Nahco3 cu oh 2 ионное уравнение

Гидролиз

Темы кодификатора ЕГЭ: Гидролиз солей. Среда водных растворов: кислая, основная и щелочная.

Гидролиз – взаимодействие веществ с водой. Гидролизу подвергаются разные классы неорганических и органических веществ: соли, бинарные соединения, углеводы, жиры, белки, эфиры и другие вещества. Гидролиз солей происходит, когда ионы соли способны образовывать с Н + и ОН — ионами воды малодиссоциированные электролиты.

Гидролиз солей может протекать:

обратимо : только небольшая часть частиц исходного вещества гидролизуется.

необратимо : практически все частицы исходного вещества гидролизуются.

Для оценки типа гидролиза необходимо рассмотреть соль, как продукт взаимодействия основания и кислоты. Любая соль состоит из металла и кислотного остатка. Металлы соответствует основание или амфотерный гидроксид (с той же степенью окисления, что и в соли), а кислотному остатку — кислота. Например, карбонату натрия Na2CO3 соответствует основание — щелочь NaOH и угольная кислота H2CO3.

Обратимый гидролиз солей

Механизм обратимого гидролиза будет зависеть от состава исходной соли. Можно выделить 4 основных варианта, которые мы рассмотрим на примерах:

1. Соли, образованные сильным основанием и слабой кислотой , гидролизуются ПО АНИОНУ .

CH3COONa + HOH ↔ CH3COOH + NaOH

CH3COO — + Na + + HOH ↔ CH3COOH + Na + + OH —

сокращенное ионное уравнение:

CH3COO — + HOH ↔ CH3COOH + OH —

Таким образом, при гидролизе таких солей в растворе образуется небольшой избыток гидроксид-ионов OH — . Водородный показатель такого раствора рН>7 .

Гидролиз солей многоосновных кислот (H2CO3, H3PO4 и т.п.) протекает ступенчато, с образованием кислых солей:

CO3 2- + HOH ↔ HCO3 2- + OH —

или в молекулярной форме:

или в молекулярной форме:

Продукты гидролиза по первой ступени подавляют вторую ступень гидролиза, в результате вторая ступень гидролиза протекает незначительно.

2. Соли, образованные слабым основанием и сильной кислотой , гидролизуются ПО КАТИОНУ . Пример такой соли: NH4Cl, FeCl3, Al2(SO4)3 Уравнение гидролиза:

или в молекулярной форме:

При этом катион слабого основания притягивает гидроксид-ионы из воды, а в растворе возникает избыток ионов Н + . Водородный показатель такого раствора рН .

Соли, образованные многокислотными основаниями, гидролизуются ступенчато, образуя катионы основных солей. Например:

Fe 3+ + HOH ↔ FeOH 2+ + H +

FeCl3 + HOH ↔ FeOHCl2 + H Cl

FeOH 2+ + HOH ↔ Fe(OH)2 + + H +

FeOHCl2 + HOH ↔ Fe(OH)2Cl+ HCl

Fe(OH)2 + + HOH ↔ Fe(OH)3 + H +

Fe(OH)2Cl + HOH ↔ Fe(OH)3 + HCl

Гидролиз по второй и, в особенности, по третьей ступени практически не протекает при комнатной температуре.

3. Соли, образованные слабым основанием и слабой кислотой , гидролизуются И ПО КАТИОНУ, И ПО АНИОНУ .

В этом случае реакция раствора зависит от соотношения констант диссоциации образующихся кислот и оснований. В большинстве случаев реакция раствора будет примерно нейтральной, рН ≅ 7 . Точное значение рН зависит от относительной силы основания и кислоты.

4. Гидролиз солей, образованных сильным основанием и сильной кислотой , в водных растворах НЕ ИДЕТ .

Сведем вышеописанную информацию в общую таблицу:

Необратимый гидролиз

Необратимый гидролиз происходит, если при гидролизе выделяется газ, осадок или вода, т.е. вещества, которые при данных условиях не могут взаимодействовать между собой. Необратимый гидролиз является химической реакцией, т.к. реагирующие вещества взаимодействуют практически полностью.

Варианты необратимого гидролиза:

  1. Гидролиз, в который вступают растворимые соли 2х-валентных металлов (Be 2+ , Co 2+ , Ni 2+ , Zn 2+ , Pb 2+ , Cu 2+ и др.) с сильным ионизирующим полем (слабые основания) и растворимые карбонаты/гидрокарбонаты. При этом образуются нерастворимые основные соли (гидроксокарбонаты):

! Исключения: (соли Ca, Sr, Ba и Fe 2+ ) – в этом случае получим обычный обменный процесс:

МеCl2 + Na2CO3 = МеCO3 + 2NaCl (Ме – Fe, Ca, Sr, Ba).

  1. Взаимный гидролиз , протекающий при смешивании двух солей, гидролизованных по катиону и по аниону. Продукты гидролиза по второй ступени усиливают гидролиз по первой ступени и наоборот. Поэтому в таких процессах образуются не просто продукты обменной реакции, а продукты гидролиза (совместный или взаимный гидролиз). Соли металлов со степенью окисления +3 (Al 3+ , Cr 3+ ) и соли летучих кислот (карбонаты, сульфиды, сульфиты) при смешивании в растворе (взаимном гидролизе) образуют осадок гидроксида и газ (H2S, SO2, CO2):

Соли Fe 3+ при взаимодействии с карбонатами также при смешивании в растворе (взаимном гидролизе) образуют осадок гидроксида и газ:

! Исключения: при взаимодействии солей трехвалентного железа с сульфидами реализуется окислительно-восстановительная реакция:

2FeCl3 + 3K2S(изб) = 2FeS + S↓ + 6KCl (при избытке сульфида калия)

При взаимодействии солей трехвалентного железа с сульфитами также реализуется окислительно-восстановительная реакция.

Полные уравнения таких реакций выглядят довольно сложно. Поначалу я рекомендую составлять такие уравнения в 2 этапа: сначала составляем обменную реацию без участия воды, затем разлагаем полученный продукт обменной реакции водой. Сложив эти две реакции и сократив одинаковые вещества, мы получаем полное уравнение необратимого гидролиза.

3. Гидролиз галогенангидридов и тиоангидридов происходит также необратимо. Галогенангидриды разлагаются водой по схеме ионного обмена (H + OH — ) до соответствующих кислот (в случае водного гидролиза) и солей (в случае щелочного гидролиза). Степень окисления центрального элемента и остальных при этом не изменяется!

Галогенангидрид – это соединение, которое получается, если в кислоте ОН-группу заменить на галоген. При гидролизе галогенангидридов кислот образуются соответствующие данным элементам и степеням окисления кислоты и галогеноводородные кислоты.

Галогенангидриды некоторых кислот:

КислотаГалогенангидриды
H2SO4SO2Cl2
H2SO3SOCl2
H2CO3COCl2
H3PO4POCl3, PCl5

Тиоангидриды (сульфангидриды) — так называются, по аналогии с безводными окислами (ангидридами), сернистые соединения элементов (например, Sb2S3, As2S5, SnS2, CS2 и т. п.).

  1. Необратимый гидролиз бинарных соединений, образованных металлом и неметаллом:
  • сульфиды трехвалентных металлов вводе необратимо гидролизуются до сероводорода и и гидроксида металла:

при этом возможен кислотный гидролиз, в таком случае образуются соль металла и сероводород:

  • гидролиз карбидов приводит к образованию гидроксида металла в водной среде, соли металла в кислой де и соответствующего углеводорода — метана, ацетилена или пропина:
  1. Некоторые соли необратимо гидролизуются с образованием оксосолей :

BiCl3 + H2O = BiOCl + 2HCl,

SbCl3 + H2O = SbOCl + 2HCl.

Алюмокалиевые квасцы:

Количественно гидролиз характеризуется величиной, называемой степенью гидролиза .

Степень гидролиза (α) — отношение количества (концентрации) соли, подвергающейся гидролизу, к общему количеству (концентрации) растворенной соли. В случае необратимого гидролиза α≅1.

Факторы, влияющие на степень гидролиза:

1. Температура

Гидролиз — эндотермическая реакция! Нагревание раствора приводит к интенсификации процесса.

Пример : изменение степени гидролиза 0,01 М CrCl3 в зависимости от температуры:

2. Концентрация соли

Чем меньше концентрация соли, тем выше степень ее гидролиза.

Пример : изменение степени гидролиза Na2CO3 в зависимости от температуры:

По этой причине для предотвращения нежелательного гидролиза хранить соли рекомендуется в концентрированном виде.

3. Добавление к реакционной смеси кислоты или щелочи

Изменяя концентрация одного из продуктов, можно смещать равновесие реакции гидролиза в ту или иную сторону.

Особенности взаимодействия кислых солей со щелочами.

Достаточно часто возникают затруднения при записи реакций кислых солей со щелочами. Ниже рассмотрим основные закономерности подобных взаимодействий. Под кислыми солями подразумеваем соли, в которых остались атомы водорода, способные к замещению на катионы металлов или аммония. Отсюда первый вывод: при добавлении щелочи водород в составе «кислого» аниона будет замещаться с образованием среднего аниона. По такой схеме будут идти простейшие примеры 1) и 2):

2) LiHS + LiOH = Li2S + H2O
Li + + HS − + Li + + OH − = 2Li + + S 2- + H2O
HS − + OH − = S 2- + H2O

При рассмотрении солей фосфорной кислоты будут возникать дополнительные варианты за счет образования двух видов кислых солей: гидрофосфатов и дигидрофосфатов. Тут следует обращать внимание на избыток/недостаток соли, либо щелочи. Сравните примеры 3) и 4):

Щелочи в примере 3) мало, не хватает для полного замещения атомов водорода в кислой соли.

В примере 4) щелочи много, заместит все возможные атомы водорода в кислой соли.

Значительно больше сложностей возникает при взаимодействии кислой соли и щелочи с разными катионами. Здесь все так же сперва происходит превращение кислого аниона в средний, а далее возможен обмен катионами. Влиять на такой обмен будет природа катионов, растворимость соответствующих средних солей, а также избыток/недостаток соли, либо щелочи. Рассмотрим возможные комбинации для солей двухосновной кислоты, например, угольной:

В описании задания случай 5) можно охарактеризовать фразой «в образовавшемся растворе практически отсутствовали гидроксид-ионы», что вполне понятно из ионного уравнения.

Для случая 6) можно записать «в образовавшемся растворе практически отсутствовали карбонат-ионы», что вполне понятно, поскольку они полностью перешли в состав осадка карбоната бария.

Различие в примерах 5) и 6) легко понять, если представить, что карбонат калия, образовавшийся на первой стадии, может далее вступить в обмен с избытком гидроксида бария.

Теперь давайте поменяем местами исходные катионы и убедимся, что тогда реакция может пойти единственным образом:

Почему невозможен вариант с получением гидроксида бария по аналогии со случаем 6)? Потому что карбонат бария уже является осадком и в дальнейшее взаимодействие с гидроксидом калия не вступает:

BaCO3 + KOH – нет реакции

Схожие рассуждения можно применить и для реакций с участием трехосновной фосфорной кислоты. Там так же будет больше вариантов протекания, если исходим из соли щелочного металла и щелочи, содержащей щелочноземельный металл:

Вариант 8) с образованием двух солей, по формулировке «в образовавшемся растворе практически отсутствовали гидроксид-ионы». Гидроксида кальция добавили мало, связать все фосфат-ионы в осадок не смог.

Вариант 9) с образованием соли и щелочи, по формулировке «в образовавшемся растворе практически отсутствовали фосфат-ионы». Гидроксида кальция взяли много, все фосфат-ионы перешли в осадок.

Если взять изначально соль щелочноземельного металла и гидроксид щелочного, то вариант будет только один:

Причина отсутствия гидроксида кальция в продуктах по аналогии с пунктом 7) – нерастворимость промежуточно образовавшегося фосфата кальция и отсутствие обмена с ним:

Реакции с дигидрофосфатами будут идти по аналогичным схемам и приводить к двум солям, либо соли и щелочи. Рассмотрим два примера из числа возможных:

Весь фосфат перешел в осадок.

Часть фосфата перешла в осадок, новый гидроксид образоваться не может.

Практикум по химии
Химический практикум в школе

В предложенном материале представлены методические разработки практических работ для 9-го класса: “Решение экспериментальных задач по теме “Азот и фосфор”, “Определение минеральных удобрений”, а также лабораторных опытов по теме “Реакции обмена между растворами электролитов”.

Реакции обмена между растворами электролитов

Методическая разработка состоит из трех частей: теория, практикум, контроль. В теоретической части приведены некоторые примеры молекулярных, полных и сокращенных ионных уравнений химических реакций, протекающих с образованием осадка, малодиссоциирующего вещества, выделением газа. В практической части даны задания и рекомендации для учащихся по выполнению лабораторных опытов. Контроль состоит из тестовых заданий с выбором правильного ответа.

1. Реакции, идущие с образованием осадка.

а) При взаимодействии сульфата меди(II) с гидроксидом натрия образуется голубой осадок гидроксида меди(II).

Молекулярное уравнение химической реакции:

Полное и сокращенное ионные уравнения реакций:

Cu 2+ + + 2Na + + 2OH – = Cu(OH)2 + 2Na + + ,

Cu 2+ + 2OH – = Cu(OH)2.

б) При взаимодействии хлорида бария с сульфатом натрия выпадает белый молочный осадок сульфата бария.

Молекулярное уравнение химической реакции:

BaCl2 + Na2SO4 = 2NaCl + BaSO4.

Полное и сокращенное ионные уравнения реакций:

Ba 2+ + 2Cl – + 2Na + + = 2Na + + 2Cl – + BaSO4,

Ba 2+ + = BaSO4.

2. Реакции, идущие с выделением газа.

При взаимодействии карбоната или гидрокарбоната натрия (пищевая сода) с соляной или другой растворимой кислотой наблюдается вскипание, или интенсивное выделение пузырьков газа. Это выделяется углекислый газ СО2, вызывающий помутнение прозрачного раствора известковой воды (гидроксида кальция). Известковая вода мутнеет, т.к. образуется нерастворимый карбонат кальция.

Молекулярные уравнения химических реакций:

а) Na2CO3 + 2HCl = 2NaCl + H2O + CO2;

б) NaHCO3 + HCl = NaCl + CO2 + H2O;

Ca(OH)2 + CO2 = CaCO3 + H2O.

Полные и сокращенные ионные уравнения реакций:

а) 2Na + + + 2H + + 2Cl – = 2Na + + 2Cl – + CO2 + H2O,

+ 2H + = CO2 + H2O;

б) Na + + + H + + Cl – = Na + + Cl – + CO2 + H2O,

+ H + = CO2 + H2O.

3. Реакции, идущие с образованием малодиссоциирующего вещества.

При взаимодействии гидроксида натрия или калия с соляной кислотой или другими растворимыми кислотами в присутствии индикатора фенолфталеина раствор щелочи обесцвечивается, в результате реакции нейтрализации образуется малодиссоциирующее вещество H2O.

Молекулярные уравнения химических реакций:

а) NaOH + HCl = NaCl + H2O;

Полные и сокращенные ионные уравнения реакций:

а) Na + + OH – + H + + Cl – = Na + + Cl – + H2O,

б) 2Na + + 2OH – + 2H + + = 2Na + + + 2H2O,

в) 3K + + 3OH – +3H + + = 3K + + + 3H2O,

1. Реакции обмена между растворами электролитов, идущие с образованием осадка.

а) Провести реакцию между растворами сульфата меди(II) и гидроксида натрия. Написать молекулярное, полное и сокращенное ионные уравнения химических реакций, отметить признаки химической реакции.

б) Провести реакцию между растворами хлорида бария и сульфата натрия. Написать молекулярное, полное и сокращенное ионные уравнения химических реакций, отметить признаки химической реакции.

2. Реакции, идущие с выделением газа.

Провести реакции между растворами карбоната натрия или гидрокарбоната натрия (пищевая сода) с соляной или другой растворимой кислотой. Выделяющийся газ (используя газоотводную трубку) пропустить через прозрачную известковую воду, налитую в другую пробирку, до ее помутнения. Написать молекулярные, полные и сокращенные ионные уравнения химических реакций, отметить признаки этих реакций.

3. Реакции, идущие с образованием малодиссоциирующего вещества.

Провести реакции нейтрализации между щелочью (NaOH или KOH) и кислотой (HCl, HNO3 или H2SO4), предварительно поместив в раствор щелочи фенолфталеин. Отметить наблюдения и написать молекулярные, полные и сокращенные ионные уравнения химических реакций.

Признаки, сопутствующие данным реакциям, можно выбрать из следующего перечня:

1) выделение пузырьков газа; 2) выпадение осадка; 3) появление запаха; 4) растворение осадка; 5) выделение тепла; 6) изменение цвета раствора.

1. Ионное уравнение реакции, в которой образуется голубой осадок, – это:

а) Cu 2+ + 2OH – = Cu(OH)2;

б) СuO + 2H + = Cu 2+ + H2O;

в) Fe 3+ + 3OH – = Fe(OH)3;

г) Al 3+ + 3OH – = Al(OH)3.

2. Ионное уравнение реакции, в которой выделяется углекислый газ, – это:

а) CaCO3 + CO2 + H2O = Ca 2+ + ;

г) 2H + + 2OH – = 2H2O.

3. Ионное уравнение реакции, в которой образуется малодиссоциирующее вещество, – это:

а) Ag + + Cl – = AgCl;

в) Zn + 2H + = Zn 2+ + H2;

г) Fe 3+ + 3OH – = Fe(OH)3.

4. Ионное уравнение реакции, в которой образуется белый осадок, – это:

а) Cu 2+ + 2OH – = Cu(OH)2;

б) СuO + 2H + = Cu 2+ + H2O;

в) Fe 3+ + 3OH – = Fe(OH)3;

5. Молекулярное уравнение, которое соответствует сокращенному ионному уравнению реакции 3OH – + 3H + = 3H2O, – это:

а) NaOH + HCl = NaCl + H2O;

6. Молекулярное уравнение, которое соответствует сокращенному ионному уравнению реакции

H + + = H2O + CO2, –

Ответы. 1-а; 2-в; 3-б; 4-г; 5-в; 6-в.

Решение экспериментальных задач по теме “Азот и фосфор”

Учащиеся при изучении нового материала по теме “Азот и фосфор” выполняют ряд опытов, касающихся получения аммиака, определения нитратов, фосфатов, солей аммония, приобретают определенные навыки и умения. В данной методической разработке приведены шесть заданий. Для выполнения практической работы достаточно трех заданий: одно – на получение вещества, два – по распознаванию веществ. При выполнении практической работы учащимся можно предложить задания в форме, которая облегчит им оформление отчета (см. задания 1, 2). (Ответы приведены для учителя.)

Получите аммиак и опытным путем докажите его наличие.

а) Получение аммиака.

Смесь равных по объему порций твердого хлорида аммония и порошка гидроксида кальция нагрейте в пробирке с газоотводной трубкой. При этом будет выделяться аммиак, который надо собрать в другую сухую пробирку, расположенную отверстием …. (почему?).

Написать уравнение реакции получения аммиака.

б) Определение аммиака.

Можно определить по запаху ………… (название вещества), а также по изменению цвета лакмуса или фенолфталеина. При растворении аммиака в воде образуется ……. (название основания), поэтому лакмусовая бумажка .……. (указать цвет), а бесцветный фенолфталеин становится …………. (указать цвет).

Вместо точек вставить слова по смыслу. Написать уравнение реакции.


* Аммиаком пахнет имеющийся в домашней аптечке нашатырный спирт – водный раствор аммиака. – Прим. ред.

Получите нитрат меди двумя различными способами, имея в наличии следующие вещества: концентрированную азотную кислоту, медную стружку, сульфат меди(II), гидроксид натрия. Напишите уравнения химических реакций в молекулярном виде, отметьте изменения. В 1-м способе для окислительно-восстановительной реакции напишите уравнения электронного баланса, определите окислитель и восстановитель. Во 2-м способе напишите сокращенные ионные уравнения реакций.

1-й с п о с о б. Медь + азотная кислота. Слегка нагреваем содержимое пробирки. Бесцветный раствор становится ….. (указать цвет), т.к. образуется ….. (название вещества); выделяется газ …….. цвета с неприятным запахом, это – ……. (название вещества).

2-й с п о с о б. При взаимодействии сульфата меди(II) с гидроксидом натрия получается осадок ….. цвета, это – …… (название вещества). К нему приливаем азотную кислоту до полного растворения осадка . (название осадка). Образуется прозрачный голубой раствор …… (название соли).


Докажите опытным путем, что в состав сульфата аммония входят ионы NH4 + и SO 2- 4. Отметьте наблюдения, напишите молекулярные и сокращенные ионные уравнения реакций.


Как опытным путем определить нахождение растворов ортофосфата натрия, хлорида натрия, нитрата натрия в пробирках № 1, № 2, № 3? Отметьте наблюдения, напишите молекулярные и сокращенные ионные уравнения реакций.

Имея вещества: азотную кислоту, медную стружку или проволоку, универсальную индикаторную бумагу или метилоранж, докажите опытным путем состав азотной кислоты. Напишите уравнение диссоциации азотной кислоты; молекулярное уравнение для реакции меди с концентрированной азотной кислотой и уравнения электронного баланса, определите окислитель и восстановитель.

Получите раствор нитрата меди разными способами, имея вещества: азотную кислоту, оксид меди, основной карбонат меди или карбонат гидроксомеди(II). Напишите молекулярные, полные и сокращенные ионные уравнения химических реакций. Отметьте признаки химических реакций.


1. Укажите уравнение реакции, где выпадает желтый осадок.

2. Ионное уравнение реакции, в которой образуется белый творожистый осадок, – это:

3. Для доказательства наличия нитрат-иона в нитратах надо взять:

а) соляную кислоту и цинк;

б) серную кислоту и хлорид натрия;

в) серную кислоту и медь.

4. Реактивом на хлорид-ион является:

а) медь и серная кислота;

б) нитрат серебра;

5. В уравнении реакции, схема которой

HNO3 + Cu —> Cu(NO3)2 + NO2 + H2O,

перед окислителем надо поставить коэффициент:

6. Основная и кислая соли соответствуют парам:

Ответы. 1-а; 2-б; 3-в; 4-б; 5-б; 6-в.

Определение минеральных удобрений

Методическая разработка этой практической работы состоит из трех частей: теория, практикум, контроль. В теоретической части даны общие сведения по качественному определению катионов и анионов, входящих в состав минеральных удобрений. В практикуме приведены примеры семи минеральных удобрений с описанием их характерных признаков, а также даны уравнения качественных реакций. В тексте вместо точек и знака вопроса надо вставить подходящие по смыслу ответы. Для выполнения практической работы по усмотрению учителя достаточно взять четыре удобрения. Контроль знаний учащихся состоит из тестовых заданий по определению формул удобрений, которые даны в этой практической работе.

1. Реактивом на хлорид-ион является нитрат серебра. Реакция идет с образованием белого творожистого осадка:

Ag + + Cl – = AgCl.

2. Ион аммония можно обнаружить с помощью щелочи. При нагревании раствора соли аммония с раствором щелочи выделяется аммиак, который имеет резкий характерный запах:

NH + 4+ OH – = NH3 + H2O.

Можно также для определения иона аммония воспользоваться смоченной водой красной лакмусовой бумажкой, универсальной индикаторной или фенолфталеиновой полоской бумаги. Бумажку надо подержать над парами, выделяющимися из пробирки. Красный лакмус синеет, универсальный индикатор становится фиолетовым, а фенолфталеин малиновым.

3. Для определения нитрат-ионов к раствору соли добавляют стружку или кусочки меди, затем приливают концентрированную серную кислоту и нагревают. Через некоторое время начинает выделяться газ бурого цвета с неприятным запахом. Выделение бурого газа NO2 указывает на присутствие ионов .

NaNO3 + H2SO4 NaHSO4 + HNO3,

4HNO3 + Cu = Cu(NO3)2 + 2NO2 + 2H2O.

4. Реактивом на фосфат-ион является нитрат серебра. При его добавлении к раствору фосфата выпадает желтый осадок фосфата серебра:

3Ag + + PO 3- 4= Ag3PO4.

5. Реактивом на сульфат-ион является хлорид бария. Выпадает белый молочный осадок сульфата бария, нерастворимый в уксусной кислоте:

Ba 2+ + SO 2- 4= BaSO4.

1. Сильвинит (NaCl•KCl ), розовые кристаллы, растворимость в воде хорошая. Пламя окрашивается в желтый цвет. При рассмотрении пламени через синее стекло заметно фиолетовое окрашивание. С …….. (название реактива) дает белый осадок …… (название соли).

2. Нитрат аммония NH4NO3, или …….. (название удобрения), белые кристаллы, хорошо растворимые в воде. С серной кислотой и медью выделяется бурый газ …. (название вещества). С раствором ……. (название реактива) при нагревании ощущается запах аммиака, его пары окрашивают красный лакмус в ……. цвет.

NH4NO3 + H2SO4 NH4HSO4 + HNO3,

NH4NO3 + ? —> NH3 + H2O + NaNO3.

3. Нитрат калия (KNO3), или …… (название удобрения), с H2SO4 и ……… (название вещества) дает бурый газ. Пламя окрашивается в фиолетовый цвет.

KNO3 + H2SO4 KHSO4 + HNO3,

4. Хлорид аммония NH4Cl c раствором ……. (название реактива) при нагревании образует аммиак, его пары окрашивают красный лакмус в синий цвет. С …… (название аниона реактива) серебра дает белый творожистый осадок …… (название осадка).

NH4Cl + ? = NH4NO3 + AgCl,

NH4Cl + ? = NH3 + H2O + NaCl.

5. Сульфат аммония (NH4)2SO4 c раствором щелочи при нагревании образует аммиак, его пары окрашивают красный лакмус в синий цвет. С …….. (название реактива) дает белый молочный осадок ……. (название осадка).

(NH4)2SO4 + 2NaOH = 2NH3 + 2H2O + ? ,

6. Нитрат натрия NaNO3, или …… (название удобрения), белые кристаллы, растворимость в воде хорошая, с H2SO4 и Cu дает бурый газ. Пламя окрашивается в желтый цвет.

NaNO3 + H2SO4 NaHSO4 + ? ,

7. Дигидрофосфат кальция Ca(H2PO4)2, или …… (название удобрения), серый мелкозернистый порошок или гранулы, плохо растворяется в воде, с ….. (название реактива) дает ….. (указать цвет) осадок ……… (название вещества) AgН2PO4.

1. Розовые кристаллы, хорошо растворимы в воде, окрашивают пламя в желтый цвет; при взаимодействии с AgNO3 выпадает белый осадок – это:

2. Кристаллы хорошо растворимы в воде; в реакции с H2SO4 и медью выделяется бурый газ, с раствором щелочи при нагревании дает аммиак, пары которого окрашивают красный лакмус в синий цвет, – это:

3. Светлые кристаллы, хорошо растворимы в воде; при взаимодействии с H2SO4 и Cu выделяется бурый газ; пламя окрашивает в фиолетовый цвет – это:

4. Кристаллы хорошо растворимы в воде; с нитратом серебра дает белый осадок, c щелочью при нагревании дает аммиак, пары которого окрашивают красный лакмус в синий цвет, – это:

5. Светлые кристаллы, хорошо растворимы в воде; с BaCl2 дает белый молочный осадок, c щелочью дает аммиак, пары которого окрашивают красный лакмус в синий цвет, – это:

6. Светлые кристаллы, хорошо растворимые в воде; при взаимодействии с H2SO4 и Cu дает бурый газ, пламя окрашивает в желтый цвет – это:

7. Серый мелкозернистый порошок или гранулы, растворимость в воде плохая, с раствором нитрата серебра дает желтый осадок – это:


источники:

http://scienceforyou.ru/teorija-dlja-podgotovki-k-egje/vzaimodeystvie-kislyh-soley-so-schelochami

http://him.1sept.ru/article.php?ID=201001106