Рисунок 6) на единичное ступенчатое воздействие вычисляется оператором step:
% [y,t] = step(Wo_tf_c) % выделение данных реакции на единичное воздействие
step(Wo_tf_c) % построение графика реакции на единичное воздействие

Рисунок 6. Реакция модели непрерывного объекта (ПФ: Wo_tf_c) на единичное ступенчатое воздействие.

Построение передаточной функции по временным характеристикам

Обратное преобразование – построение передаточной функции по временным характеристикам входа и выхода объекта выполняется командами iddata и tfest.

Перевод импульсной передаточной функции в код контроллера

Модель Рисунок 3 импульсной передаточной функции (3a) дискретного объекта (1) можно представить в виде схемы показанной на Рисунок 7.

Рисунок 7. Модель импульсной передаточной функции

. Блок z-1 реализует задержку на 1 такт. Для рассматриваемого объекта установлен период дискретизации в 1 с.

Работа схемы Рисунок 7 подобна реализации Рисунок 8, в которой блок fcn, содержащий m-функцию пользователя, выполняет совместно с z-1 блоками работу рассматриваемой импульсной ПФ.

Рисунок 8. Simulink модель эквивалентной импульсной передаточной функции с fcn блоком, содержащим представленный m-код. Следующая программа вычисляет реакцию объекта, представленного импульсной ПФ. Полученная реакция (Рисунок 9) полностью совпадает с реакциями дискретных моделей рассматриваемого объекта и соответствует реакциям непрерывных моделей этого же объекта (Рисунок 10).

b2 = -0.4; b1 = -0.24; b0 = 0.072; % коэффициенты полинома числителя ИПФ

a3 = 1; a2 = -1.1; a1 = 0.5; a0 = -0.12; % коэффициенты полинома знаменателя ИПФ

y = zeros(1,50); % резервирование памяти для хранения реакции
u = ones(1,50); % единичное воздействие

ym1 = 0; ym2 = 0; ym3 = 0 % начальные значения

% График реакции дискретных моделей

if 1
% Построение графиков
figure (1) % активное окно графопостроителя
clf % очистка предыдущих данных
plot(y,’xb’) % график y[n] m-файла
hold on
plot(out.ScopeData1.signals(3).values) % график y[n] Simulink модели, ver.1
plot(out.ScopeData1.signals(4).values) % график y[n] Simulink модели, ver.2
plot(out.ScopeData1.signals(5).values) % график y[n] Simulink модели, ver.3
plot(out.ScopeData1.signals(6).values) % график y[n] Simulink модели, ver.4
legend(‘m-file’,’Simulink v.1′,’Simulink v.2′,’Simulink v.3′,’Simulink v.4′)
grid
xlabel(‘Номер отсчета’)
ylabel(‘Амплитуда реакции’),
title(‘Сравнение реакций дискретных моделей’)
end

Рисунок 9. 100% совпадение реакций дискретных моделей и вычислений m-программы.

Рисунок 10. Варианты построения эквивалентных Simulink моделей рассматриваемого объекта.

Порядок программирования динамических моделей контроллерами

Для построения модели динамической системы средствами контроллеров предлагается выполнить следующее.

Средствами MATLAB преобразовать динамическую систему в форму импульсной передаточной функции для требуемого шага дискретизации (3a).

Выделить коэффициенты полиномов числителя и знаменателя импульсной ПФ (Рисунок 7)

Средствами контроллера реализовать последовательность вычисления импульсной ПФ (7)

Структура и порядок динамической системы могут отличаться от рассмотренного примера.

Заключение

Рассмотренные варианты преобразования форм представления динамических моделей в интегрированной среде MATLAB могут быть использованы для реализации моделей средствами контроллеров путем построения кода эквивалентной импульсной передаточной функции (Рисунок 11).

Рисунок 11. Операторы MATLAB преобразования моделей и построения эквивалентного кода для программирования контроллеров.

А.А.Алексеев, Д.Х.Имаев, Н.Н.Кузьмин, В.Б.Яковлев. Теория управления: Учеб./СПб.: Изд-во СПбГЭТУ “ЛЭТИ”, 1999. – 435 с.


источники:

http://helpiks.org/9-6741.html

http://habr.com/ru/post/542664/