Молекулярные уравнения гидролиза соли baso4

Гидролиз солей

Водные растворы солей имеют разные значения рН и показывают различную реакцию среды — кислую, щелочную, нейтральную.

Например, водный раствор хлорида алюминия AlCl3 имеет кислую среду (рН 7), растворы хлорида натрия NaCl и нитрита свинца Pb(NO2)2 — нейтральную среду (pН = 7). Эти соли не содержат в своем составе ионы водорода Н + или гидроксид-ионы ОН — , которые определяют среду раствора. Чем же можно объяснить различные среды водных растворов солей? Это объясняется тем, что в водных растворах соли подвергаются гидролизу.

Слово «гидролиз» означает разложение водой («гидро» — вода, «лизис» — разложение).

Гидролиз — одно из важнейших химических свойств солей.

Гидролизом соли называется взаимодействие ионов соли с водой, в результате которого образуются слабые электролиты.

Сущность гидролиза сводится к химическому взаимодействию катионов или анионов соли с гидроксид-ионами ОН — или ионами водорода Н + из молекул воды. В результате этого взаимодействия образуется малодиссоциирующее соединение (слабый электролит). Химическое равновесие процесса диссоциации воды смещается вправо.

Поэтому в водном растворе соли появляется избыток свободных ионов Н + или ОН — , и раствор соли показывает кислую или щелочную среду.

Гидролиз — процесс обратимый для большинства солей. В состоянии равновесия только небольшая часть ионов соли гидролизуется.

Любую соль можно представить как продукт взаимодействия кислоты с основанием. Например, соль NaClO образована слабой кислотой HClO и сильным основанием NaOH.

В зависимости от силы исходной кислоты и исходного основания соли можно разделить на 4 типа:

Соли I, II, III типов подвергаются гидролизу, соли IV типа не подвергаются гидролизу

Рассмотрим примеры гидролиза различных типов солей.

I. Соли, образованные сильным основанием и слабой кислотой, подвергаются гидролизу по аниону. Эти соли образованы катионом сильного основания и анионом слабой кислоты, который связывает катион водорода Н + молекулы воды, образуя слабый электролит (кислоту).

Пример: Составим молекулярное и ионные уравнения гидролиза нитрита калия KNO2.

Соль KNO2 образована слабой одноосновной кислотой HNO2 и сильным основанием KОН, что можно изобразить схематически так:

Напишем уравнение гидролиза соли KNO2:

Каков механизм гидролиза этой соли?

Так как ионы Н + соединяются в молекулы слабого электролита HNО2, их концентрация уменьшается и равновесие процесса диссоциации воды по принципу Ле-Шателье смещается вправо. В растворе увеличивается концентрация свободных гидроксид-ионов ОН — . Поэтому раствор соли KNO2 имеет щелочную реакцию (pН > 7).

Вывод: Соли, образованные сильным основанием и слабой кислотой, при растворении в воде показывают щелочную реакцию среды, pН > 7.

II. Соли, образованные слабым основанием и сильной кислотой, гидролизуются по катиону. Эти соли образованы катионом слабого основания и анионом сильной кислоты. Катион соли связывает гидроксид-ион ОН — воды, образуя слабый электролит (основание).

Пример: Составим молекулярное и ионное уравнения гидролиза йодида аммония NH4I.

Соль NH4I образована слабым однокислотным основанием NH4OH и сильной кислотой НI:

При растворении в воде соли NH4I катионы аммония NH4 + связываются с гидроксид-ионами ОН — воды, образуя слабый электролит – гидроксид аммония NH4OH. В растворе появляется избыток ионов водорода Н + . Среда раствора соли NH4I – кислая, рН — из молекулы воды и образует слабое основание, и анионом слабой кислоты, который связывает ионы Н + из молекулы воды и образует слабую кислоту. Реакция растворов этих солей может быть нейтральной, слабокислой или слабощелочной. Это зависит от констант диссоциации слабой кислоты и слабого основания, которые образуются в результате гидролиза.

Пример 1: Составим уравнения гидролиза ацетата аммония CH3COONH4. Эта соль образована слабой уксусной кислотой СН3СООН и слабым основанием NH4ОH:

Реакция раствора соли CH3COONH4 – нейтральная (рН=7), потому что Kд(СН3СООН)=Kд(NH4ОH).

Пример 2: Составим уравнения гидролиза цианида аммония NH4CN. Эта соль образована слабой кислотой HCN и слабым основанием NH4ОH:

Реакция раствора соли NH4CN — слабощелочная (pН > 7), потому что Kд(NH4ОH)> Kд(HCN).

Как уже было отмечено, для большинства солей гидролиз является обратимым процессом. В состоянии равновесия гидролизуется только небольшая часть соли. Однако некоторые соли полностью разлагаются водой, т. е. для них гидролиз является необратимым.

Необратимому (полному) гидролизу подвергаются соли, которые образованы слабым нерастворимым или летучим основанием и слабой летучей или нерастворимой кислотой. Такие соли не могут существовать в водных растворах, К ним, например, относятся:

Пример: Составим уравнение гидролиза сульфида алюминия Al2S3:

Гидролиз сульфида алюминия протекает практически полностью до образования гидроксида алюминия Al(OH)3 и сероводорода H2S.

Поэтому в результате обменных реакций между водными растворами некоторых солей не всегда образуются две новые соли. Одна из этих солей может подвергаться необратимому гидролизу с образованием соответствующего нерастворимого основания и слабой летучей (нераствориой) кислоты. Например:

Суммируя эти уравнения, получаем:

или в ионном виде:

IV. Соли, образованные сильной кислотой и сильным основанием, не гидролизуются, потому что катионы и анионы этих солей не связываются с ионами Н + или ОН — воды, т. е. не образуют с ними молекул слабых электролитов. Равновесие диссоциации воды не смещается. Среда растворов этих солей — нейтральная (рН = 7,0), так как концентрации ионов Н + и ОН — в их растворах равны, как в чистой воде.

Вывод: Соли, образованные сильной кислотой и сильным основанием, при растворении в воде гидролизу не подвергаются и показывают нейтральную реакцию среды (рН = 7,0).

Ступенчатый гидролиз

Гидролиз солей может протекать ступенчато. Рассмотрим случаи ступенчатого гидролиза.

Если соль образована слабой многоосновной кислотой и сильным основанием, число ступеней гидролиза зависит от основности слабой кислоты. В водном растворе таких солей на первых ступенях гидролиза образуются кислая соль вместо кислоты и сильное основание. Ступенчато гидролизуюгся соли Na2SO3, Rb23, K2SiO3, Li3PO4 и др.

Пример: Составим молекулярное и ионное уравнения гидролиза карбоната калия K2СО3.

Гидролиз соли K2СО3 протекает по аниону, потому что соль карбонат калия образована слабой кислотой Н2СО3 и сильным основанием KОН:

Так как Н2СО3 – двухосновная кислота, гидролиз K2СО3 протекает по двум ступеням.

Продуктами первой ступени гидролиза K2СО3 являются кислая соль KHCO3 и гидроксид калия KОН.

Вторая ступень (гидролиз кислой соли, которая образовалась в результате первой ступени):

Продуктами второй ступени гидролиза K2СО3 являются гидроксид калия и слабая угольная кислота Н2СО3. Гидролиз по второй ступени протекает в значительно меньшей степени, чем по первой ступени.

Среда раствора соли K2СО3 — щелочная (рН > 7), потому что в растворе увеличивается концентрация ионов ОН — .

Если соль образована слабым многокислотным основанием и сильной кислотой, то число ступеней гидролиза зависит от кислотности слабого основания. В водных растворах таких солей на первых ступенях образуется основная соль вместо основания и сильная кислота. Ступенчато гидролизуются соли MgSО4, CoI2, Al2(SO4)3, ZnBr2 и др.

Пример: Составим молекулярное и ионное уравнения гидролиза хлорида никеля (II) NiCl2.

Гидролиз соли NiCl2 протекает по катиону, так как соль образована слабым основанием Ni(OH)2 и сильной кислотой НСl. Катион Ni 2+ связывает гидроксид-ионы ОН — воды. Ni(OH)2 — двухкислотное основание, поэтому гидролиз протекает по двум ступеням.

Продуктами первой ступени гидролиза NiCl2 являются основная соль NiOHCl и сильная кислота HCl.

Вторая ступень (гидролиз основной соли, которая образовалась в результате первой ступени гидролиза):

Продуктами второй ступени гидролиза являются слабое основание гидроксид никеля (II) и сильная хлороводородная кислота НCl. Однако степень гидролиза по второй ступени намного меньше, чем по первой ступени.

Среда раствора NiCl2 — кислая, рН + .

Гидролизу подвергаются не только соли, но и другие неорганические соединения. Гидролизуются также жиры, углеводы, белки и другие вещества, свойства которых изучаются в курсе органической химии. Поэтому можно дать более общее определение процесса гидролиза:

Гидролиз — это реакция обменного разложения веществ водой.

Гидролиз

Темы кодификатора ЕГЭ: Гидролиз солей. Среда водных растворов: кислая, основная и щелочная.

Гидролиз – взаимодействие веществ с водой. Гидролизу подвергаются разные классы неорганических и органических веществ: соли, бинарные соединения, углеводы, жиры, белки, эфиры и другие вещества. Гидролиз солей происходит, когда ионы соли способны образовывать с Н + и ОН — ионами воды малодиссоциированные электролиты.

Гидролиз солей может протекать:

обратимо : только небольшая часть частиц исходного вещества гидролизуется.

необратимо : практически все частицы исходного вещества гидролизуются.

Для оценки типа гидролиза необходимо рассмотреть соль, как продукт взаимодействия основания и кислоты. Любая соль состоит из металла и кислотного остатка. Металлы соответствует основание или амфотерный гидроксид (с той же степенью окисления, что и в соли), а кислотному остатку — кислота. Например, карбонату натрия Na2CO3 соответствует основание — щелочь NaOH и угольная кислота H2CO3.

Обратимый гидролиз солей

Механизм обратимого гидролиза будет зависеть от состава исходной соли. Можно выделить 4 основных варианта, которые мы рассмотрим на примерах:

1. Соли, образованные сильным основанием и слабой кислотой , гидролизуются ПО АНИОНУ .

CH3COONa + HOH ↔ CH3COOH + NaOH

CH3COO — + Na + + HOH ↔ CH3COOH + Na + + OH —

сокращенное ионное уравнение:

CH3COO — + HOH ↔ CH3COOH + OH —

Таким образом, при гидролизе таких солей в растворе образуется небольшой избыток гидроксид-ионов OH — . Водородный показатель такого раствора рН>7 .

Гидролиз солей многоосновных кислот (H2CO3, H3PO4 и т.п.) протекает ступенчато, с образованием кислых солей:

CO3 2- + HOH ↔ HCO3 2- + OH —

или в молекулярной форме:

или в молекулярной форме:

Продукты гидролиза по первой ступени подавляют вторую ступень гидролиза, в результате вторая ступень гидролиза протекает незначительно.

2. Соли, образованные слабым основанием и сильной кислотой , гидролизуются ПО КАТИОНУ . Пример такой соли: NH4Cl, FeCl3, Al2(SO4)3 Уравнение гидролиза:

или в молекулярной форме:

При этом катион слабого основания притягивает гидроксид-ионы из воды, а в растворе возникает избыток ионов Н + . Водородный показатель такого раствора рН .

Соли, образованные многокислотными основаниями, гидролизуются ступенчато, образуя катионы основных солей. Например:

Fe 3+ + HOH ↔ FeOH 2+ + H +

FeCl3 + HOH ↔ FeOHCl2 + H Cl

FeOH 2+ + HOH ↔ Fe(OH)2 + + H +

FeOHCl2 + HOH ↔ Fe(OH)2Cl+ HCl

Fe(OH)2 + + HOH ↔ Fe(OH)3 + H +

Fe(OH)2Cl + HOH ↔ Fe(OH)3 + HCl

Гидролиз по второй и, в особенности, по третьей ступени практически не протекает при комнатной температуре.

3. Соли, образованные слабым основанием и слабой кислотой , гидролизуются И ПО КАТИОНУ, И ПО АНИОНУ .

В этом случае реакция раствора зависит от соотношения констант диссоциации образующихся кислот и оснований. В большинстве случаев реакция раствора будет примерно нейтральной, рН ≅ 7 . Точное значение рН зависит от относительной силы основания и кислоты.

4. Гидролиз солей, образованных сильным основанием и сильной кислотой , в водных растворах НЕ ИДЕТ .

Сведем вышеописанную информацию в общую таблицу:

Необратимый гидролиз

Необратимый гидролиз происходит, если при гидролизе выделяется газ, осадок или вода, т.е. вещества, которые при данных условиях не могут взаимодействовать между собой. Необратимый гидролиз является химической реакцией, т.к. реагирующие вещества взаимодействуют практически полностью.

Варианты необратимого гидролиза:

  1. Гидролиз, в который вступают растворимые соли 2х-валентных металлов (Be 2+ , Co 2+ , Ni 2+ , Zn 2+ , Pb 2+ , Cu 2+ и др.) с сильным ионизирующим полем (слабые основания) и растворимые карбонаты/гидрокарбонаты. При этом образуются нерастворимые основные соли (гидроксокарбонаты):

! Исключения: (соли Ca, Sr, Ba и Fe 2+ ) – в этом случае получим обычный обменный процесс:

МеCl2 + Na2CO3 = МеCO3 + 2NaCl (Ме – Fe, Ca, Sr, Ba).

  1. Взаимный гидролиз , протекающий при смешивании двух солей, гидролизованных по катиону и по аниону. Продукты гидролиза по второй ступени усиливают гидролиз по первой ступени и наоборот. Поэтому в таких процессах образуются не просто продукты обменной реакции, а продукты гидролиза (совместный или взаимный гидролиз). Соли металлов со степенью окисления +3 (Al 3+ , Cr 3+ ) и соли летучих кислот (карбонаты, сульфиды, сульфиты) при смешивании в растворе (взаимном гидролизе) образуют осадок гидроксида и газ (H2S, SO2, CO2):

Соли Fe 3+ при взаимодействии с карбонатами также при смешивании в растворе (взаимном гидролизе) образуют осадок гидроксида и газ:

! Исключения: при взаимодействии солей трехвалентного железа с сульфидами реализуется окислительно-восстановительная реакция:

2FeCl3 + 3K2S(изб) = 2FeS + S↓ + 6KCl (при избытке сульфида калия)

При взаимодействии солей трехвалентного железа с сульфитами также реализуется окислительно-восстановительная реакция.

Полные уравнения таких реакций выглядят довольно сложно. Поначалу я рекомендую составлять такие уравнения в 2 этапа: сначала составляем обменную реацию без участия воды, затем разлагаем полученный продукт обменной реакции водой. Сложив эти две реакции и сократив одинаковые вещества, мы получаем полное уравнение необратимого гидролиза.

3. Гидролиз галогенангидридов и тиоангидридов происходит также необратимо. Галогенангидриды разлагаются водой по схеме ионного обмена (H + OH — ) до соответствующих кислот (в случае водного гидролиза) и солей (в случае щелочного гидролиза). Степень окисления центрального элемента и остальных при этом не изменяется!

Галогенангидрид – это соединение, которое получается, если в кислоте ОН-группу заменить на галоген. При гидролизе галогенангидридов кислот образуются соответствующие данным элементам и степеням окисления кислоты и галогеноводородные кислоты.

Галогенангидриды некоторых кислот:

КислотаГалогенангидриды
H2SO4SO2Cl2
H2SO3SOCl2
H2CO3COCl2
H3PO4POCl3, PCl5

Тиоангидриды (сульфангидриды) — так называются, по аналогии с безводными окислами (ангидридами), сернистые соединения элементов (например, Sb2S3, As2S5, SnS2, CS2 и т. п.).

  1. Необратимый гидролиз бинарных соединений, образованных металлом и неметаллом:
  • сульфиды трехвалентных металлов вводе необратимо гидролизуются до сероводорода и и гидроксида металла:

при этом возможен кислотный гидролиз, в таком случае образуются соль металла и сероводород:

  • гидролиз карбидов приводит к образованию гидроксида металла в водной среде, соли металла в кислой де и соответствующего углеводорода — метана, ацетилена или пропина:
  1. Некоторые соли необратимо гидролизуются с образованием оксосолей :

BiCl3 + H2O = BiOCl + 2HCl,

SbCl3 + H2O = SbOCl + 2HCl.

Алюмокалиевые квасцы:

Количественно гидролиз характеризуется величиной, называемой степенью гидролиза .

Степень гидролиза (α) — отношение количества (концентрации) соли, подвергающейся гидролизу, к общему количеству (концентрации) растворенной соли. В случае необратимого гидролиза α≅1.

Факторы, влияющие на степень гидролиза:

1. Температура

Гидролиз — эндотермическая реакция! Нагревание раствора приводит к интенсификации процесса.

Пример : изменение степени гидролиза 0,01 М CrCl3 в зависимости от температуры:

2. Концентрация соли

Чем меньше концентрация соли, тем выше степень ее гидролиза.

Пример : изменение степени гидролиза Na2CO3 в зависимости от температуры:

По этой причине для предотвращения нежелательного гидролиза хранить соли рекомендуется в концентрированном виде.

3. Добавление к реакционной смеси кислоты или щелочи

Изменяя концентрация одного из продуктов, можно смещать равновесие реакции гидролиза в ту или иную сторону.

Уравнения гидролиза солей

По этой ссылке вы найдёте полный курс лекций по математике:

Растворение веществ в воде часто сопровождается химическим взаимодействием обменного характера. Подобные процессы объединяют под названием гидролиза. Гидролизу подвергаются самые различные виды веществ: соли, углеводы, белки, сложные эфиры, жиры и т. д. Одним из важнейших случаев гидролиза является гидролиз солей. Под ним понимают обменное взаимодействие ионов растворенной соли с водой с образованием слабого электролита.

В результате гидролиза образуются — либо слабое основание, либо слабая кислота, либо то и другое, вследствие чего имеет место смещение равновесия диссоциации воды: Рассмотрим следующие случаи гидролиза солей. Q При растворении соли, образованной катионом сильного основания и анионом сильной кислоты (например, KN03, CsCl, Rb2S04 и др.), равновесие диссоциации воды существенно не смещается, так как ионы такой соли с водой не образуют малодиссоциированных продуктов.

Поэтому, например, в системе: CsCl + НОН СзОН + НС1 или cs+ 4- сг + нон т± сз+ + он» + н+ + сг, нон он

единственным малодиссоциированным соединением является вода. В результате равновесие реакции нацело сдвинуто влево, т. е. гидролиз CsCl практически не происходит, и раствор не содержит заметного избытка ни ионов водорода, ни гидроксид-ионов, т. е. имеет нейтральную реакцию. [2]

Соли, образованные катионами сильных оснований и анионами слабых кислот (СН3СООК, Na2C03, K2S и др.), подвергаются гидролизу. Уравнение гидролиза таких солей на примере ацетата калия можно представить следующим образом: СН3СОК + НОН +± СН3СООН + КОН, СН3СОО» + К+ + НОН т± СН3СООН + К* + ОН» или сн3соо- + нон сн3соон 4- он-. (1) Уравнение показывает, что в данном случае гидролизу подвергается анион соли; реакция сопровождается образованием малодиссоциированной кислоты.

При этом связываются ионы водорода воды и в растворе накапливаются гидроксид-ионы, которые и придают ему щелочную реакцию. [3) Соли, образованные катионами слабых оснований и анионами сильных кислот, также гидролизуются (NH4C1, NH4N03, CuC12 и др.). Например: Гидролизу, в этом случае, подвергается катион соли; результатом реакции является образование малодиссо-циированного гидроксида. При этом связываются гид-роксид-иоиы воды и в растворе накапливаются ионы водорода, которые и придают раствору кислую реакцию.

Следует подчеркнуть, что в процессах, отражаемых уравнениями (1) и (2), вода является более слабым электролитом, чем уксусная кислота и гидроксид аммония. Поэтому равновесие реакций (1) и (2) сильно смещено влево, в результате чего гидролиз таких солей идет лишь в определенной степени. R] Соли, образованные катионами слабых оснований и анионами слабых кислот (CH3COONH4, AI2s3, А1(СН3СОО)3 и др.), наиболее легко подвергаются гидролизу, так как их ионы связывают одновременно в слабые электролиты и Н+ и ОН

, образующиеся при диссоциации.

Образование в результате гидролиза слабой кислоты и слабого гидроксида обеспечивает сдвиг равновесия этого процесса вправо.

Реакция среды в растворах подобных солей зависит от относительной силы кислоты и основания. При равной их силе она может быть и нейтральной, что имеет место, например, при гидролизе CH3COONH4: Практически приходится чаще всего иметь дело с гидролизом солей, содержащих в своем составе многозарядный ион слабого компонента (основания или кислоты) и однозарядные ионы сильного.

При гидролизе подобных соединений — например К2С03 или Cu(N03)2, образуются, как правило, соответственно кислые и основные соли: или Дальше, до образования свободной слабой кислоты или основания, гидролиз обычно не идет из-за накопления в растворе, соответственно, ионов ОН» или Н»1″. Исключения имеют место, когда основные или кислотные свойства многовалентных ионов выражены крайне слабо или когда процесс гидролиза усиливают специально (например, нагреванием).

В подобных случаях гидролиз идет ступенчато и часто практически до конца: FeCl3 + НОН ?± FeOHCl2 + НС1, (I ступень) FeOHCl2 + НОН £ Fe(OH)2Cl + НС1, (II ступень) Fe(OH)2Cl + НОН Fe(OH)3 I + НС1. (Ill ступень) Кислые соли слабых кислот также подвергаются гидролизу. Однако здесь наряду с гидролизом происходит и диссоциация аниона кислой соли. Так, в растворе гидрокарбоната калия одновременно протекают гидролиз иона НС03

, приводящий к накоплению гидроксид-ионов: НС03- + НОН Н2С03 + ОН» и его диссоциация, в результате которой образуются ионы Н+: НС03″ т± С032″ + Н+.

Таким образом, реакция раствора кислой соли может быть как щелочной (если гидролиз аниона преобладает над его диссоциацией — именно это и происходит в растворе гидрокарбоната), так и кислой (в обратном случае). Количественно процесс гидролиза характеризуется с помощью степени гидролиза h и константы КГ. Степенью гидролиза соли называется отношение числа гидро-лизованных молекул соли к общему числу растворенных молекул соли.

Возможно вам будут полезны данные страницы:

Ее обычно выражают в процентах: число гидролизованных молекул . общее число растворенных молекул В большинстве случаев степень гидролиза солей незначительна. Так, в 1 % -ном растворе ацетата натрия h составляет 0,01 % при 25 °С. Степень гидролиза зависит от природы растворенной соли, ее концентрации и температуры раствора. Выражение для константы гидролиза соли (Кг) получают исходя из процесса гидролиза, константы равновесия и постоянства концентрации молекул воды: МАп + НОН МОН + НАп [МОН][НАп] [МАп][НОН] ‘ К[Н20] =

Влияние химической природы

составляющих данную соль ионов на степень и константу гидролиза было уже подробно рассмотрено выше. Ввиду обратимости гидролиза равновесие этого процесса зависит от всех тех факторов, которые влияют на равновесие реакций ионного обмена. Например, оно смещается в сторону разложения исходной соли, если получающиеся продукты (чаще всего в виде основных солей) малорастворимы.

Добавляя к системе избыток одного из образующихся при реакции веществ (обычно кислоты или щелочи), можно, в соответствии с законом действующих масс, сместить равновесие в сторону обратной реакции. Напротив, добавление избытка воды, т. е. разбавление раствора, в соответствии с законом действующих масс, ведет к тому, что гидролиз протекает полнее.

Влияние температуры на степень гидролиза вытекает из принципа JTe Шателье. Процесс гидролиза является эндотермическим (поскольку реакция нейтрализации, являющаяся обратной процессу гидролиза, экзотермич-на). С повышением температуры равновесие смещается в сторону эндотермической реакции, т. е. процесс гидролиза усиливается.

Из изложенного выше вытекают общие правила, касающиеся смещения гидролитического равновесия. Если желательно сместить его в сторону возможно более полного разложения соли, то нужно работать с разбавленными растворами и при высокой температуре. Напротив, чтобы гидролиз протекал как можно меньше, следует работать с концентрированными растворами и «на холо- ду». Вопросы и задачи для самостоятельного решения 1.

Какие ученые разработали теорию электролитической диссоциации? 2. Приведите примеры электролитов, относящихся к различным классам неорганических соединений. 3. Как влияет природа химической связи на диссоциацию веществ в растворах? 4. Изобразите схему диссоциации в воде электролитов, имеющих ионную кристаллическую решетку. 5. Изобразите схему диссоциации в воде полярных молекул электролитов. 6. Какова роль диэлектрической проницаемости растворителя в процессе электролитической диссоциации?

7. Как и почему изменяется степень диссоциации слабых электролитов при изменении концентрации раствора? Приведи примеры веществ, являющихся слабыми электролитами. 8. Каково влияние температуры на процесс электролитической диссоциации? 9. При каких условиях возможно сравнение значений степеней диссоциации слабых электролитов? 10. Каково принципиальное отличие сильных электролитов от слабых? 11. Почему разделение электролитов на сильные и слабые в значительной степени условно? 12. Каковы особенности поведения растворов сильных электролитов?

13. Изобразите схемы процессов диссоциации следующих веществ: а) Н3Р04; б) Си(ОН)2; в) MgS04; г) NaHS03; д) MgOHCl. 14. К какому классу неорганических соединений относят воду? Почему? 15. Рассчитайте концентрации ионов в растворах следующих электролитов: а) К+ в растворе карбоната калия с массовой долей К2С03Ю% (р-1,09 г/мл); б) S042

— в 0,5 М растворе K2S04 • A12(SG4)3. Ответ: 1,58; 2. 16. Концентрация сульфат-ионов в растворе сульфата железа (III) составляет 0,16 моль/л. Сколько граммов этой соли содержится в 1 л раствора? Диссоциация соли полная. Ответ: 20 г.

17. Определите степень диссоциации муравьиной кислоты в растворе с концентрацией 0,01 моль/л, если в 1 мл раствора содержится 6,82 • 1018 растворенных частиц (не-диссоциированных молекул и ионов). Ответ: 13,3%. 18. В 1л 0,01 М раствора уксусной кислоты содержится 6,26 • 1021 ее молекул и ионов. Определите степень диссоциации уксусной кислоты. Ответ: 4 %. 19. Рассчитайте массовую долю (%) раствора муравьиной кислоты (р= 1,0 г/мл), если концентрация ионов водорода в нем составляет 8,4 • 10″3 моль/л. Ответ: 1,55%.

20. Рассчитайте рН раствора, если концентрация ионов водорода равна 4,2 • 10

5 моль/л. Ответ: 4,37. 21. Определите рН раствора, если концентрация ОН» равна 10″4 моль/л. Ответ: рН=10. 22. Определите концентрации ионов Н+ и ОН’в растворах, рН которых равна 5,8; 11,4. Ответ: 1,58 • 10

6 моль/л; 6,33 • 10

9 моль/л; 3,98 • 10

12 моль/л; 0,25 • 10

2 моль/л. 23. Напишите в молекулярной и ионно-молекулярной формах уравнения реакции взаимодействия следующих веществ:

а) K2S + NiS04 — д) Ca(N03)2 + К2С03 — б) K2S03 + НС1 — е) HN03 + Ва(ОН)2 в) AgN03 + KI ж) Fe(N03)2 + Na3P04 — г) Fe(S04)3 + КОН з) H2S04 + RbOH 24 Напишите в сокращенной ионной форме уравнения реакций, представленных следующими схемами: а) KOH + FeCl2— в) НСООК 4- H2S04 — б) СаС03 + НС1 — г) KCN + НС1 25. Что называется гидролизом солей? Почему растворы солей могут иметь кислую, щелочную или нейтральную реакцию среды? 26. Какие соли подвергаются гидролизу частично? Приведите примеры. 27. Какие соли и почему подвергаются гидролизу полностью? Приведите примеры.

28. Какие соли не подвергаются гидролизу? Почему это происходит? Приведите примеры таких солей и докажите справедливость своих суждений, написав соответствующие уравнения реакций. 29. В каких случаях при гидролизе солей образуются: а) кислые соли; б) основные соли? Приведите примеры на каждый случай, написав уравнения реакций. 30. Какие вещества помимо солей подвергаются процессу гидролиза? 31. Какое значение имеет гидролиз: а) в живых организмах; б) в важнейших химических производствах; в) в природе? 32. Что такое степень гидролиза и какие факторы влияют на ее величину?

Привести примеры. 33. Что характеризует константа гидролиза? От каких факторов она зависит? 34. Составьте молекулярные и ионно-молекулярные уравнения реакции гидролиза следующих солей: Са(СН3СОО)2, КС1, K2C03, Ni(N03)2. Укажите окраску индикаторов в их растворах. 35. Укажите, какие из солей подвергаются гидролизу: FeCl3, K2S, SnCl2, AgN03. Составьте молекулярные и ионно-молекулярные уравнения процесса гидролиза.

36. Изменится ли окраска фенолфталеина при добавлении к раствору сульфида натрия? 37. Почему раствор хлорида алюминия при добавлении лакмуса окрашивается в красный цвет? 38. Напишите уравнение реакции гидролиза карбоната рубидия и объясните, как влияет на гидролиз разбавление и нагревание раствора. 39. В одну пробирку поместили раствор карбоната цезия, в другую — раствор хлорида никеля (II). Почему при добавлении фенолфталеина малиновую окраску приобретает только один раствор?

Какой? Составьте уравнения гидролиза этих солей. 40. Закончите уравнения следующих реакций с учетом возможности необратимого гидролиза образуемых солей: а) A12(S04)8 + Na2S + НОН = б) FeCl3 + (NH4)2C03 + НОН = . 41. Составьте уравнения реакций необратимого гидролиза солей А1(СН3СОО)3и Сг2(С03)3. 42. Почему при добавлении воды к концентрированному водному раствору хлорида олова (И) выпадает осадок основной соли, а при добавлении раствора соляной кислоты выпадение осадка не происходит?

Присылайте задания в любое время дня и ночи в ➔

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.


источники:

http://chemege.ru/gidroliz/

http://natalibrilenova.ru/uravneniya-gidroliza-solej/