Момент количества движения и уравнение моментов

Динамика твердого тела и системы. Все определения, законы и теоремы

Механическая система. Основные понятия

Свойства внутренних сил

Приводимые ниже свойства внутренних сил являются третьим законом Ньютона для системы материальных точек.

Свойство 1
Векторная сумма (главный вектор) всех внутренних сил системы равна нулю:
.

Свойство 2
Векторная сумма моментов всех внутренних сил системы, относительно произвольной точки O равена нулю:
.

Дифференциальные уравнения движения точек системы

Согласно второму закону Ньютона, дифференциальное уравнение движения материальной точки k массой mk , входящей в систему, имеет вид:
.
Спроектировав это уравнение на оси декартовой системы координат Oxyz , получим для каждой точки три уравнения:
.

Общие теоремы динамики механической системы

Общие теоремы динамики – это теорема о движении центра масс механической системы, теорема об изменении количества движения, теорема об изменении главного момента количества движения (кинетического момента) и теорема об изменении кинетической энергии механической системы.

Теорема о движении центра масс механической системы

Теорема о движении центра масс механической системы
Произведение массы системы на ускорение ее центра масс равно векторной сумме всех действующих на систему внешних сил:
.

Здесь – масса системы; – ускорение центра масс системы: ;
– скорость центра масс системы: ;
– радиус вектор (координаты) центра масс системы: ;
– координаты и массы точек, из которых состоит система.

Теорема об изменении количества движения (импульса)

Теорема об изменении количества движения в дифференциальной форме
Производная по времени от количества движения (импульса) системы равна векторной сумме всех действующих на систему внешних сил:
.

Теорема об изменении количества движения в интегральной форме
Изменение количества движения (импульса) системы за некоторый промежуток времени равно сумме импульсов внешних сил за тот же промежуток времени:
.

Закон сохранения количества движения (импульса)
Если сумма всех внешних сил, действующих на систему, равна нулю, то вектор количества движения системы будет постоянным. То есть все его проекции на оси координат будут сохранять постоянные значения.

Если сумма проекций внешних сил на какую-либо ось равна нулю, то проекция количества движения системы на эту ось будет постоянной.

Тело переменной массы. Движение ракеты

Уравнение Мещерского
Дифференциальное уравнение движения точки переменной массы называется уравнением Мещерского:
.
Здесь – масса тела, которая является функцией от времени t ; – векторная сумма приложенных к телу внешних сил; – скорость отделяющихся частиц относительно тела.

Реактивная сила направлена в сторону, противоположную истечению отделяющихся частиц (топлива), и определяется по формуле:
,
где – расход топлива (кг/с).

Формула Циолковского

Скорость v движения ракеты под действием одной только реактивной силы определяется по формуле Циолковского:
.
Здесь – начальная скорость ракеты; u – скорость истечения реактивных газов относительно ракеты; – масса сгоревшего топлива; – масса корпуса ракеты с остатками топлива. Когда топливо выгорает полностью, то – это масса корпуса ракеты с полезной нагрузкой.

Отношение первоначальной массы ракеты (с полным запасом топлива) к массе корпуса ракеты называется числом Циолковского:
.
Для достижения первой космической скорости км/с , при , требуется, чтобы скорость истечения реактивных газов была не менее км/с . В современных жидкостных двигателях удается получить скорость истечения км/с . Поэтому, для достижения космических скоростей, ракеты должны быть многоступенчатыми.

Теорема об изменении главного момента количества движения (теорема моментов)

Теорема моментов в инерциальной системе координат

Главный момент количества движения (или кинетический момент) системы является характеристикой вращательного движения. Возьмем систему координат Oxyz с началом в точке O . Тогда , проекции кинетического момента системы на оси координат являются моментами количества движения системы относительно этих осей:
;
;
.

Если система состоит из нескольких частей, то главный момент количества движения системы равен сумме моментов количеств движения отдельных ее частей.

Теорема об изменении главного момента количества движения (теорема моментов)
Производная по времени от главного момента количества движения системы относительно некоторого неподвижного центра O равна сумме моментов всех внешних сил системы относительно того же центра:
(М2) .

Выпишем компоненты уравнения (М2) в неподвижной системе координат Oxyz :
;
;
.

Закон сохранения главного момента количества движения (момента импульса)
Если сумма моментов всех приложенных к системе внешних сил относительно данного неподвижного центра O равна нулю, то главный момент количества движения системы относительно этого центра будет постоянным. То есть все его проекции на оси координат будут сохранять постоянные значения:
.

Часто встречаются случаи, когда система вращается вокруг неподвижной оси. Тогда нужно спроектировать векторное уравнение (М2) на направление этой оси. В результате получим теорему моментов, применительно к вращению относительно оси.

Производная по времени от кинетического момента системы относительно некоторой неподвижной оси равна сумме моментов всех внешних сил системы относительно этой оси. Если сумма моментов всех приложенных к системе внешних сил относительно некоторой неподвижной оси равна нулю, то кинетический момент системы относительно этой оси будет постоянным.

Теорема моментов в системе координат, связанной с центром масс

Кинетический момент системы относительно неподвижного центра удобно использовать в тех задачах, в которых система имеет одну или несколько закрепленных точек. Например при вращении тела или системы тел вокруг точки или оси. Когда таких точек нет, то наиболее удобным в использовании является кинетический момент относительно центра масс в системе координат, в которой центр масс покоится, а оси остаются параллельными осям инерциальной системы отсчета. В общем случае, система отсчета, связанная с центром масс, не является инерциальной, но она не вращается относительно инерциальной системы отсчета.

Главным моментом количества движения системы относительно ее центра масс C называется величина , равная векторной сумме моментов количеств движения всех точек системы относительно центра масс в системе отсчета, в которой центр масс покоится, а оси системы координат параллельны осям инерциальной системы координат:
(М3) .
Здесь – скорости точек системы и скорость ее центра масс в инерциальной системе отсчета. Тогда – скорость точки массой в системе отсчета, связанной с центром масс.

Связь кинетических моментов в различных системах отсчета
Кинетический момент системы относительно неподвижной точки O равен сумме кинетического момента центра масс C , если в нем сосредоточить всю массу системы, и кинетического момента системы относительно центра масс :
(М4) .

То есть можно сказать, что вращение системы вокруг неподвижной точки O складывается из вращения центра масс C вокруг точки O , и вращения элементов системы вокруг центра масс C .

В (М2) ⇑ мы использовали кинетический момент системы, вычисляемый относительно произвольной неподвижной точки в инерциальной системе отсчета. Уравнения для кинетического момента имеют тот же вид, если в качестве полюса взять центр масс C системы.

Теорема моментов относительно центра масс системы
Производная по времени от главного момента количества движения системы относительно ее центра масс C , равна сумме моментов всех внешних сил системы относительно того же центра:
(М5) .

В (М5) мы используем неинерциальную систему координат, начало которой, в течении всего движения системы, находится в центре масс, а оси параллельны осям инерциальной системы координат. Естественно, что если мы выберем инерциальную систему координат, начало которой в данный момент времени совпадает с центром масс, то теорема моментов не изменит своего вида (М5). То есть центр масс обладает такой особенностью, что теорема моментов относительно него имеет одну и ту же форму, как в инерциальной системе отсчета, так и в неинерциальной системе, начало которой на всем протяжении движения совпадает с центром масс, а оси параллельны осям инерциальной системы отсчета. Такая особенность возникает только для центра масс системы. Для других точек, уравнение моментов в неинерциальной системе отсчета не имеет вида (М5).

Кинетический момент твердого тела

Пусть твердое тело вращается с угловой скоростью ω вокруг неподвижной оси Oz . Тогда его кинетический момент относительно этой оси равен произведению момента инерции относительно этой оси на угловую скорость вращения:
.
Если на твердое тело действуют внешние силы, то применяя теорему моментов, находим:
.
Если момент сил относительно оси Oz равен нулю: , то угловая скорость постоянна: .

В произвольном случае, кинетический момент выражается через компоненты угловой скорости и тензора инерции. Пусть, в данный момент времени, скорость точки O тела равна нулю: . То есть точка O является мгновенным центром вращения тела. Тогда компоненты кинетического момента тела относительно точки O определяется по формуле:
.
Здесь – компоненты тензора инерции тела ⇑ относительно точки O . Они связаны с моментами инерции формулами ⇑. Также подразумевается, что индексы p, q принимают значения x, y, z :
.

Здесь мы выбрали в качестве полюса неподвижную (в рассматриваемый момент времени) точку. Если, в качестве полюса выбрать центр масс тела, то компоненты момента импульса определяются по аналогичной формуле:
.
Для других точек, момент импульса выражается через угловую скорость более сложным образом.

В большинстве случаев, наиболее удобным полюсом оказывается центр масс C тела. Тогда, для компонент кинетического момента относительно произвольного центра O , имеем:
.
Здесь – радиус-вектор, проведенный из точки O в точку центра масс C ; m – масса тела; – скорость центра масс; – компоненты тензора инерции относительно точки C . Как видно, первое слагаемое является кинетическим моментом материальной точки, находящейся в центре масс тела и движущейся со скоростью центра масс. Второе слагаемое является вкладом вращения тела относительно его центра масс. То есть, как было указано выше ⇑, кинетический момент твердого тела относительно произвольной неподвижной точки O равен сумме кинетического момента поступательного движения центра масс относительно точки O и кинетического момента вращательного движения тела относительно его центра масс.

Теорема об изменении кинетической энергии

Кинетической энергия системы

Если система состоит из нескольких тел, то кинетическая энергия системы равна сумме кинетических энергий тел, составляющих систему.

Теорема Кенига
Кинетическая энергия системы равна сумме кинетической энергии центра масс C системы, масса m которого равна массе всей системы: , и кинетической энергии этой системы в ее движении относительно центра масс:
.
Здесь – скорость движения центра масс.

Если тело массы m совершает поступательное движение со скоростью , то скорости всех его точек равны . Кинетическая энергия поступательного движения:
(К1) .

Если тело вращается с угловой скоростью ω вокруг неподвижной оси Oz , то кинетическая энергия вращательного движения определяется по формуле:
(К2) ,
где – момент инерции тела относительно оси вращения.

В произвольном случае, кинетическая энергия равна сумме кинетической энергии поступательного движения центра масс и энергии вращательного движения относительно центра масс:
(К3) .
Здесь ω – абсолютное значение угловой скорости вращения тела; CL – ось, проведенная через центр масс, параллельно направлению вектора угловой скорости; – момент инерции относительно оси CL . Направление оси вращения может меняться со временем. Указанная формула дает мгновенное значение кинетической энергии.

Формула (К3) удобна, если тело вращается вокруг неподвижной оси. Если же вектор угловой скорости может менять направление относительно тела, то нам пришлось бы вычислять момент инерции относительно каждого положения оси вращения. В этом случае удобно выразить кинетическую энергию вращения через компоненты тензора инерции относительно центра масс тела:
(К4) .

Работа сил и мощность

Все сказанное в отношении работы и потенциальной энергии в разделе «Динамика материальной точки», имеет место и для динамики системы тел.
См. Работа силы. Мощность Силовые поля и потенциальная энергия
Единственное отличие заключается в том, что там силы приложены только к одной исследуемой точке. Для системы, внешние силы могут быть приложены к разным точкам, составляющих систему. При этом одна сила приложена только к одной точке, но этих сил может быть много. Точку, к которой приложена сила называют точкой приложения силы.

При рассмотрении твердых тел, мы можем упростить реальную систему сил, воспользовавшись результатами статики. Для этого нужно преобразовать сложную систему реальных сил на эквивалентную ей, более простую, систему. Так например, систему сил тяжести, действующих на каждую точку тела, можно заменить одной равнодействующей силой, приложенной к центру масс тела. Тогда все вычисления можно выполнять только для одной силы с точкой приложения в центре масс тела.

Работа при перемещении точки

Элементарная работа , которую совершает сила , при элементарном перемещении ее точки приложения, равна скалярному произведению векторов силы и перемещения:
;
.
То есть она равна произведению модуля вектора силы , перемещения и косинусу угла между ними. Это, в свою очередь, равно произведению касательной компоненты силы к траектории движения, и модуля элементарного перемещения . Здесь – скорость точки приложения силы; – промежуток времени, в течении которого происходит перемещение.

Мощность равна скалярному произведению векторов силы и скорости:
.

Работа , которую совершает сила , при перемещении точки ее приложения из точки в точку , равна сумме (интегралу) элементарных работ:
.

Работа при движении тела

Если тело движется поступательно, то скорости и перемещения всех его точек равны. В этом случае, работа и мощность вычисляются также как и при перемещении точки. Этот случай рассмотрен выше.

Для тела, вращающегося вокруг неподвижной оси Oz , элементарная работа равна произведению момента силы относительно этой оси на элементарный угол поворота dφ :

.
Здесь – мгновенное значение угловой скорости вращения; dt – время, в течении которого происходит поворот на угол dφ .
Мощность равна произведению момента силы на угловую скорость:
.

Для тела, вращающегося вокруг неподвижной точки O , элементарная работа равна скалярному произведению вектора момента силы относительно этой точки на вектор элементарного угла поворота :

.
Вектор элементарного поворота направлен вдоль вектора мгновенной угловой скорости : .
Мощность равна скалярному произведению векторов момента силы и угловой скорости:
.

При произвольном движении твердого тела, мы, произвольным образом, выбираем точку O , связанную с телом, которую называем полюсом. Тогда элементарная работа равна работе, которую совершает сила при перемещении полюса , и работе момента силы относительно полюса при элементарном повороте тела:
.
Заметим, что элементарный угол поворота и угловая скорость вращения не зависят от выбора полюса.
Мощность:
.

Теорема об изменении кинетической энергии системы

Теорема об изменении кинетической энергии системы в дифференциальной форме.
Дифференциал (приращение) кинетической энергии системы при некотором ее перемещении равно сумме дифференциалов работ на этом перемещении всех приложенных к системе внешних и внутренних сил:
.

Теорема об изменении кинетической энергии системы в интегральной форме.
Изменение кинетической энергии системы при некотором ее перемещении равно сумме работ на этом перемещении всех приложенных к системе внешних и внутренних сил:
.

Неизменяемая система – это механическая система, в которой расстояние между любыми двумя взаимодействующими точками остается постоянным во все время движения.
Идеальные связи – это связи, для которых сумма элементарных работ их реакций на любом возможном перемещении системы равна нулю.

Для систем с идеальными связями и неизменяемых систем, сумма работ внутренних сил равна нулю: . Для таких систем, изменение кинетической энергии системы равно сумме работ всех внешних сил, приложенных к системе:
.

Коэффициент полезного действия

В машинах и механизмах, совершающих некоторую полезную работу, силы можно разделить на следующие виды.

Движущие силы – это силы, совершающие положительную работу Aзатр .
Силы полезного сопротивления – это силы, совершающие отрицательную работу – Aпол. сопр , но выполняют полезное действие.
Силы вредного сопротивления – это силы, совершающие отрицательную работу – Aвр. сопр , и не выполняющие полезных действий.
Попеременные силы – это силы, совершающие то положительную, то отрицательную работу, но за достаточно большой промежуток времени, их сумма работ равна нулю. Механический коэффициент полезного действия машины – это величина, равная отношению работы полезных сил сопротивления (полезной работы) к работе движущих сил (затраченной на приведение машины в движение):
.

Пусть Nмаш – полезная мощность машины; Nдв – мощность двигателя. Тогда
.

Закон сохранения полной механической энергии

Если система движется под действием потенциальных сил, то сумма кинетической T и потенциальной Π энергий сохраняет постоянное значение:
.

Механическая энергия – это сумма кинетической и потенциальной энергии.

Уменьшение механической энергии, как правило, связано с ее превращением в тепловую, электрическую, электромагнитную энергию, энергию звука и электромагнитных колебаний (свет, электромагнитные волны). Увеличение механической энергии связано с обратными процессами превращения различных видов энергии в механическую.

Геометрия масс

Моменты и тензор инерции твердого тела

В этом разделе мы рассматриваем величины, характеризующие распределение массы системы в пространстве.

Сложившаяся система обозначений

Тензор инерции твердого тела

Для вычисления момента импульса и кинетической энергии твердого тела, нам нужно знать всего несколько характеристик тела, величины которых зависят от распределения масс точек, составляющих тело. Эти величины составляют компоненты, так называемого, тензора инерции , который определяется относительно некоторого, предварительно выбранного, центра O , и вычисляется по формуле:
(И1) .
Здесь – координаты точки массы в декартовой системе координат, с началом в выбранном центре O ; при p = q , при p ≠ q . Индексы координат нумеруют цифрами, придерживаясь следующих обозначений:
.

Тензор инерции имеет следующие шесть компонент:
;
;
.
Если в качестве полюса O выбрать центр масс C тела, то компоненты момента импульса и кинетическая энергия тела T вычисляются по относительно простым формулам:
.
Здесь – скорость центра масс тела, – компоненты угловой скорости.

Моменты инерции твердого тела

Пользоваться тензором инерции (И1) ⇑ удобно, поскольку, при решении задач, мы сразу можем применить результаты теории тензорного исчисления. Однако сложилось так, что вместо тензора инерции вводят его отдельные компоненты, придав им специфические названия и обозначения.
Осевые моменты инерции:
;
Центробежные моменты инерции:
.
Все это может привести к путанице. Поэтому компоненты тензора инерции мы будем обозначать буквой I . А сложившиеся названия и обозначения его отдельных компонент – буквой J .

Определения моментов инерции

Свойства моментов инерции

Сумма осевых моментов инерции

Знаки моментов инерции
Осевые моменты инерции не могут быть отрицательными:
.
Центробежные моменты инерции могут быть положительными, отрицательными, или равными нулю.

Симметричность моментов инерции
Центробежные моменты инерции симметричны относительно своих индексов:
.

Все моменты инерции имеют размерность [кг·м 2 ].

Для вычисления моментов инерции сплошных тел, мы от суммирования переходим к интегрированию. При этом массу точки mk мы заменяем на дифференциал: . Дифференциал массы dm выражаем через плотность μ и элемент объема : . Далее интегрируем по объему тела V :
.

Моменты инерции в разных системах координат

Если мы от начальной системы координат Oxyz перейдем к другой системе O′x′y′z′ , то величины моментов инерции в новой системе будут отличаться от моментов в старой системе координат. Такие переходы называются преобразованиями системы координат.

Повороты системы координат

Сначала рассмотрим случай, когда две декартовы системы координат Oxyz и Ox′y′z′ имеют общее начало O . То есть вторая система получена из первой поворотом вокруг общего центра O . Согласно тензорной алгебре, любой симметричный тензор, поворотом системы координат можно привести к диагональному виду. То есть можно найти такую декартову систему координат, относительно которой все центробежные моменты равны нулю. Оси такой системы координат называются главными осями инерции тела.

Главная ось инерции тела , относительно некоторой точки O – это ось, для которой оба центробежных момента инерции, содержащие индекс этой оси, равны нулю. Например, если ось z – главная ось инерции, то .
Главный момент инерции тела , относительно некоторой точки O – это момент инерции относительно главной оси инерции.
Главная центральная ось инерции тела – это главная ось, проходящая через центр масс тела.
Главный центральный момент инерции тела – это момент инерции относительно главной центральной оси инерции.

Любое тело в пространстве имеет три главные оси инерции и три значения главных моментов инерции (относительно предварительно выбранной точки O ). При этом главные моменты инерции могут иметь равные значения.
Стоит подчеркнуть, что главные оси определяются относительно определенной точки тела. При выборе другой точки, главные оси могут иметь другие направления.

Тело с плоскостью симметрии
Если распределение массы тела в пространстве имеет плоскость симметрии, то любая ось, перпендикулярная к этой плоскости, будет главной осью инерции тела, а две другие главные оси лежат в плоскости симметрии.

Тело с осью симметрии
Если распределение массы тела в пространстве имеет ось симметрии, то эта ось является главной центральной осью инерции.

Параллельность главных осей
Если точка O расположена на главной центральной оси тела, то главные оси, проходящие через эту точку, параллельны главным центральным осям.

Главная ось, не проходящая через центр масс
Главная ось инерции, не проходящая через центр масс тела, является главной осью инерции только в одной точке.

Инвариантность суммы осевых моментов инерции
Если от одной системы координат Oxyz , мы перейдем к другой Ox′y′z′ с тем же началом, то сумма осевых моментов инерции не изменится при переходе от одной системы к другой:
.

По этой причине, величина полярного момента инерции не зависит от поворотов системы координат. То есть является инвариантом относительно поворотов системы координат. Она зависит от выбранного центра, относительно которого определяются моменты инерции.

Момент инерции относительно произвольной оси

Пусть нам известны моменты инерции тела относительно осей Oxyz . И пусть OL – произвольная ось, проходящая через начало O , составляющая углы с осями Ox, Oy, Oz . Тогда момент инерции тела относительно оси OL определяется по формуле:

.
Если оси x,y,z являются главными осями, то
.

Перенос системы координат. Теорема Гюйгенса-Штейнера

Отсюда следует, что осевой момент инерции будет иметь наименьшее значение относительно той оси, которая проходит через центр масс тела.

Моменты инерции некоторых тел

Однородный стержень

Рассмотрим тонкий однородный стержень длины l и массы m . Выберем начало координат O на одном из его концов. Направим ось Ox вдоль стержня; оси Oy и Oz – перпендикулярно. Эти оси будут главными осями инерции стержня относительно центра O . Осевые моменты инерции имеют следующие значения:
.

Центр масс стержня находится по его середине, в точке C ; . Проведем через нее оси координат Cxy′z′ , параллельные предыдущим. Эти оси являются главными центральными осями инерции со следующими значениями осевых моментов:
.

Прямоугольный параллелепипед

Рассмотрим прямоугольный параллелепипед с длинами ребер a, b, c (см. рисунок). Его центр масс C находится в центре параллелепипеда. Оси, проведенные через центр масс параллельно сторонам, будут главными центральными осями инерции. Моменты инерции прямоугольного параллелепипеда:

.

Полый цилиндр

Рассмотрим полый цилиндр высоты H и радиусами . Его центр масс находится на оси цилиндра, на расстоянии от основания. Через точку C проводим главные центральные оси инерции: ось Cz – вдоль оси цилиндра; оси Cx, Cy – перпендикулярно. Моменты инерции полого цилиндра:

.

Однородный сплошной диск
Тонкий обруч

Динамика твердого тела

Свободное движение твердого тела

Рассмотрим твердое тело массы m , перемещение которого не ограничено в пространстве. Пусть на тело действуют внешние силы , приложенных в точках . Для определения уравнений движения, мы воспользуемся теоремой о движении центра масс ⇑, теоремой моментов относительно центра масс системы ⇑, и выражением кинетического момента тела через компоненты угловой скорости ωq и тензора инерции Ipq тела (в системе координат с началом в центре масс, оси которой параллельны осям неподвижной системы):
(Т1) ;
(Т2) ;
(Т3) .
Здесь – радиус-вектор, проведенный в центр масс тела.

При известных внешних силах , из уравнения (Т1) можно определить закон движения центра масс тела.

Уравнения (Т2)–(Т3) определяют закон движения тела при его вращении. Они записаны в системе отсчета, начало которой находится в центре масс C , а оси параллельны осям инерциальной системы отсчета. Чтобы ими воспользоваться, мы должны найти способ, с помощью которого можно задать положение тела при его вращении. Это можно сделать с помощью углов Эйлера. Тогда оси вращающейся системы координат, связанной с телом, удобно направить вдоль главных центральных осей инерции тела ⇑. Тогда правые части уравнений (Т3) будут выражаться через главные центральные моменты инерций тела ⇑, три угла Эйлера и их производные по времени. Дифференцируя (Т3) и подставляя в (Т2), получим систему дифференциальных уравнений второго порядка для трех углов Эйлера.

Поступательное движение твердого тела

Рассмотрим поступательное движение твердого тела. Для него угловая скорость и угловое ускорение равны нулю: . Тогда момент количества движения постоянен и равен нулю: . Из (Т2) следует, что и главный момент всех внешних сил относительно центра масс должен равняться нулю: .
Дифференциальные уравнения поступательного движения определяются по формулам (Т1) ⇑:
.
Здесь – проекции внешней силы на оси координат. При поступательном движении, все точки тела имеют равные скорости и равные ускорения. Потому определив закон движения одной точки – центра масс , мы получаем закон движения произвольной точки A :
.

Плоское движение твердого тела

Рассмотрим плоское движение твердого тела. Выберем инерциальную систему координат Oxyz . Оси Ox и Oy направим в плоскости движения. Тогда положение тела полностью определяется тремя величинами – двумя компонентами радиус-вектора центра масс C : ; и углом поворота φ . Внешние силы также лежат в рассматриваемой плоскости. Кинетический момент направлен вдоль оси z и выражается через угловую скорость и момент инерции относительно оси, проходящей через центр масс C , перпендикулярно плоскости движения: .

Уравнения (Т1)-(Т3) ⇑ принимают вид:
(Т4) ;
(Т5) .
Здесь – проекции внешней силы на оси координат; – это алгебраический момент силы относительно центра C – то есть проекция момента силы на ось Oz .

Вращение твердого тела вокруг неподвижной оси

Рассмотрим вращение твердого тела вокруг неподвижной оси Oz . Выберем декартову систему координат. Ось Oz направим вдоль оси вращения; оси Ox и Oy – перпендикулярно. Считаем, что перемещение параллельно оси вращения отсутствует. Тогда это плоское движение. Оно происходит в плоскости Oxy . Положение тела определяется только углом поворота φ вокруг оси вращения.

Применяя теорему моментов ⇑ и связь момента с угловой скоростью ⇑, получим дифференциальное уравнение вращения твердого тела вокруг неподвижной оси:
(Т6) .
Здесь – момент инерции тела относительно оси вращения; – вращающий момент – то есть сумма моментов всех внешних сил относительно оси вращения.

Вводя угловое ускорение , дифференциальное уравнение вращения примет вид:
.
Оно аналогично уравнению прямолинейного движения под действием силы Fx :
.

Если вращающий момент является постоянной величиной: , то уравнение (Т6) имеет решение:
.
Здесь – угол поворота и угловая скорость вращения в начальный момент времени ; – угловое ускорение, постоянная величина.

Физический и математический маятники

Далее мы будем приводить данные только для плоского движения маятника. То есть мы считаем, что маятник совершает колебания вокруг неподвижной оси.

Уравнение вращательного движения физического маятника имеет вид:
.
Здесь ось вращения проходит через точку O ; φ – угол поворота между осью маятника и вертикальной прямой; JO – момент инерции маятника относительно оси вращения; P =mg – сила тяжести, действующая на маятник массы m ; a – расстояние от оси вращения O до центра масс C маятника; g – ускорение свободного падения. Введем обозначение: . Тогда
.

Рассмотрим малые колебания . При этом . И мы получаем уравнение гармонических колебаний:
.
Общее решение этого уравнения имеет вид:
.
Здесь – постоянные, которые определяются из начальных условий.

Во многих случаях удобно выразить общее решение уравнения малых колебаний через амплитуду α и начальную фазу колебаний β :
.
Величина k называется угловой частотой колебаний. Период колебаний: . Для малых колебаний, период не зависит от амплитуды. Этот результат является приближенным. При увеличении амплитуды такая зависимость появляется.

Математический маятник – это материальная точка, подвешенная на нерастяжимой невесомой нити, и совершающая колебания под действием силы тяжести. Математический маятник.

Математический маятник является частным случаем физического маятника. Пусть L – длина нити математического маятника. Его центр масс C находится в материальной точке: L = |OC| . Момент инерции: . Выразив силу тяжести P через массу m и ускорение свободного падения g , получим угловую частоту колебаний:
.

Теперь вернемся к физическому маятнику. Если положить , то частота физического маятника будет совпадать с частотой математического маятника длины L :
.

Приведенная длина физического маятника – это длина математического маятника, частота колебаний которого совпадает с частотой колебаний рассматриваемого физического маятника.
Центром качаний физического маятника называется точка K на оси физического маятника, находящаяся на расстоянии его приведенной длины от точки подвеса.

Свойство взаимности
Если физический маятник подвесить за центр качаний K , то его частота колебаний не изменится, а прежняя точка подвеса O станет центром качаний нового маятника.

Положение центра качания
Центр качаний всегда расположен ниже центра масс:
.

Принцип Даламбера

Суть принципа Даламбера состоит в том, чтобы задачи динамики свести к задачам статики. Для этого предполагают (или это заранее известно), что тела системы имеют определенные (угловые) ускорения. Далее вводят силы инерции и (или) моменты сил инерции, которые равны по величине и обратные по направлению силам и моментам сил, которые по законам механики создавали бы заданные ускорения или угловые ускорения

Принцип Даламбера
Если в любой момент времени к каждой точке системы приложить силы инерции и реально действующие силы, то полученная система сил будет находиться в равновесии, и к ней можно применять уравнения статики.

Рассмотрим пример. Путь тело массы m совершает поступательное движение и на него действуют внешние силы . Далее мы предполагаем, что эти силы создают ускорение центра масс системы . По теореме о движении центра масс, центр масс тела имел бы такое же ускорение, если бы на тело действовала сила . Далее мы вводим силу инерции:
.
После этого задача динамики:
.
Превращается в задачу статики:
;
.

Для вращательного движения поступают аналогичным образом. Пусть тело вращается вокруг оси z и на него действуют внешние моменты сил . Мы предполагаем, что эти моменты создают угловое ускорение εz . Далее мы вводим момент сил инерции M И = – Jz εz . После этого задача динамики:
.
Превращается в задачу статики:
;
.

Принцип возможных перемещений

Принцип возможных перемещений применяется для решений задач статики. В некоторых задачах, он дает более короткое решение, чем составление уравнений равновесия. Особенно это касается систем со связями (например, системы тел, соединенные нитями и блоками), состоящих из множества тел

Принцип возможных перемещений.
Для равновесия механической системы с идеальными связями необходимо и достаточно, чтобы сумма элементарных работ всех действующих на нее активных сил при любом возможном перемещении системы была равна нулю.

Возможное перемещение системы – это малое перемещение, при котором не нарушаются связи, наложенные на систему.

Общее уравнение динамики (принцип Даламбера — Лагранжа)

Принцип Даламбера — Лагранжа – это объединение принципа Даламбера с принципом возможных перемещений. То есть, при решении задачи динамики, мы вводим силы инерции и сводим задачу к задаче статики, которую решаем с помощью принципа возможных перемещений.

Принцип Даламбера — Лагранжа.
При движении механической системы с идеальными связями в каждый момент времени сумма элементарных работ всех приложенных активных сил и всех сил инерции на любом возможном перемещении системы равна нулю:
.
Это уравнение называют общим уравнением динамики.

Уравнения Лагранжа

Число обобщенных координат n совпадает с числом степеней свободы системы.

Если, при возможном перемещении системы, изменяются все координаты, то работа, совершаемая внешними силами при таком перемещении, имеет вид:
δA = Q 1 δq 1 + Q 2 δq 2 + . + Qn δqn .
Тогда обобщенные силы являются частными производными от работы по перемещениям:
.

Для потенциальных сил с потенциалом Π ,
.

Уравнения Лагранжа – это уравнения движения механической системы в обобщенных координатах:

Здесь T – кинетическая энергия. Она является функцией от обобщенных координат, скоростей и, возможно, времени. Поэтому ее частная производная также является функцией от обобщенных координат, скоростей и времени. Далее нужно учесть, что координаты и скорости являются функциями от времени. Поэтому для нахождения полной производной по времени нужно применить правило дифференцирования сложной функции:
.

Использованная литература:
А. П. Маркеев, Теоретическая механика, «Ижевская республиканская типография», 1999.
Н. Н. Никитин, Курс теоретической механики, «Высшая школа», 1990.
С. М. Тарг, Краткий курс теоретической механики, «Высшая школа», 2010.
А. А. Яблонский, Курс теоретической механики, часть 2, динамика «Высшая школа», 1986.

Автор: Олег Одинцов . Опубликовано: 20-07-2015 Изменено: 23-08-2019

Уравнение моментов: моменты силы, импульса и инерции

Если линейное перемещение тел описывают в классической механике с помощью законов Ньютона, то характеристики движения механических систем по круговым траекториям вычисляют с помощью специального выражения, которое называется уравнением моментов. О каких моментах идет речь и в чем заключается смысл этого уравнения? Эти и другие вопросы раскрываются в статье.

Момент силы

Всем хорошо известна ньютоновская сила, которая, действуя на тело, приводит к сообщению ему ускорения. Когда же такая сила прилагается к объекту, который закреплен на некоторой оси вращения, то эту характеристику принято называть моментом силы. Уравнение момента силы может быть записано в следующем виде:

Вам будет интересно: Эмфатические конструкции в английском языке: правила составления, особенности перевода

Рисунок, поясняющий это выражение, приведен ниже.

Здесь видно, что сила F¯ направлена к вектору L¯ под углом Φ. Сам же вектор L¯ полагается направленным от оси вращения (указана стрелкой) к точке приложения F¯.

Вам будет интересно: Что такое дендриты и дендритные шипики

Приведенная выше формула представляет собой произведение двух векторов, поэтому величина M¯ также является направленной. Куда будет повернут момент силы M¯? Это можно определить по правилу правой руки (четыре пальца направлены вдоль траектории от конца вектора L¯ к концу F¯, а отставленный палец большой показывает направление M¯).

На рисунке выше выражение для момента силы в скалярном виде примет форму:

Если внимательно всмотреться в рисунок, то можно увидеть, что L*sin(Φ) = d, тогда имеем формулу:

Величина d является важной характеристикой при вычислении момента силы, поскольку она отражает эффективность приложенной F к системе. Эту величину принято называть рычагом силы.

Физический смысл M заключается в способности силы совершить вращение системы. Эту способность может ощутить на себе каждый, если будет открывать дверь за ручку, толкая ее около петель, или же попробует открутить гайку коротким и длинным ключом.

Равновесие системы

Понятие о моменте силы оказывается очень полезным, когда рассматривают равновесие системы, на которую действуют несколько сил, и которая имеет ось или точку вращения. В таких случаях применяют формулу:

То есть система будет находиться в равновесии, если сумма всех моментов сил, приложенных к ней, нулевая. Заметим, что в этой формуле присутствует знак вектора над моментом, то есть при решении следует не забывать учитывать знак этой величины. Общепринятым правилом считается, что действующая сила, которая вращает систему против часовой стрелки, создает положительный Mi¯.

Ярким примером задач рассматриваемого типа являются проблемы с равновесием рычагов Архимеда.

Момент импульса

Это еще одна важная характеристика движения по окружности. В физике ее описывают произведением количества движения на рычаг. Уравнение момента импульса имеет такой вид:

Здесь p¯ — вектор импульса, r¯ — вектор, соединяющий вращающуюся материальную точку с осью.

Поясняющий это выражение рисунок приведен ниже.

Здесь ω — угловая скорость, которая дальше появится в уравнении моментов. Заметим, что направление вектора T¯ находится по тому же правилу, что и M¯. На рисунке выше T¯ по направлению будет совпадать с вектором угловой скорости ω¯.

Физический смысл величины T¯ является таким же, как и характеристики p¯ в случае линейного движения, то есть момент импульса описывает количество вращательного движения (запасенную кинетическую энергию).

Момент инерции

Третья важная характеристика, без которой невозможно составить уравнение движения вращающегося объекта, — это момент инерции. Появляется он в физике в результате математических преобразований формулы для момента импульса материальной точки. Покажем, как это делается.

Представим величину T¯ в следующем виде:

T¯ = r¯*m*v¯, где p¯ = m*v¯

Пользуясь связью между угловой и линейной скоростями, можно переписать это выражение следующим образом:

T¯ = r¯*m*r¯*ω¯, где v¯ = r¯*ω¯

Последнее выражение запишем в виде:

Величина r2*m — это момент инерции I для точки массой m, которая совершает круговое движение вокруг оси на расстоянии от нее r. Этот частный случай позволяет ввести общее уравнение момента инерции для тела произвольной формы:

I — это аддитивная величина, смысл которой заключается в инерционности вращающейся системы. Чем больше I, тем труднее раскрутить тело, и необходимо приложить значительные усилия, чтобы его остановить.

Уравнение моментов

Мы рассмотрели три величины, название которых начинается со слова «момент». Это сделано было намеренно, поскольку все они связаны в одно выражение, получившее название уравнения 3 моментов. Выведем его.

Рассмотрим выражение для момента импульса T¯:

Найдем, как изменяется величина T¯ во времени, имеем:

Учитывая, что производная угловой скорости равна таковой для скорости линейной, деленной на r, а также раскрывая величину I, приходим к выражению:

dT¯/dt = m*r2*1/r*dv¯/dt = r*m*a¯, где a¯ = dv¯/dt — линейное ускорение.

Заметим, что произведение массы на ускорение — это не что иное, как действующая внешняя сила F¯. В итоге получаем:

Мы пришли к интересному выводу: изменение момента импульса равно моменту действующей внешней силы. Это выражение принято записывать в несколько иной форме:

M¯ = I*α¯, где α¯ = dω¯/dt — угловое ускорение.

Это равенство называется уравнением моментов. Оно позволяет рассчитать любую характеристику вращающегося тела, зная параметры системы и величину внешнего воздействия на нее.

Закон сохранения T¯

Полученный в предыдущем пункте вывод свидетельствует о том, что если внешний момент сил будет равен нулю, то момент импульса меняться не будет. В таком случае запишем выражение:

T¯ = const. или I1*ω1¯ = I2*ω2¯

Эта формула носит название закона сохранения величины T¯. То есть любые изменения внутри системы суммарный момент импульса не меняют.

Этот факт используется фигуристами и балеринами во время их выступлений. Также его применяют, если необходимо выполнить поворот вокруг своей оси искусственного спутника, движущегося в космосе.

Момент количества движения в теоретической механике

Содержание:

Момент количества движения материальной точки и системы относительно центра и оси:

Момент количества движения материальной точки относительно центра является динамической характеристикой механического движения точки, выражающейся векторным произведением радиуса-вектора и количества движения материальной точки:

Момент количества движения материальной точки относительно центра

Во многих задачах динамики, например в небесной механике при изучении движения планет или комет вокруг Солнца, приходится учитывать не только количество движения данной точки, его величину и направление, но и ее положение по отношению к центру (к Солнцу).

Динамической характеристикой механического движения, учитывающей положение материальной точки (или частицы) по отношению к данному центру, является момент количества движения точки относительно данного центра.

Пусть количество движения точки M (рис. 180, а) изображается вектором

(182)


Рис. 180

Размерность момента количества движения — это размерность количества движения, умноженная на размерность длины. Таким образом, в физической системе

а в технической системе единиц момент количества движения имеет размерность первой степени относительно длины, относительно силы и относительно времени:

[L]T = L 1 F 1 T 1 .

Если точка M (рис. 181) движется в плоскости хОу, то момент количества движения точки M относительно начала координат удобно выражать через координаты х, у и проекции количества движения mх,mу. Величина момента количества движения равна произведению Kh, или, как видно из чертежа,
L0 = Kh — mvr sin δ = mυr sin (αK—ar).

Заменив синусы и косинусы их значениями

(183)

Момент количества движения материальной точки относительно оси равен проекции на эту ось момента количества движения данной материальной точки относительно какой-либо точки этой оси

Момент количества движения материальной точки относительно оси

Пусть дана какая-либо ось (рис. 182, а). Возьмем на ней произвольную точку О. Пусть момент количества движения материальной точки /И относительно точки О выражается вектором . Спроецируем вектор на данную ось:

ON = OP соs .

Скалярную величину, равную проекции на данную ось момента количества движения материальной точки относительно какой-либо точки той же оси, называют моментом, количества движения материальной точки относительно оси.

Чтобы определить момент количества движения точки M относительно оси, надо спроецировать вектор количества движения (рис. 182, б) на плоскость, перпендикулярную оси, и определить величину момента этой проекции относительно точки О пересечения оси и плоскости. В самом деле, модуль момента количества

движения относительно точки О выражается удвоенной площадью треугольника OAB. Треугольник Oab есть проекция треугольника OAB, двугранный угол определяется линейным, а потому

2 пл. Δ Oab = 2 пл. Δ OAB cos ,

откуда в принятом масштабе

2 пл. Δ Oab OP cos = ON,

что и требовалось доказать.

Момент количества движения Lz материальной точки относительно оси Oz связан с координатами х, у этой точки и с проекциями ее количества движения mх, mу соотношением
Lz = хmу—уmх

Для определения момента количества движения материальной точки относительно координатных осей существуют удобные формулы, к выводу которых мы сейчас приступим.

Пусть х, у, z — координаты материальной точки (рис. 183), —вектор количества движения этой точки, a mυx, mυy и то,— проекции количества движения на оси координат. Чтобы определить момент количества движения точки относительно оси Oz, надо сначала спроецировать вектор K на плоскость хОу. Обозначим эту проекцию . Абсцисса x и ордината у точки приложения проекции те же, что и у вектора. Проекции обоих векторов на оси Ox и Oy также одинаковы. Но, как только что было показано, величина момента вектора относительно начала координат выражается через его проекции и координаты точки приложения формулой (183), следовательно, той же формулой выражается момент количества движения точки относительно оси Oz:

Путем таких же рассуждений выведем аналогичные формулы для Lx и Ly. Обозначая точками производные от координат по времени (проекции скоростей), будем иметь:
(184)


Рис. 183

Иным путем эти же формулы можно просто получить из векторного произведения (182), представив его в виде определителя:

и сравнив это равенство со следующим:

Задача №1

Материальная точка M (рис. 184) массы m движется согласно уравнениям x=r cos πt, у = r sin πt, z = r sin πt. Определить момент количества движения точки M относительно начала координат О.
Рис. 184

Решение. Определим по формуле (184) моменты количества движения точки Al относительно осей координат:

Моменты количества движения материальной точки относительно координатных осей являются проекциями на эти оси момента количества движения той же точки относительно начала координат, поэтому

Направляющие косинусы вектора момента количества движения точки M имеют следующие значения:

Ответ. Момент количества движения точки M постоянен по величине и направлению, равен но модулю mr 2 π и направлен перпендикулярно к оси Ox, под углом 135° к оси Oy и под углом 45° к оси Оz.

Главный момент количеств движения материальной системы относительно центра равен геометрической сумме моментов количеств движения всех точек системы относительно того же центра:

Главный момент количеств движения системы

Если дана система материальных точек и некоторый центр О, то, определив моменты количеств движения каждой материальной точки относительно этого центра, получим пучок векторов, пересекающихся в центре О. Вектор, равный геометрической сумме всех этих векторов, изображает главный момент количеств движения системы материальных точек относительно данного центра:

(185)

Эту же величину называют также кинетическим моментом системы материальных точек относительно данного центра. Главный момент количества движения системы относительно центра является динамической характеристикой механического движения, учитывающей положение материальной системы по отношению к данному центру.

Главный момент количеств движения материальной системы относительно оси равен алгебраической сумме моментов количеств движения всех точек системы относительно этой оси

Момент количества движения материальной частицы относительно осн — величина скалярная. Поэтому для определения главного момента количеств движения системы материальных точек относительно оси надо взять алгебраическую сумму моментов количеств движения всех точек системы относительно этой оси:

Главный момент количеств движения системы относительно оси равен проекции на эту ось главного момента количеств движения той же системы относительно какой-либо из точек оси:

Эту же величину называют также кинетическим моментом системы материальных точек относительно оси.

Для определения главного момента системы относительно координатных осей определим по (184) моменты количеств движения всех частиц системы и затем просуммируем эти выражения:
(186)

Teоpeмы о моменте количества движения

Производная по времени от момента количества движения материальной точки относительно какой-либо оси равна моменту действующей на точку силы относительно той же силы:

Теорема моментов (для материальной точки)

Пусть какая-либо точка массы т движется под действием силы. Напишем выражение момента количества движения этой точки относительно оси Ох:

Дифференцируя ио времени левую и правую части этого равенства, получим

но согласно (126′)

и

где Y и Z—проекции силы, действующей на данную точку.

В правой части мы полу.чили момент силы относительно оси Ох, как это было показано (23) еще в статике (см. § 9).

Согласно этой теореме, называемой теоремой моментов, производная по времени от момента количества движения материальной точки относительно какой-либо оси равна моменту силы, действующей на эту точку, относительно той же оси. Теорема доказана для оси Ох, но совершенно аналогично можно доказать ее и для всякой другой оси:

(187)

Равенства (187) справедливы для любой оси, следовательно, их можно записать и в векторной форме:

(187 / )

Словами это равенство читают так: производная по времени от момента количества движения материальной точки относительно какого-либо центра О равна моменту действующей на эту- точку силы относительно того же центра О.

Если точка движется в одной плоскости, то равенство (187) можно рассматривать как скалярное:

(187 // )

Математический маятник

Задача №2

Материальная точка M массы m подвешена на невесомой и нерастяжимой нити длины I, другой конец которой закреплен неподвижно в точке О (рис. 185). Точке M сообщили начальную скорость υ0, перпендикулярную нити, и вывели из равновесного состояния («математический маятник»). Определить движение точки при условии, что начальная скорость мала.


Рис. 185

Решение. На точку действуют собственный вес G = mg и натяжение T нити. Под действием этих сил и полученной начальной скорости математический маятник движется в вертикальной плоскости. Для решения задачи составим уравнение моментов относительно точки О.

Обозначим через φ угол отклонения маятника, тогда количество движения

Помножив на плечо l, получим момент количества движения:

Момент силы натяжения нити относительно точки О всегда равен нулю, а момент силы G

M0 = — Gl sin φ = — mgl sin φ.

Подставляя в уравнение моментов (187″) и сокращая на ml, получим

Чтобы определить движение математического маятника, надо это уравнение проинтегрировать, по оно не интегрируется в элементарных функциях и требует применения эллиптических функций, относящихся к разряду высших трансцендентных функций. Однако в нашей задаче угол φ изменяется незначительно, так как точка M до начала движения находилась в наинизшем положении, т. е. в состоянии устойчивого’ равновесия, и получила незначительную скорость. Поэтому мы можем положить

Тогда уравнение принимает вид


Мы получили линейное однородное дифференциальное уравнение второго порядка с постоянными коэффициентами. Для интегрирования этого уравнения составим характеристическое уравнение

Корни характеристического уравнения мнимые:

следовательно, общее решение имеет вид

где C1 и C2—постоянные интегрирования.

Определим эти постоянные по начальным данным, для чего предварительно продифференцируем по времени полученное уравнение:

и затем, подставив начальные данные , определим

Обозначая вторую постоянную буквой α, получим

Это уравнение определяет угол поворота как функцию времени, т. е. является кинематическим уравнением качания математического маятника.
Величину

называют частотой качаний математического маятника. Она связана с периодом τм качаний математического маятника обратной зависимостью

Следовательно, период малых качаний математического маятника зависит Только от длины нити и от ускорения £ свободно падающего тела.

Ответ. Малые колебания по дуге радиуса l с периодом
(188)

Если колебания не малые, и sinφ нельзя приравнять φ, то колебания маятника ,неизохроины, т. е. период зависит от амплитуды.

Если момент действующей на материальную точку силы относительно данной оси равен нулю, то момент количества движения точки относительно этой оси постоянен

Интеграл моментов (для материальной точки)

В случае, если момент силы, приложенной к данной материальной точке, относительно какой-либо осн, например относительно оси Oz, постоянно равен нулю, то уравнение моментов относительно этой оси имеет вид

откуда, интегрируя, получаем

Мы доказали теорему, называемую законом сохранения момента количества движения материальной точки относительно оси. Сформулировать ее можно так: если момент силы, действующей на материальную точку, взятый относительно какой-либо оси, постоянно равен нулю, то момент количества движения этой точки относительно той же оси постоянен. Когда на точку действует несколько сил, то здесь (как и везде) под действующей силой мы понимаем равнодействующую.

Момент силы, не равной нулю, относительно оси может равняться нулю только в двух случаях: 1) сила параллельна оси, 2) сила пересекает ось. В обоих этих случаях имеет место закон сохранения момента количества движения относительно данной оси.

Чтобы равнялся нулю момент силы относительно данного неподвижного центра, линия действия силы должна проходить через этот центр. Следовательно, условия сохранения момента количества движения относительно данного центра следующие: 1) равнодействующая сил проходит через этот центр или 2) все силы взаимно уравновешены. В этих случаях

(189 / )

Под действием центральной силы точка описывает плоскую траекторию

Центральная сила

Пусть к точке M массы т приложена сила F, линия действия которой всегда проходит через неподвижный центр О. Такую силу называют центральной. Построим в точке О систему прямоугольных координат хОуг. Моменты силы F относительно осей координат равны нулю, следовательно, моменты количества движения точки M постоянны. Обозначим момент количества движения относительно оси Ox буквой А, относительно оси Oy—буквой В и относительно Oz— буквой С:

m (уz—zy) = А, m (zх— хz) = В, m (ху—ух) — С,

где х, у, я —координаты точки M в какое-либо мгновение, а х, у и z — проекции скорости точки в то же мгновение. Умножим первое из написанных выражений на координату х точки М, второе — на координату у, третье —на z и сложим их:

m (xyz + xyz + xyz—xyz—xyz—xyz) — Ах +By + Сz,

Мы получили уравнение плоскости. Координаты х, у и г точки M должны удовлетворять этому уравнению, следовательно, точка M должна двигаться в этой плоскости. Таким образом, под действием центральной силы точка описывает плоскую траекторию. Например, Земля под действием притяжения к Солнцу движется в плоскости эклиптики.

«Прямая линия, соединяющая планету с Солнцем, описывает равные площади в равные промежутки времени» (Кеплер)

Интеграл площадей

Равенство (189) является первым интегралом дифференциальных уравнений движения точки для рассмотренного случая. Поэтому его называют интегралом моментов. Его называют также интегралом площадей. Чтобы пояснить это название, приведем следующую геометрическую интерпретацию.

Планета P (рис. 186) движется вокруг Солнца О, находящегося в одном из фокусов эллипса. Количество движения планеты изобразим вектором то, касательным к орбите. Момент количества движения планеты относительно оси Oz, перпендикулярной к плоскости орбиты, равен то OB, следовательно, по (189),

а так как масса т планеты постоянна, то

Пусть за время dt планета сместилась на элемент дуги ds = υdt радиус-вектор OP планеты описал сектор, заштрихованный на чертеже. Площадь этого сектора равна

Отсюда видно, что площадь о, описываемая радиусом-вектором планеты, возрастает пропорционально времени t независимо от положения планеты на ее орбите. Планета движется по своей эллиптической орбите неравномерно. Чем ближе она находится к Солнцу, тем быстрее она движется по орбите, но площади, описываемые радиусом-вектором за одинаковые промежутки времени, всегда одинаковы, независимо от того, находится планета (рис. 187) в перигелии P1 (ближайшей к Солнцу точке своей орбиты), или в афелии (наиболее удаленной точке), или же где-либо в другом месте своей орбиты. На чертеже белые и заштрихованные части фигуры обозначают равные площади, соответствующие движению планеты за равные промежутки времени, а именно за 1/12 времени полного оборота планеты вокруг Солнца.

Разумеется, закон площадей справедлив не только для движения планет под действием притяжения к Солнцу. Движение каждой материальной точки под действием всякой центральной силы происходит с постоянной секторной скоростью (σ = const).

Напишем выражение интеграла площадей в декартовых координатах:

Аналогичное выражение в полярных имеет вид

r 2 φ = C1 = 2σ. (189″)

Эту формулу можно получить из предыдущей преобразованием координат. Она полезна при решении ряда вопросов динамики.

Задача №3

Материальная точка M (искусственный спутник) движется по эллипсу (рис. 188) под действием силы притяжения к точке О (к центру Земли), находящейся в одном из фокусов эллипса. Определить скорость υ2 точки M в наиболее удаленной от фокуса О точке P2 ее траектории (в апогее), если скорость в наиболее близком положении P1 (в перигее) равна 8 км/сек, OP1 = 6500 км и OP2 = 6600 км.

Решение. Точка движется под действием центральной силы, следовательно, ее момент количества движения относительно точки О постоянен.

Если массу точки обозначим через m, то момент количества движения точки M в положении P1 получим, умножив массу на скорость и на плечо:

Lo = m∙8∙6500 = 52 ООО m κм 2 ∙κг∙ceκ -1 .

Аналогично в положении P2

Приравнивая друг другу эти два выражения постоянного момента количества движения точки, найдем ее скорость υ2.

Ответ. υ2 = 7,88 км/сек.

Задача №4

Гирька M привязана к концу нерастяжимой нити MOA (рис. 189), часть которой OA пропущена через вертикальную трубку; гирька движется вокруг оси трубки по окружности радиуса MC=R, делая no=120 об/мин. Медленно втягивая нить OA в трубку, укорачивают наружную часть нити до длины OM1 при которой гирька описывает окружность радиуса R. Сколько оборотов в минуту делает гирька по этой окружности?

Решение. Применим теорему моментов. К материальной точке (гирьке) приложены две силы: вес гирьки, направленный по вертикали вниз, и натяжение нити, направленное по нити в точку О. Первая из этих сил параллельна оси трубки, вторая пересекает эту ось; следовательно, моменты обеих приложенных к точке сил относительно оси трубки равны нулю, и согласно (189)

В начале движения гирька описывала окружность радиуса R, делая n0= 120 об/мин. Обозначая массу гирьки через m, определим момент количества движения гирьки относительно оси z в начале движения:

Когда радиус уменьшился, гирька стала делать n оборотов в минуту, но момент количества движения гирьки относительно оси не изменился:

Некоторые сведения из небесной механики

Формулы Бине позволяют решать прямые и обратные задачи динамики при движении точки под действием центральной силы

Уравнение Бине

Многие проблемы динамики содержат вопросы о движении точки под действием центральной силы. Сюда относятся задачи небесной механики о движении планет, искусственных спутников, задачи теоретической физики о движении электрона в поле ионизированного атома и многие другие задачи. Формулы Бине, к выводу которых мы сейчас приступаем, дают решение обоих основных задач динамики в случаях движения точки под действием одной центральной силы.

Под действием центральной силы точка движется в плоскости, а потому ее движение можно описать двумя дифференциальными уравнениями. Напишем эти уравнения в полярных координатах (см. стр. 272), учитывая, что проекция Fr центральной силы F на направление полярного радиуса-вектора равна модулю этой силы (с отрицательным или положительным знаком в зависимости от того, притягивает к центру или отталкивает от него центральная сила движущуюся точку), а проекция центральной силы на трансверсальное (перпендикулярное к радиальному) направление равна нулю:

(129)

Здесь, как обычно, r —полярный радиус-вектор, φ-полярный угол, а одной и двумя точками обозначены первая и вторая производные по времени.

Второе из этих уравнений можно один раз проинтегрировать и получить первый интеграл этих уравнений. Для этого запишем второе уравнение в следующем виде:

и потенцируя, получаем знакомое нам равенство

r 2 φ = C1 = 2σ. (189″)

Система уравнений (129) распадается на два отдельных уравнения:


Исключая φ, получаем одно уравнение

В этом уравнении произведем следующую замену, использовав равенство (189″):

и аналогичным путем:

Получаем дифференциальное уравнение относительно

Это уравнение позволяет определить центральную силу путем дифференцирования уравнения траектории r = r(φ). В небесной механике ему обычно придают другой вид, заменяя полярный радиус-вектор его обратной величиной , тогда

Это уравнение принадлежит Бине и его обычно называют второй формулой Бине. Первая формула Бине позволяет определить квадрат скорости точки по заданной траектории. Вывод первой формулы Бине удобнее провести тоже в полярных координатах и для этого воспользуемся известным из курса математики выражением дифференциала дуги в полярных координатах:

Деля на dt и возводя в квадрат, получим следующее выражение квадрата скорости

Напомним (см. задачу № 35 на стр. 129), что в правой части мы видим сумму квадратов радиальной и трансверсальной скоростей. Определив из равенства 189″ дифференциал времени

подставим это значение в предыдущее уравнение, тогда

Введем опять функцию , т. е. примем: и .
Внесем эти величины в написанное выше уравнение

(191)

Мы получили первую формулу Бине.

Вывод закона всемирного тяготения из законов Кеплера

Задача №5

По движению планет солнечной системы определить силу, вызывающую это движение.
Решение. Планеты движутся по законам, открытым Кеплером:
1. Все планеты (и кометы) движутся по коническим сечениям, в одном из фокусов которого находится Солнце.
2. Площади, описываемые радиусом-вектором планеты относительно Солнца, пропорциональны времени.
3. Для планет (все планеты движутся по эллипсам) квадраты времен обращения относятся, как кубы больших полуосей их орбит.

Уравнение всех конических сечений в полярных координатах имеет вид:

где р— параметр, е—эксцентриситет (у гипербол е > 1, у парабол е—1, у эллипсов е 1 . Тогда

Как видно из (194), момент инерции тела относительно оси равен сумме произведений массы mk каждой материальной частицы на квадрат расстояния этой частицы от оси и является величиной существенно положительной. Поэтому знак всегда совпадает со знаком ω.

Словами равенство (195) можно выразить так: кинетический момент вращающегося тела относительно оси вращения равен произведению угловой скорости на момент инерции тела относительно той же оси.

Дифференциальным уравнением вращения тела вокруг данной неподвижной оси иг является уравнение

Дифференциальное уравнение вращения тела

Подставим выражение (195) в уравнение моментов (192):

(196)
Принимая во внимание известные из кинематики соотношения, перепишем это равенство в следующей форме:

(196′)

(196»)

Зная моменты внешних сил, приложенных к вращающемуся твердому телу, можно найти вторую производную от угла поворота по времени. Интегрируя полученное уравнение, можно выразить угол поворота φ как функцию времени t и определить вращение тела. Конечно, при интегрировании появятся, две постоянные, которые надо определить по начальным данным, т. е. по начальным значениям φ и .

Уравнение (196) называют дифференциальным уравнением вращательного движения твердого тела вокруг неподвижной оси.

Плоское движение тела описывают: уравнениями движения центра масс и уравнением вращения вокруг центральной оси, перпендикулярной плоскости движения

Дифференциальное уравнение плоского движения тела

Если твердое тело движется в плоскости, то его движение можно рассматривать как состоящее из поступательного движения вместе с полюсом и относительного вращательного вокруг оси, проходящей через полюс перпендикулярно плоскости движения.

При относительном движении необходимо учесть кориолисовы силы. Но если за полюс принять центр масс тела, то, как было показано, момент этих сил равен нулю, а потому дифференциальные уравнения плоского движения тела имеют вид:

(197)

Задача №7

Шкив (рис. 191) радиуса r = 20 см и веса 3,27 кГ приводится во вращение ременной передачей. Определить натяжение T1 ведущей и T2 ведомой ветвей ремня, считая T1 = 2T2, если шкив, принимаемый за тонкий обод, вращается с угловым ускорением 1,5 сек -2 , а момент сопротивления Mcoпр= — кГ . м.


Рис. 191

Решение. Задача задана в технической системе единиц. Примем при решении задачи L в см, F — в кГ и T — в сек. Составим дифференциальное уравнение вращения шкива.

На шкив действуют: момент натяжения ведущего ремия М1 = Т1r=2T2r; момент натяжения ведомого ремня M2= — T2r, момент сопротивления Mcoпp = -100 кГ . см; моменты прочих сил (вес шкива, реакции подшипников) равны нулю. Главный момент внешних сил относительно оси вращения равен алгебраической сумме составляющих моментов:

Момент инерции шкива, принимаемого за тонкий обод, равен сумме произведений массы mk каждой частицы обода на квадрат ее расстояния от оси вращения шкива:

Уравнение (196) принимает вид

1,333 ∙ 1,5 = T2 ∙ 20-100,

откуда находим T2. Натяжение T1 ведущего ремня вдвое больше.

Ответ. T1 = 10,2 кГ, T2 = 5,1 кГ или в CИ T1=100h, T2 = 50 н.

Физическим маятником называют твердое тело, способное качаться относительно оси под действием собственного веса

Физический маятник

Твердое тело, закрепленное на горизонтальной или на наклонной оси так, что оно может качаться относительно этой оси под действием собственного веса, называют физическим маятником. Определим период качаний физического маятника на горизонтальной оси. Обозначим буквой φ угол, составляемый плоскостью, проведенной через ось подвеса О и центр масс C маятника с вертикальной плоскостью. Будем считать, что на фйзический маятник действуют только его вес G и реакция оси подвеса (рис. 192). Для составления дифференциального уравнения качаний физического маятника воспользуемся (196)

Здесь J—момент инерции физического маятника относительно оси подвеса и с—расстояние центра масс от оси подвеса.

Если угол φ достаточно мал, то, полагая sinφ≈φ, получим

т. е. дифференциальное уравнение, уже проинтегрированное нами в задаче № 126 и др. Оно описывает гармонические колебания, частота которых

(198)

Длину l математического маятника с таким же периодом качаний, что и данный физический, называют приведенной длиной физического маятника. Чтобы определить эту длину, приравняем период τм качаний математического маятника

(188)

(см. стр. 320) периоду τф качаний физического маятника. Получим

(199)

Отложим от точки О (рис, 193) по прямой ОС отрезок OA, равный приведенной длине физического маятника. Точку А называют центром качания маятника, а ось, проведенную через центр качания параллельно оси подвеса маятника,—осью качания маятника. Если ось качания сделать осью подвеса, то период качаний не изменится. Это свойство использовано в «оборотном маятнике Катера» для гравиметрических измерений.

Рис. 193

Моментом инерции твердого тела относительно оси называют меру инерции этого тела при его вращательном движении вокруг данной оси, выражающуюся суммой произведений массы каждой материальной частицы тела на квадрат расстояния этой частицы от данной оси:

Момент инерции твердого тела относительно оси. Как видно из уравнений (196), угловое ускорение тела зависит не только от момента приложенных к нему внешних сил, но и от момента инерции J тела относительно оси вращения. Чем больше момент инерции тела, тем больший вращающий момент нужен, чтобы сообщить телу заданное угловое ускорение ε.

Отсюда можно сделать заключение, что момент инерции твердого тела относительно оси вращения имеет такое же значение при вращательном движении тела, какое имеет масса тела при его поступательном движении или же масса одной материальной частицы при движении этой частицы.
Следовательно, момент инерции твердого тела относительно оси есть мера инерции этого тела при вращательном движении вокруг данной оси.

Момент инерции тела относительно оси зависит только от масс частиц тела и от их распределения в теле. Исследование моментов инерции, определение центра масс и некоторые другие проблемы, связанные с распределением масс, составляют предмет геометрии масс.

Так как момент инерции является понятием геометрии масс и не зависит от вращения тела, то, очевидно, можно определять моменты инерции не только вращающихся тел относительно оси вращения, но также и тел, не вращающихся относительно любой неподвижной оси. Мы можем считать, что момент инерции неподвижного тела относительно любой оси явится мерой инерции этого тела в случае, если оно будет вращаться вокруг этой оси. Таким образом, момент инерции тела относительно оси является мерой инерции тела в его вращательном движении (реальном или воображаемом) вокруг этой оси.

Момент инерции, как и вращение, является понятием, присущим только телу. В применении к материальной точке оно теряет всякий смысл. Поэтому момента инерции материальной точки не существует.

Если даны твердое тело и координатные оси, то, разбивая мысленно это тело на n элементарных частиц, обозначая массу k-й частицы через mk, ее координаты—через xk, yk и zk (где k принимает последовательно все значения от 1 до n), мы можем написать следующие выражения момента инерции тела относительно осей координат:

(194)

Вообще, если дано какое-либо тело и какая-либо ось и если это тело разбить мысленно,на элементарные массы m1, m2, m3, . mn и обозначить расстояния частиц от оси соответственно rl, r2, r3, . rn, то момент инерции тела относительно оси выразится суммой

(200)

Таким образом, момент инерции тела относительно оси равен сумме произведений, полученных от умножения массы каждой частицы тела на квадрат расстояния этой частицы от оси.

Размерность момента инерции в физической системе единиц и в технической системе единиц:

[J]φ = L 2 M 1 T 0 , [J]t = L 1 F 1 T 2 .

Если тело, момент инерции которого определяют, имеет правильную геометрическую форму и масса в нем распределена непрерывно, то сумму (200) следует заменить интегралом

, (200′)

распространенным по всей массе тела.

Радиусом инерции тела относительно данной оси называют такую величину, имеющую размерность длины, на квадрат которой надо умножить массу тела, чтобы получить значение момента инерции этого тела относительно данной оси:

Радиус инерции

Только в том случае, если все частицы тела отстоят от оси на одинаковом расстоянии, r 2 выходит за знак интеграла (200′) и момент инерции тела выражается произведением квадрата этого расстояния на массу тела. Такой случай можно представить себе, если предположить, что вся масса тела расположена по поверхности круглого цилиндра, построенного вокруг данной осн. В технике (например, в различных каталогах) часто вместо значения момента инерции какой-либо детали машины или какого-либо иного тела приводят так называемый радиус инерции этого тела относительно данной оси, понимая под этим радиус такого воображаемого круглого полого цилиндра, построенного вокруг данной оси, который обладает той же массой m и тем же моментом инерции J относительно этой оси, что и данное тело. Иными словами, под радиусом инерции rи тела относительно данной оси понимают такую величину, имеющую размерность длины, на квадрат которой надо умножить массу тела, чтобы получить значение момента инерции тела относительно этой оси:
(201)

Момент инерции тела относительно какой-либо оси равен моменту инерции того же тела относительно оси, ей параллельной, но проходящей через центр масс тела, плюс произведение массы тела на квадрат расстояния между осями:
Jz = JzC + mc 2 (Эйлер)

Теорема о параллельных осях

Найдем зависимость между моментами инерции одного и того же тела относительно различных осей, параллельных между собой. Пусть известен момент инерции тела относительно некоторой оси Cz, проходящей через центр масс C тела, и требуется определить момент инерции тела относительно оси Oz’, ей параллельной и отстоящей от нее на расстоянии с. Следуя Эйлеру, построим прямоугольные координатные оси с началом в центре масс С, направив ось Cy в плоскости обеих осей (рис. 194).


Рис. 194

Если координаты какой-либо материальной частицы К данного тела обозначим через xk, yk, zk, то квадрат расстояния этой частицы от оси Oz’ определится из треугольника KNL по теореме косинусов:

Зная квадрат расстояния каждой частицы тела от оси Oz’, мы легко определим момент инерции тела, для чего составим сумму произведений массы каждой частицы на квадрат ее расстояния от оси Oz’:

Вынесем общий множитель с за знаки второй и третьей сумм. Первый член правой части выражает момент инерции Jzc тела относительно центральной оси Cz, второй член равен произведению суммы масс всех материальных частиц (т. е. массы всего тела) на квадрат расстояния с между осями, а третий член равен нулю, так как является статическим моментом масс относительно центральной оси. Получаем

(202)

Словами равенство (202) можно прочитать так: момент инерции тела относительно оси равен моменту инерции того же тела относительно оси, проведенной через центр масс тела параллельно данной оси, сложенному с произведением массы тела на квадрат расстояния между осями.

Если надо определить момент инерции тела по известному моменту инерции того же тела относительно оси, параллельной данной, но не проходящей через центр масс, то, проведя через центр масс параллельную ось, можно для двух данных осей написать соотношения

и

откуда непосредственно вытекает

(203)

где c1 и c2—расстояния центра масс от данных осей.

Это равенство позволяет определить момент инерции тела относительно любой оси, если известен момент инерции этого тела относительно какой-либо параллельной оси и известно положение центра масс.

Если известны три момента инерции и три центробежных момента инерции тела относительно осей координат, то можно вычислить его момент инерции относительно любой оси, проходящей через начало координат: J = Jx cos 2 α + Jy cos 2 β + Jz cos 2 γ + 2Jy . z, Jz cos 2 γ—2Jz . x cos β cos γ —2x . y cos a cos β

Теорема о пересекающихся осях

Пусть дано некоторое тело, оси координат xOyz и какая-либо ось OA, составляющая с осями координат углы a, β и γ. Распределение масс тела относительно координатных осей известно, и требуется определить момент инерции тела относительно оси OA.

Рассмотрим сначала одну произвольную материальную частицу К данного тела (рис. 195). Квадрат радиуса-вектора OK этой частицы равен сумме квадратов ее координат:

так как последняя скобка равна единице. Опустим перпендикуляр KN на ось OA. Отрезок ON является проекцией радиуса-вектора OK на ось OA:

Квадрат расстояния произвольной частицы К от оси OA определим из прямоугольного треугольника ONK:

,

Зная квадрат расстояния частиц тела от данной оси, мы легко определим момент инерции тела, для чего составим сумму произведений массы каждой частицы на квадрат расстояния:


(204)

где Jx, Jy и Jz—моменты инерции тела относительно осей координат, a

(205)

т. е. суммы произведений массы каждой частицы тела на две координаты этой частицы—центробежные моменты инерции тела или произведения инерции. Индекс справа и снизу буквы J соответствует координатам, произведения которых стоят под знаком суммы. Между индексами ставят точку, означающую произведение. Центробежные моменты инерции имеют размерность моментов инерции, но в отличие от них могут быть как положительными, так и отрицательными величинами или равняться нулю.


Рис. 195

Три взаимно перпендикулярные координатные оси, проведенные через данную точку в таких направлениях, что центробежные моменты инерции тела относительно этих осей равны нулю, называют главными осями инерции тела в этой точке

Эллипсоид инерции

Если мы будем изменять направление оси OA, то будет изменяться и момент инерции тела относительно этой оси. Зависимость момента инерции тела относительно направления оси может быть легко представлена следующим геометрическим построением. Проведем через начало координат всевозможные направления и вдоль каждого направления

отложим отрезок , где J—момент инерции тела относительно той оси, вдоль которой отложен отрезок ОМ.

Определим геометрическое место точек М, для чего найдем их координаты:

Подставив выражения направляющих косинусов в (204) и сократив на J, получим уравнение второго порядка:

(206)

Этому уравнению удовлетворяют координаты точек М, а следовательно, геометрическое место этих точек есть поверхность второго порядка. Из всех поверхностей второго порядка только эллипсоид не имеет бесконечно удаленных точек, следовательно, концы отложенных отрезков лежат на поверхности эллипсоида. Его называют эллипсоидом инерции. Заметим, что при построении этого эллипсоида мы взяли начало координат в произвольной точке О. Следовательно, для каждого тела в каждой точке пространства можно построить свой эллипсоид инерции с центром в этой точке.Момент инерции тела относительно любой оси, проходящей через эту точку, обратно пропорционален квадрату отрезка оси, лежащей внутри эллипсоида инерции. Ясно, что наибольшей оси эллипсоида соответствует наименьший момент инерции и, наоборот, наименьшей оси эллипсоида — максимальный момент инерции. Напомним, что в эллипсоиде имеются обычно три взаимно перпендикулярные оси, называемые главными. Можно совместить координатные оси с главными осями эллипсоида инерции. Из математики известно, что уравнение эллипсоида, отнесенного к главным осям, не содержит членов с произведениями координат. Следовательно, центробежные моменты инерции относительно этих осей равны нулю. Их называют главными осями инерции в данной точке О, а моменты инерции тела относительно этих осей называют главными моментами инерции. Формула (204) принимает вид

(204′)

Если эллипсоид инерции построен для центра масс тела, то его называют центральным эллипсоидом инерции, а его главные оси — главными центральными осями инерции.

Радиус-вектор и все длины в эллипсоиде инерции Коши имеют размерностью величину, обратную квадратному корню из размерности момента инерции, что вносит ряд осложнений, особенно в графические построения. Значительно удобнее откладывать вдоль каждой оси, проходящей через данную точку А, не , как установил Коши, а величину , где JА (полярный момент инерции тела относительно той точки А, в которой строят эллипсоид инерции) и масса m—величины, постоянные для данного эллипсоида инерции. Это не видоизменяет эллипсоида инерции, но позволяет выразить его полуоси в единицах длины, так как их размерность:

Если фигура лежит в плоскости хОу, то Jz = Jx + Jy

Теорема о плоской фигуре

Докажем еще одну теорему, называемую теоремой о плоской фигуре и полезную при решении многих задач. Материальные тела, одно из измерений которых значительно меньше двух остальных, в механике часто принимают за плоские материальные фигуры. Так возникло понятие момента инерции плоской фигуры. Пусть любая плоская фигура лежит в плоскости xOy. В таком случае координаты zk точек этой фигуры равны нулю и моменты инерции (194) относительно координатных осей:

Складывая два первых равенства, получаем третье; следовательно, для всякой плоской фигуры, лежащей в плоскости хОу,

независимо от направления в этой плоскости осей Ox и Оу.

Момент инерции тела относительно начала координат равен полусумме трех моментов инерции относительно координатных осей или суммe трех моментов инерции относительно координатных плоскостей

Моменты инерции тела относительно полюса и плоскости

Наряду с моментом инерции тела относительно оси применяют понятия: момент инерции тела относительно полюса (иначе называемый моментом инерции относительно точки, или полярным моментом инерции) и момент инерции относительно плоскости, (иначе называемый моментом инерции Бине).

Эти величины не имеют самостоятельного физического смысла и служат как вспомогательные для вычисления моментов инерции относительно оси и для разработки их теории. Математически они выражаются суммами (200), в которых rk означает расстояние материальной частицы от полюса или плоскости. У полярных моментов инерции индекс справа внизу означает полюс, индекс у момента инерции относительно плоскости обычно состоит из двух букв, означающих эту плоскость, причем между буквами не ставят точки в отличие от центробежных моментов инерции (205).

В прямоугольных координатах моменты инерции тела относительно начала и координатных плоскостей выражают суммами:

(208)

(209)

Складывая три момента инерции относительно координатных плоскостей (209), получим момент инерции относительно начала координат (208). Аналогично, складывая три момента инерции относительно координатных осей (194), получим удвоенный момент инерции относительно начала координат, следовательно:

(210)

Обратим внимание на то, что равенство (210) остается справедливым независимо от направления осей координат.

Примеры вычисления моментов инерции

Задача №8

Определить момент инерции тонкого однородного прямолинейного стержня длины l относительно оси, перпендикулярной стержню в его конце. Вычисления провести с различной точностью: сосредоточив массу m стержня в двух точках, в четырех точках, в восьми точках и учитывая, что масса распределена по стержню непрерывно и равномерно.

Решение. 1) Разделим мысленно стержень на две равные части и массу каждой половины сосредоточим в ее середине (рис. 196, а). Момент инерции стержня подсчитаем по (200) как момент инерции неизменяемой системы двух материальных точек:


Рис. 196

2) Разделим мысленно стержень на четыре равные части, массу каждой части будем считать сосредоточенной в ее центре (рис. 196,6). Момент инерции стержня подсчитаем по той же формуле (200), для системы четырех материальных точек:

3) Разделим мысленно стержень на восемь частей и массу каждой части сосредоточим в ее середине (рис. 196, в), а затем подсчитаем момент инерции стержня по формуле (200)

4) Чем на большее число частей мы разбивали стержень, тем меньше оказывалась масса каждой части. Разобьем стержень на бесконечно большое число бесконечно малых отрезков длины dx каждый (рис. 196, г). Чтобы подсчитать массу такого отрезка надо помножить его длину на массу единицы длины . Сумма конечного числа слагаемых (200) превратится в предел суммы бесконечно большого числа бесконечно малых величин, т. е. в интеграл (200′), и мы получим точное решение задачи, взяв интеграл

распространенный по всей массе стержня:

Ответ.

Задача №9

Вычислить момент инерции однородного тонкого круглого диска относительно оси, перпендикулярной к плоскости диска в его центре.

Решение. Если плотность диска (массу единицы его поверхности) обозначим через γ, то масса диска

откуда, дифференцируя,

Подставляем в (200′)

Ответ. Момент инерции диска относительно оси, перпендикулярной к диску в его центре, равен половине произведения массы диска на квадрат его радиуса.

Задача №10

Определить момент инерции однородного круглого цилиндра относительно его оси.

Решение. Поступая, как и в предыдущей задаче, будем иметь:

Ответ. Момент инерции цилиндра относительно его оси равен половине произведения массы цилиндра на квадрат его радиуса.

Задача №11

Определить момент инерции однородного круглого цилиндра относительно образующей.
Решение. По теореме о параллельных осях имеем

Ответ. Момент инерции цилиндра относительно образующей равен трем вторым произведения массы цилиндра на квадрат его радиуса.

Задача №12

Определить радиус инерции цилиндра относительно его оси.
Решение. Подставляя в (201) данные цилиндра, находим

Ответ. Радиус инерции цилиндра равен 0,707 его радиуса.

Задача №13

Вычислить момент инерции диска относительно диаметра.
Решение. Построим в центре диска оси координат, направив ось Oz перпендикулярно к его плоскости. Тогда, по теореме о плоской фигуре (207),

Так как моменты инерции однородного диска относительно каждого его диаметра одинаковы, то Jx = Jy.

Известно, что , а следовательно,

Ответ. Момент инерции диска относительно диаметра равен одной четверти произведения массы диска на квадрат его радиуса.

Задача №14

Вычислить момент инерции диска относительно касательной.

Решение. Моменты инерции диска относительно каждого из его диаметров одинаковы. Для решения задачи применим теорему о параллельных осях, выбрав диаметр, параллельный касательной:

Ответ. Момент инерции диска относительно касательной равен пяти четвертым произведения массы диска на квадрат его радиуса.

Задача №15

Вычислить момент инерции прямого тонкого стержня длины l относительно оси, перпендикулярной к стержню в его середине.

Решение. Обозначим массу единицы длины стержня у. Тогда масса стержня m=γl, дифференциал массы dm = γdl и момент инерции по (200′)

Тот же момент инерции можно получить, применив формулу (202) о моментах инерции тела относительно параллельных осей. Момент инерции стержня относительно оси, перпендикулярной к нему в его конце , из задачи № 132. Расстояние этой оси от центральной равно . Следовательно по (202)
искомый момент инерции стержня относительно центральной оси

Ответ. Момент инерции тонкого стержня относительно оси, перпендикулярной к стержню в его середине, равен одной двенадцатой произведения массы стержня на квадрат его длины.

Задача №16

Определить радиус инерции тонкого стержня длины I относительно оси, перпендикулярной к стержню в его конце.

Решение. Момент инерции тонкого стержня относительно оси, перпендикулярной к стержню в его конце , был определен в задаче № 132.

Для вычисления радиуса инерции нам остается только воспользоваться формулой (201):

Ответ. Радиус инерции тонкого стержня относительно оси, перпендикулярной к стержню в его конце, равен 0,577 его длины.

Экспериментальное определение моментов инерции

Задача №17

Для определения моментов инерции твердых тел применяют прибор (рис. 197), идея которого заключается в следующем. Горизонтальная стрелка F жестко скреплена с вертикальным цилиндром В и может вращаться вместе с ним почти без трения вокруг оси цилиндра. На цилиндре имеется винтовая резьба с большим шагом, по которой может перемещаться массивный диск А. Для определения момента инерции испытуемое тело D закрепили на цилиндре В, затем подняли диск А до наибольшей высоты и предоставили его действию силы тяжести. Опускаясь, диск повернулся по ходу часовой стрелки на некоторый угол φ, а тело D вместе с цилиндром В и стрелкой F повернулось при этом против хода часовой стрелки на угол φ1, отмеченный стрелкой F прибора. Определить момент инерции Jo тела D относительно оси CC2, если момент инерции диска равен Ja, а момент инерции стрелки F с цилиндром В равен Jβ.
Решение. Рассмотрим движение системы, состоящей из 1) диска А, 2) стрелки F, жестко соединенной с цилиндром В и представляющей с ним одно неразрывное целое, и 3) испытуемого тела D. Механическое движение диска передается другим телам системы в виде механического же движения. Тела совершают вращения вокруг оси н для решения задачи удобно воспользоваться теоремой (192) моментов системы относительно оси. На точки системы действуют только вертикальные внешние силы — веса тел и реакция в опоре С. Внешнее трение отсутствует. Трение между диском А и цилиндром В, возникающее при движении диска по винтовой резьбе, является внутренней силой и потому не входит в уравнение моментов. Моменты внешних сил относительно оси CC1 равны нулю, и мы можем написать уравнение (193)


Рис. 197

В начале движения моменты количества движения всех входящих в систему тел были равны нулю, следовательно, C1=O.

Момент количества движения вращающегося тела можно выразить через произведение момента инерции на угловую скорость тела и, раскрывая знак суммы, получим

где ω—угловая скорость диска, a ω1 — угловая скорость цилиндра. Интегрируем уравнение, принимая во внимание начальные условия:

Для конца движения к этому уравнению добавляем еще уравнение

где п зависит от геометрических параметров прибора.
Исключая из этих уравнений угол φ, получаем формулу

из которой можно определить момент инерции испытуемого тела, если угол φ1 найден при наблюдении за движением стрелки F.

Ответ.

Задача №18

Для определения момента инерции шатун подвесили на горизонтальную призму (рис. 198). Через ту же призму перекинули тонкую нить, на одном конце которой висел небольшой грузик, а другой натягивали рукой. Отклонив шатун и грузик из равновесного положения, заставили их свободно качаться в параллельных плоскостях. Изменяя длину нити между призмой и грузом, добились того, что период качания грузика стал в точности равен периоду качания шатуна. Определить момент инерции шатуна относительно оси подвеса, если масса шатуна т = 40,0 кг, расстояние центра тяжести шатуна от оси подвеса C = 75,0 см и длина нити Z = 107,9 см.


Рис. 198

Решение. Принимая груз на нити за математический маятник, применим для решения формулу (199) приведенной длины физического маятника

или
J = 40 • 75• 107,9 = 323 700 кг• см 2 = 32,37 кг• м 2

При этом способе экспериментального определения моментов инерции амплитуда колебаний не ограничена, так как формула (199) справедлива для колебаний физического и математического маятников с любыми одинаковыми амплитудами.

Ответ. J = 32,37 кг• м 2

Задача №19

Для измерения момента трения Mτp в подшипниках махового колеса проделали следующий опыт. Маховое колесо обмотали цепью (рис. 199), оба конца которой во все время опыта лежали на полу. К цепи в точке А при вязали гирю весом G1 и, предоставив ей опускаться с высоты h, измерили время t1 опускания. Затем опыт повторили, заменив гирю G1 гирей G2, которая опустилась с той же высоты за время t2. Вычислить момент трения в подшипниках махового колеса, считая его постоянным и не зависящим от веса гирь и цепи.

Рис. 199

Решение. Применим теорему моментов к системе, состоящей из махового колеса, цепи и груза.
Внешними силами системы являются вес махового колеса, идеальная реакция подшипников, трение в подшипниках, вес гири и той части цепи, которая не лежит на полу, так как лежащие на полу концы цепи уравновешены реакцией пола.

Главный момент внешних сил относительно оси колеса при первом эксперименте был

Кинетический момент системы относительно оси равнялся алгебраической сумме моментов количеств движения всех входящих в систему тел:

где J — момент инерции маховика; P — вес той части цепи, которая не лежит на полу, ω-угловая скорость и r — радиус махового колеса.

По теореме моментов

Разделяя переменные и интегрируя, найдем

В начальное мгновение t = 0 и ω = 0, следовательно C1=O. Выразим ω как и, разделив переменные, проинтегрируем вторично:

Из начальных данных определим C2=O. При опускании груза с высоты h маховое колесо повернулось за время t1 на угол φ1 = ,а потому

Если в этом уравнении имеются две неизвестные величины (MTp и J), то из второго опыта получим второе уравнение:

Решая оба уравнения совместно, получим ответ задачи.

Ответ.

Задача №20

C какой скоростью следовало бы пустить по экватору с запада на восток поезд, масса которого 2000 т, для того чтобы увеличить продолжительность суток на одну секунду? При этом Землю можно считать за однородный шар радиуса 6000 км и массы 5∙ IO21 т (И. В. Мещерский. Сборник зада* по теоретической механике. ГТТИ, 1932, стр. 135).

Решение. Земля вращалась вокруг своей оси, имея на поверхности (относительно) неподвижный поезд. Она совершала один оборот за 86 400 сек. По Земле с запада на восток пустили поезд с искомой относительной скоростью υr. Поезд двигался вперед, отталкиваясь силой трения и с такой же силой (по закону равенства действия и противодействия) отталкивая Землю. Механическое движение поезда передалось Земле в качестве механического же движения, угловая скорость Земли уменьшилась, и Земля стала делать один оборот за 86 401 сек. Ввиду того что переход механического движения от одного тела к другому связан с вращением, применим теорему моментов для системы, понимая под системой Землю и поезд. Примем физическую систему единиц.

Внешние силы системы (притяжение Солнца, Лупы и др.) приложены к центру Земли, и моменты внешних сил относительно земной оси равны нулю. Мы пришли к интегралу моментов (193):

Определим значения величин, входящих в это равенство. Рассмотрим механическую систему до начала движения поезда. Момент количества движения Земли относительно оси вращения равен произведению момента инерции Земли на ее угловую скорость. Землю примем за однородный шар. Момент инерции шара J=0,4mr 3 . Подставляя числовые значения, получим

Поезд был неподвижен относительно Земли, но он участвовал в ее движении. Скорость его υe = ωr; количество движения m2υe, момент количества движения

Находим постоянную С:

Рассмотрим теперь ту же систему после того, как поезд развил скорость vr и продолжительность суток стала 86 401 сек. Момент количества движения Земли уменьшился вследствие уменьшения угловой скорости и стал

Момент количества движения поезда увеличился, так как поезд, кроме переносной скорости (несколько уменьшившейся), получил значительную относительную скорость. Мы рассматриваем абсолютное движение точек системы и

Действие внутренних сил не изменило главного момента количества движения системы, и мы приравниваем друг другу суммы моментов количеств движения системы до начала и во время движения поезда:

Из этого уравнения первой степени определяем υr. Оказывается, что для увеличения продолжительности суток на 1 сек поезд массой 2000 т нужно было бы пустить со скоростью, в 17 миллионов раз превосходящей скорость света. Этот поезд должен был бы совершать по экватору 118 миллионов кругосветных путешествий за каждую секунду.

Ответ. υr = 5,05∙ 10 12 км/ceκ.

Центр удара

Задача №21

В плоскости, проведенной через центр масс C и ось вращения тела, найти такую точку, через которую должен проходить перпепдикулярный к этой плоскости мгновенный импульс, чтобы ось вращения не испытывала удара.

Решение. Для определения этой точки, называемой центром удара, рассмотрим ударные силы, действующие на тело во время удара. Приложенный к телу ударный импульс вызывает мгновенные давления на подшипники, в которых укреплена ось вращения тела, а следовательно, соответствующие мгновенные реакции в подшипниках. Опустим из центра масс C (рис. 200) перпендикуляр CO = с на ось вращения тела. Примем направление ОС за ось Ох, а ось Oy направим перпендикулярно к ней и к оси вращения. Если подшипники расположены на одинаковых расстояниях от точки О, а импульс приложен в плоскости хОу, то реакции в подшипниках можно заменить одной реакцией, приложенной в точке О, и данную задачу свести к плоской. Пренебрегая действием за время удара конечных сил, составим дифференциальные уравнения (197) плоского движения тела под действием приложенного импульса S и импульса ударной реакции, который мы разложим на Sx н Sy:

где m — масса тела, υ1 и υ2— скорости центра масс до и после удара, J — момент инерции тела относительно оси вращения, ω1 и ω2 — угловая скорость тела и l—плечо импульса S.


Рис. 200

В данном случае

Подставляя эти значения скоростей, определим импульс ударной реакции:

Эти равенства показывают, что прн

(211)

ось вращения не испытывает ударов. Полученная формула, определяющая при рассмотренных условиях центр удара, имеет большое значение при конструировании различных машин вращающиеся детали которых подвергаются ударам.

Обратим внимание на тождественность полученного равенства с (199), определяющим центр качания физического маятника, хотя, вообще говоря, центр качания и центр удара отличаются друг от друга и совпадают лишь в отдельных случаях.

Задача №22

Валы I и II вместе с насаженными на них шкивами и зубчатыми колесами (рис. 201) имеют моменты инерции, соответственно равные: J1=500 κΓ . см . сек 2 и J2= 400 кГ∙cM∙ceκ 2 , передаточное число зубчатой передачи kl2 = 2∕3. Через сколько оборотов вал II будет делать n2 = 120 об/мин, если система приводится в движение из состояния покоя вращающим моментом Ml = 50κΓ∙м приложенным к валу l? Трением в подшипниках пренебречь.

Решение. За единицы принимаем м, кГ и сек. Тогда J1 = 5 кГ . м . сек 2 , J2 = 4 кГ∙M∙ceκ 2 , M1 = 50κΓ . м, начальные угловые скорости ω1,02,0=0, конечные угловые скорости

Задачу решим, применив дифференциальное уравнение вращения твердого тела. Сначала рассмотрим. вращение вала I вокруг оси I — I . На вал действуют вращающий момент M1=+50 и сила F сопротивления вала II, момент κoторой равен -Fr1

В нашем случае ωo = 0 и

Затем переходим к рассмотрению вращения вала II вокруг оси II — II. На второй вал действует сила F давления зубьев первого вала. Ее момент равен + Fr2, поэтому

Решаем оба уравнения совместно:

Под действием постоянного момента второй вал вращается равноускоренно:

За время t II вал сделал оборотов

Ответ.

Скорость конца вектора кинетического момента относительно некоторой точки равна главному моменту всех внешних сил относительно этой точки

Теорема Резаля—Гейуорда

Пусть гироскоп 2 (рис. 202, а) (волчок) имеет ось симметрии 3. Допустим, что главный момент, количеств движения волчка направлен по оси симметрии. Если бы ось была неподвижной. то такое направление кинетического момента было бы очевидным. Но основным свойством всякого гироскопа является способность быстро вращаться вокруг оси при одновременном поворачивании оси вращения. Если угловая скорость ω гироскопа вокруг его оси очень велика, а угловая скорость ωx, с которой поворачивается ось гироскопа, невелика, то с достаточной точностью можно допустить, что главный момент количеств движения гироскопа относительно точки опоры О направлен по оси симметрии и равен произведению угловой скорости на момент инерции гироскопа относительно оси симметрии:

Построим систему координатных осей хОуz с началом в точке О (рис. 202, б) и отложим вдоль оси симметрии вектор OA=Lo в такую сторону, чтобы вращение гироскопа представлялось происходящим против хода часов, если смотреть от А к О.


Рис. 202

Проекции вектора на оси координат представляют главные моменты количеств движения Lгл x, Lгл y и Lгл z гироскопа относительно этих осей. Эти же величины являются координатами точки А. При движении системы главный момент не остается постоянным, точка А (конец вектора) перемещается в пространстве и координаты ее меняются. Проекции скорости υA точки А на оси координат равны первым производным от текущих координат точки по времени, т. е. производным от главных моментов количеств движения системы относительно осей, которые в свою очередь равны главным моментам внешних сил относительно тех же осей:

(212)

или в векторной форме

(212′)

На примере гироскопа мы доказали теорему Резаля: скорость конца вектора главного момента количеств движения, взятого относительно точки О, равна главному моменту всех внешних сил системы относительно той же точки.

Прецессия оси гироскопа

Задача №23

Волчок вращается вокруг своей осн против часовой стрелки с постоянной угловой скоростью ω = 600 ceκ -1 ; ось OA наклонена к вертикали; нижний конец оси OA остается неподвижным; центр тяжести C волчка находится на оси OA на расстоянии ОС = 30 см от точки О; радиус инерции волчка относительно оси равен 10 см. Определить движение осн OA волчка, допуская, что при весьма большой угловой скорости ω главный момент количества движения волчка направлен по оси ОА и равен Jω.

Решение. Применим к решению данной задачи теорему Резаля. Определим главный момент внешних сил относительно точки О. Внешними силами являются вес гироскопа и реакция в точке О (рис. 202, в). Главный момент внешних сил относительно точки О направлен перпендикулярно к вертикальной плоскости, проходящей через ОС, и равен произведению веса mg на плечо СО . sin ,. По теореме Резаля,


причем скорость υА перпендикулярна к вертикальной плоскости, содержащей в себе ось симметрии гироскопа. Так как точка А принадлежит этой оси, то движение точки А определяет движение оси гироскопа. Ось симметрии гироскопа перемещается в направлении, перпендикулярном направлению действия внешней силы (силы тяжести), и описывает коническую поверхности. Это движение оси гироскопа называют прецессией. Точка А описывает окружность радиуса Jω sin, двигаясь с окружной скоростью, численно равной

Следовательно, ось гироскопа вращается вокруг оси Oz с угловой скоростью

Ответ. Ось OA вращается вокруг вертикали против часовой стрелки, описывая круглый конус с постоянной угловой скоростью ω=0,49 сек -1 .

Гироскопический эффект

Рассмотрим некоторые особенности движения гироскопа. Пусть быстровращающийся ротор установлен в кардановом подвесе (рис. 203). Он может вращаться с большой угловой скоростью ω вокруг оси OO1, в то время как эта ось вместе с рамой I может поворачиваться вокруг оси KK1 и вместе с рамой II вокруг оси NN1. Это гироскоп с тремя степенями свободы. Он имеет одну неподвижную точку C (центр масс).


Рис. 203

Если гироскоп не вращается (ω = 0), то, приложив к внутренней раме l (например, в точке О) силу F, мы сообщим раме (и вместе с нею ротору гироскопа) вращение вокруг оси KK1 в том направлении, в каком действует сила. Причем, во время действия силы (пока ) это вращение будет ускоренным, а после прекращения ее действия () оно станет равномерным.

Совсем иначе подействует та же сила на гироскоп, вращающийся вокруг оси симметрии с большой угловой скоростью ω. Отложим вдоль оси OO1 вектор кинетического момента L=Jω=CA. По теореме Резаля точка А на время действия силы получит скорость, равную моменту этой силы , т.е. не в направлении этой силы, а в направлении ее момента, перпендикулярно силе и плечу ОС. Вместе с точкой А в том же направлении получит движение ось ротора, она будет поворачиваться вокруг оси NN1 с некоторой угловой скоростью ∙ Если сила (ее момент ) постоянна, то движение равномерное (υA = const, а следовательно, и ω1 = const), но как только действие силы прекратится, тут же прекратится движение оси (υA = 0, ω = 0). Поэтому ударные силы, действующие весьма малый промежуток времени, почти не изменяют положения оси гироскопа. Ось быстровращающегося гироскопа с тремя степенями свободы не чувствительна к ударным нагрузкам.

Гироскопы с двумя степенями свободы этим свойством не обладают, так как, отняв у гироскопа одну степень свободы, например, закрепив вторую раму, мы лишим ось ротора возможности перемещаться в направлении, перпендикулярном к направлению приложенной силы. От дополнительного давления гироскопа на подшипники К и K1 возникает пара сил с моментом

Этот момент носит название гироскопического момента, а его появление называют гироскопическим эффектом. Если угол tt, заключенный между осью ротора и той осью, вокруг которой она вращается, не прямой, то гироскопический момент

M = Jωω1 sin . (213)

Задача №24

Определить максимальное гироскопическое давление на подшипники быстроходной турбины, установленной на корабле. Корабль подвержен килевой качке с амплитудой 9° и периодом 15 сек вокруг горизонтальной оси, перпендикулярной к оси ротора. Ротор турбины весом 3500 кГ с радиусом инерции 0,6 м делает 3000 об/мин. Расстояние между подшипниками 2 .ч.
Решение. Гироскопический момент определим по (213), так как угловые скорости взаимно перпендикулярны. Все необходимые данные имеются в условии задачи:

  • момент инерции ротора
  • угловая скорость ротора

Для вычисления угловой скорости ω1 оси ротора примем во внимание, что килевая качка в условии задачи задана гармонической, с угловой амплитудой и периодом τ= 15, следовательно, частота и мы имеем уравнение

дифференцируя определим угловую скорость качки

Максимальное значение этой угловой скорости примем за ω1;


Рис. 204

Тогда по (213) гироскопический момент

Для определения давления на подшипники остается лишь поделить гироскопический момент на расстояние 2 м между подшипниками.
Ответ. 1320 кГ.

Уравновешивание вращающегося тела

Задача №25

Определить реакции в подпятнике А и в подшипнике В твердого тела (рис. 205), вращающегося вокруг неподвижной оси AB с угловой скоростью ω и с угловым ускорениемε, и найти такую ось, при вращении тела вокруг которой эти реакции не зависят от ω и ε. Заданными являются все внешние активные силы a и расстояние AB = l.


Рис. 205

Решение. Кроме активных сил, на тело действуют искомые реакции RA и RB. Построим оси координат, взяв начало в подпятнике, и, направив ось аппликат по оси вращения, спроецируем реакции на оси.
Представим тело как неизменяемую систему, состоящую из n частиц, и напишем уравнения (169)’ количества движения и уравнения моментов (192), учитывая, что проекции скоростей точек тела на ось вращения равны нулю (υz = Q), а последнее из уравнений (192) моментов относительно оси вращения превращается в уравнение (196):

Как видно из третьего уравнения, проекция реакции подпятника на ось вращения не зависит от cкорости и равна проекции внешних активных сил на ту же ось:

Шестое уравнение является дифференциальным уравнением вращения тела и не содержит реакций опор. Выполняя дифференцирование в четырех остальных уравнениях, получим:

Подставляя вместо akx и а их значения (95)

и вынося общие множители ε и ω 2 за знак получим:

Из этих уравнений найдем четыре неизвестные проекции реакций. Заметим, что суммы, стоящие в левых частях первых двух из этих уравнений, являются статическими моментами:

а суммы, стоящие в левых частях двух последних уравнений

являются центробежными моментами инерции тела. Четыре полученных нами уравнения можно переписать в следующем виде:

Чтобы реакции в опорах вращающегося тела не зависели от ω и ε (или, что то же, от скоростей его точек), необходимо и достаточно выполнение следующих условий:

Вращающееся тело, реакции в опорах которого не зависят от скоростей точек тела, называют полностью уравновешенным телом.

Если выполнены два первых условия, т. е. ось вращения проходит через центр масс («центральная ось»), то тело называют статически уравновешенным.

Если выполнены два последних условия, то вращающееся тело называют динамически уравновешенным, а ось — главной осью инерции

Ответ. Для полной уравновешенности вращающегося тела необходимой достаточно, чтобы оно вращалось вокруг центральной и главной оси инерции.

Кинетическая энергия материальной точки, системы и твердого тела

Кинетической энергией называют меру механического движения, выражающуюся половиной суммы произведений массы каждой частицы материальной системы на квадрат ее скорости:

Кинетическая энергия

Ознакомившись в двух предыдущих главах с одной из мер механического движения, перейдем теперь к другой мере—кинетической энергии, которая наряду с количеством движения существует во всяком движущемся материальном теле. Кинетическая энергия каждой материальной точки выражается половиной произведения массы точки на квадрат ее скорости:

(214)

Чтобы получить кинетическую энергию системы, надо взять сумму кинетических энергий всех ее точек. Сумму надо брать, конечно, арифметическую, потому что, как видно из (214), кинетическая энергия есть величина скалярная и всегда положительная:

(215)

(215′)

Размерность кинетической энергии в физической системе единиц

в технической системе единиц

Обе меры механического движения (количество движения и кинетическая энергия), как это уже было сказано в гл. XIII, не противоречат одна другой, но каждая из них является мерой для определенного круга явлений. Количество движения характеризует способность механического движения передаваться от одних материальных частиц другим в виде механического же движения, а кинетическая энергия характеризует способность механического движения превращаться в эквивалентное количество другого движения (в потенциальную энергию, в теплоту и пр.).

Так, например, во время удара движущегося биллиардного шара по неподвижному шару часть механического движения перешла от ударяющего шара к ударяемому и ударяемый получил некоторую скорость. Мерой этого переданного механического движения является количество движения. От удара количество движения системы двух шаров не изменилось, потому что внутренняя сила не изменяет количества движения в системе. Вместе с тем часть механического движения шара во время удара перешла в другие виды движения (в звук, теплоту), и мерой этого движения является кинетическая энергия. Часть кинетической энергии ударяющего шара была потеряна системой, перешла в другие виды движения, кинетическая энергия системы от удара уменьшилась.

Отсюда не следует делать вывод, что уравнения проекций количеств движения (169) и уравнения моментов количеств движения (192), а также уравнение кинетической энергии (230), которое будет доказано в этой главе, не имеют всеобщего применения, а законны лишь в отдельных частных случаях. Они выведены математически вполне строго из дифференциальных уравнений движения и носят название семи всеобщих уравнений движения. В зависимости от условий задачи приходится решать, каким из этих уравнений удобнее воспользоваться. При этом полезно иметь в виду, что если проекции силы являются функциями времени, то часто бывает возможно проинтегрировать уравнения (169). Уравнение кинетической энергии дает интеграл в тех случаях, когда силы являются функциями расстояния. Этим часто определяется выбор того или другого уравнения для решения задачи.

Выяснив физический смысл и математическое выражение кинетической энергии, резюмируем все сказанное о ней: кинетической энергией называется мера механического движения, характеризующая его способность превращаться в эквивалентное количество другого вида движения и выражающаяся половиной суммы произведений массы каждой материальной частицы механической системы на квадрат ее скорости.

В случаях движения неизменяемой механической системы (твердого тела) выражению (215) можно придать вид, более удобный для вычисления.

Кинетическая энергия поступательно движущегося тела, как и кинетическая энергия материальной точки, выражаются половиной произведения массы на квадрат скорости:

Кинетическая энергия поступательно движущегося тела

Скорости всех частив поступательно движущегося тела между собой равны (80), поэтому если твердое тело совершает поступательное движение, то в формуле (215) кинетической энергии квадрат скорости как общий множитель выходит за знак суммы:

где k= 1, 2, 3, . п.
Сумма масс всех частиц тела равна массе m всего тела и

(214)

Таким образом, кинетическая энергия поступательно движущегося тела, как и кинетическая энергия материальной точки, равна половине произведения массы тела на квадрат скорости любой из его частиц.

Кинетическая энергия вращающегося тела равна половине произведения момента инерции тела относительно оси вращения на квадрат угловой скорости:

Кинетическая энергия вращающегося тела. Скорости частиц вращающегося твердого тела пропорциональны угловой скорости тела и расстояниям частиц от оси вращения:

Возводя это равенство в квадрат и подставляя в (215), получим

Вынося общий множитель за знак суммы и принимая во внимание, что сумма произведений массы каждой частицы на квадрат расстояния этой частицы от оси выражает момент инерции (200) тела относительно оси, получаем окончательно

(216)

Таким образом, кинетическая энергия вращающегося тела равна половине произведения момента инерции тела относительно оси вращения на квадрат угловой скорости.

Эта формула применима не только в случае вращения тела вокруг неподвижной оси, но и вокруг мгновенной оси. В случае плоского движения момент инерции фигуры или тела в формуле (216) надо подсчитывать относительно оси, проходящей через мгновенный центр скоростей, перпендикулярно плоскости движения, тогда

(216′)

Кинетическая энергия твердого тела равна кинетической энергии его центра масс, в котором предполагается сосредоточенной масса всего тела, плюс кинетическая энергия тела в его вращательном движении вокруг оси, проходящей через центр масс тела:

Формула Кёнига

Выведем формулу для определения кинетической энергии твердого тела, совершающего плоское движение. Для определения проекций скорости были выведены формулы

(214′)

где x1k и y1k — координаты каждой точки тела относительно системы координатных осей, параллельных неподвижным осям, но имеющих начало в произвольной точке Е, принятой за полюс.

Возводя эти равенства в квадрат и складывая, найдем квадрат полной скорости любой точки тела:

Подставляя затем в (215), найдем

Разобьем эту сумму на четыре части и вынесем за знаки величины, не зависящие от k:

—масса всего тела; -момент инерции тела относительно оси, проходящей через Е, перпендикулярно плоскости движения; —статические моменты масс относительно осей координат, имеющих начало в полюсе Е.

Если за полюс принять центр масс C тела, то последние два члена обращаются в нуль (x1,С = 0, y1,С = 0) и кинетическая энергия получает простое выражение

(217)

Эта формула доказана нами для плоского движения твердого тела. Она имеет большое применение в различных областях механики и, в частности, в теории механизмов и машин, где плоское движение встречается очень часто. Но формула (217) остается справедливой при всяком движении твердого тела. Словами ее можно прочитать так: кинетическая энергия твердого тела равна кинетической энергии материальной точки, обладающей массой всего тела и скоростью центра масс, плюс кинетическая энергия тела в его вращательном движении вокруг оси, проходящей через центр масс.

При разложении движения в кинематике мы могли принимать за полюс любую точку тела. При определении кинетической энергии по формуле (217) мы обязаны принимать за полюс только центр масс тела, иначе появятся члены, содержащие статические моменты масс.

Задача №26

Определить кинетическую энергию диска массы m = 10 кг и радиуса ∙ R = 0,5 м, катящегося со скоростью υС= 2 м/сек по прямолинейному рельсу без скольжения.

Решение. Задачу решим пока двумя различными способами (система единиц физическая).

1-й способ. Мгновенный центр скоростей находится в точке касания (рис. 206, а). Угловая скорость диска

Момент инерции диска относительно оси, проходящей через мгновенный центр скоростей перпендикулярно диску, определим по теореме о параллельных осях:

Кинетическую энергию диска определим по (216′):


Рис. 206

2-й способ. Кинетическую энергию определяем по формуле (217) Кёнига (рис. 206, б):

Теорема Коши

Однако существуют и некоторые другие определенные точки, которыми в формуле (217) можно заменить центр масс С. Найдем эти точки.

В общем случае движения тела скорости его частиц можно рассматривать (см. § 35) как состоящие из двух взаимно перпендикулярных скоростей: переносной скорости ve, направленной по мгновенной винтовой оси, и относительной, вращательной вокруг этой оси (рис. 207, а). Квадрат скорости какой-либо точки К, отстоящей на расстоянии rk от мгновенной винтовой оси:

Подставим это выражение в (215):

Момент инерции тела относительно мгновенной винтовой оси обозначим через JE, тогда

(217 / )

Проведем через центр масс C ось параллельно мгновенной винтовой оси. Если расстояние между этими осями равно cl, то, выразив JE по (202), получим

Но , и мы пришли к формуле Кёнига:

(217)

Проведем через какую-либо точку А третью ось AA (рис. 207, б) параллельно двум предыдущим, обозначим через JА момент инерции

Рис. 207

тела относительно этой оси, через с2—расстояние ее от центральной оси, а через с3—от мгновенной винтовой оси. Согласно (203)

подставим в (217′):

В случае, если плоскость, проведенная через эту ось AA и мгновенную винтовую ось, составляет с плоскостью, проведенной через эту ось AA и центр масс C тела, прямой угол (α = 90 O ), то по пифагоровой теореме и , а потому

(217»)

Если же α≠90 o , то это равенство не выполняется.

Для определения кинетической энергии твердого тела этим способом надо провести через центр масс тела ось, параллельную мгновенной винтовой оси (рис. 207, в). Приняв обе оси за диаметрально противоположные образующие, построить на них поверхность прямого круглого цилиндра. Во всякое мгновение кинетическая энергия тела равна половине произведения массы тела на квадрат скорости любой из точек этой цилиндрической поверхности, сложенной с половиной произведения момента инерции тела относительно образующей, проходящей через эту точку, на квадрат угловой скорости тела.

Задача №27

Решить задачу № 26, применив теорему Коши.

Решение. Мгновенная винтовая ось существует в общем случае движения тела. При плоском движении она превращается в мгновенную ось вращения, проходящую через мгновенный центр скоростей перпендикулярно плоскости движения. Построенная на мгновенной винтовой оси цилиндрическая поверхность, о которой говорится в теореме Коши, в пересечении с плоскостью движения фигуры образует окружность, у которой мгновенный центр скоростей и центр масс фигуры являются диаметрально противоположными точками (см. рис. 206, в).

Возьмем на этой окружности какую-либо точку А. Ее скорость

Момент инерции диска относительно оси, перпендикулярной к его плоскости в точке А, определим по (202):

Полная кинетическая энергия диска

Если взять какую-либо точку, не лежащую на окружности, нанесенной на чертеже пунктиром (см. рис. 206, в), то полусумма произведений массы диска на квадрат скорости этой точки и момента инерции диска относительно проходящей через эту точку оси на квадрат угловой скорости диска не будет равна кинетической энергии’диска. Так, например, для точки В

Ответ. Кинетическая энергия диска T-=30κг∙м 2 ∕ceκ 2 .

Задача №28

Определить кинетическую энергию эллипсографа.

Решение. Механическая система состоит из четырех тел: кривошипа, линейки и двух ползунов. Чтобы определить кинетическую энергию этих тел, найдем сначала скорости.

Эллипсограф является плоским механизмом: все звенья его совершают плоские движения. Угловая скорость кривошипа дана. Скорость пальца равна ωl. Эта же точка принадлежит и линейке эллипсографа. Известны направления скоростей трех точек линейки. Перпендикуляры, восставленные в этих точках к направлениям их скоростей, пересекаются в мгновенном центре скоростей Eмсц (рис. 208). Определяем угловую скорость линейки вокруг мгновенного центра скоростей. Для этого делим линейную скорость пальца на его расстояние от мгновенного центра скоростей:


Рис. 208

Следовательно, угловая скорость линейки вокруг мгновенного центра скоростей равна угловой скорости кривошипа вокруг оси О. Для определения кинетической энергии линейки нам надо знать угловую скорость линейки вокруг оси, проходящей перпендикулярно к плоскости движения в центре масс. Напомним, что угловая скорость не зависит от выбора полюса, а потому искомая угловая скорость равна найденной угловой скорости относительно мгновенного центра скоростей.

Чтобы определить скорости точек А и В линейки, надо умножить угловую скорость линейки на расстояние этих точек от мгновенного центра скоростей. Если обозначим через φ угол поворота кривошипа, то

Кинетическую энергию кривошипа определим по формуле (216) как энергию вращающегося тела:

Кинетическую энергию линейки определим по формуле (217) Кёнига:

Кинетическую энергию поступательно движущихся ползунов определим по (215):

Кинетическая энергия механизма равна арифметической сумме кинетических энергий его звеньев:

Ответ.

Задача №29

Определить кинетическую энергию планетарного механизма (рис. 209). Рукоятка O1O3 массы mи длины 4r вращается с угловой скоростью ω вокруг неподвижной оси O1, проходящей через центр неподвижного зубчатого колеса I. На рукоятке свободно насажены два зубчатых колеса радиуса r и массы m каждый.


Рис. 209

Решение. Система состоит из рукоятки и двух зубчатых колес (II и III), Кинетическая энергия системы равна сумме кинетических энергий этих тел. Кинетическую энергию рукоятки определим по (216), приняв рукоятку за однородный стержень:

Кинетическую энергию среднего колеса определим по формуле (217) Кёнига, считая зубчатое колесо круглым диском. Скорость центра O2 диска II

потому что эта точка принадлежит и рукоятке, вращающейся вокруг O1. Мгновенный центр скоростей этого диска находится в точке касания его с неподвижным зубчатым колесом l. Угловую скорость среднего диска найдем, поделив υO2 на расстояние от O2 до мгновенного центра скоростей:

Эту же величину можно определить по (216′), считая, что колесо вращается вокруг мгновенного центра скоростей; в таком случае момент инерции колеса относительно осн вращения надо подсчитать по теореме о параллельных осях . Умножив затем mr 2 на квадрат угловой скорости (2ω) 2 и поделив на 2, получим T2.

Чтобы определить угловую скорость крайнего колеса, найдем скорость точки касания его со средним колесом. Скорости точек среднего колеса определим как вращательные вокруг мгновенного центра скоростей. Таким образом, точка касания обоих подвижных колес движется со скоростью ω22r = 4ωr, равной скорости O, откуда угловая скорость крайнего колеса ωз=0, следовательно, крайнее колесо совершает поступательное движение.
Кинетическая энергия крайнего зубчатого колеса

Кинетическая энергия всего механизма равна сумме кинетических энергий его звеньев

Ответ.

Рекомендую подробно изучить предмет:
  • Теоретическая механика
Ещё лекции с примерами решения и объяснением:
  • Мощность и работа силы
  • Потенциальная энергия
  • Обобщенные координаты системы
  • Сложение двух сил
  • Касательное и нормальное ускорения точки
  • Основные законы динамики
  • Колебания материальной точки
  • Количество движения

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.


источники:

http://1ku.ru/obrazovanie/28956-uravnenie-momentov-momenty-sily-impulsa-i-inercii/

http://www.evkova.org/moment-kolichestva-dvizheniya-v-teoreticheskoj-mehanike