Нахождение канонического уравнения эллипса калькулятор

Каноническое уравнение эллипса по двум точкам

Две точки с координатами
Первая координата
Вторая координата
Каноническое уравнение эллипса
Большая полуось эллипса
Малая полуось эллипса
Эксцентриситет эллипса
Фокусное/фокальное расстояние
Коэффициент сжатия
Координаты первого фокуса F1(x1:y1)
Координаты второго фокуса F2(x2:y2)
Фокальный параметр
Перифокусное расстояние
Апофокусное расстояние

Уравнение эллипса в каноническом виде имеет вот такой вид.

Так как тут всего две переменных, то логично предположить, что по двум заданным точкам мы всегда сможем построить формулу эллипса.

Для расчета поставленной задачи воспользуемся материалом расчет кривой второго порядка на плоскости, который и позволит легко и быстро получить результат.

Кроме этого, на этой странице мы получим следующую информацию.

Фокальный параметр — половина длины хорды, проходящей через фокус и перпендикулярной большой оси эллипса

Значение полуосей — большая полуось и малая полуось ( Естественно это в том случае, когда эллипс вытянут вдоль оси абсцисс)

Эксцентриситет — коэффициент, показывающий насколько его фигура отличается от окружности

Фокальное расстояние

Коэффициент сжатия — отношение длин малой и большой полуосей

Примеры задач

Cоставить каноническое уравнение эллипса по двум точкам

Ввводим данные в калькулятор, не забывая что квадратный корень у нас обозначается sqrt

и получаем результат

Каноническое уравнение эллипса
Большая полуось эллипса
Малая полуось эллипса
Эксцентриситет эллипса
Фокусное/фокальное расстояние
Коэффициент сжатия
Координаты первого фокуса F1(x1:y1)
Координаты второго фокуса F2(x2:y2)
Фокальный параметр
Перифокусное расстояние
Апофокусное расстояние

И еще один пример

Даны две точки с координатами (3:2) и (4:-9) построить каноническое уравнение эллипса.

Если мы введем данные в калькулятор получим

Большая полуось эллипса
Малая полуось эллипса

Как видно, одна из осей не может быть определена, так как нам придется брать корень квадратный из отрицательного числа, а следовательно одна из осей будет комплексным числом, что быть не может.

Таким образом по этим двум точкам, нельзя построить эллипс.

А что же можно построить? Перейдя по ссылке данной в начале статьи, мы можем увидеть что это каноническое уравнение гиперболы.

Более подробно, про гиперболу есть отдельный калькулятор Каноническое уравнение гиперболы по двум точкам

Координаты точки эллипса по углу

IP76 > Координаты точки эллипса по углу

Для нахождения координат точки эллипса по углу существует простое и элегантное решение. Понимаю, что для маститого математика это решение является очевидным. Однако, для меня в то далекое время, когда инет был диким, связь модемной, а я сильно молодым, это таковым не являлось.

Калькулятор точки на эллипсе

Давайте посмотрим, как это выглядит на практике. Потом теория. Оранжевый маркер отвечает за угол, на основании которого считаем координаты. Красный — параметрический угол, о котором ниже.

Get a better browser, bro…

Параметрическое уравнение эллипса

Обратимся, как обычно, к Википедии. Находим там следующее:

Каноническое уравнение эллипса может быть параметризовано:

Очевидно, что t — это угол, и это не «наш» угол. Это какой-то другой угол, который функционально связан с «нашим». «Нашим» называю угол, от которого требуется посчитать координаты.

Таким образом, задача нахождения координат точки эллипса по углу сводится к задаче нахождения угла t, зависящим от требуемого. Нахождением этой зависимости и займемся.

Подготовка

У нас есть эллипс, описанный двумя полуосями a и b. Представим две окружности, имеющих общий центр. Меньшая окружность (зеленая) имеет радиус b. Большая окружность (синяя) имеет радиус a.

Проведем прямую из общего центра [X0;Y0] в произвольную точку плоскости [X;Y]. В результате пересечения с этими окружностями получаются две точки [X1;Y1] и [X2;Y2].

α – угол между прямой и осью X.

Малая окружностьX1 = b × cos αY1 = b × sin α
Большая окружностьX2 = a × cos αY2 = a × sin α

Таблица 1. Координаты точек пересечения прямой с окружностями

Нахождение зависимости

Используя уравнение (1) посчитаем координаты точки на эллипсе [X’;Y’] для угла α. Проведем прямую из центра [X0;Y0] в точку [X’;Y’]. Угол β – угол между этой прямой и осью X.

Задача сводится к тому, чтобы найти такой α, при котором β был бы равен интересующему нас углу. Таким образом, угол α будет являться параметром в уравнении (1) для требуемого угла β.

Найдем зависимость между получившимся углом β и углом α. На рисунке видно, что прилегающий к углу катет (синий) равен ранее рассчитанному X2, а противолежащий (зеленый) равен Y1:

X’ = X2 = a × cos α

Y’ = Y1 = b × sin α

Опыт показывает, что тут зачастую возникает легкий ступор. Возможно, рисунок вводит в некое заблуждение. Видим треугольник, и если с синим катетом вопросов нет, то с зеленым — масса. Почему синус от α? Угол «вона где», тут синус вообще не от того угла и т.д.

Смотрим на пересечение прямой и малой (зеленой) окружности. Зеленый катет прилетает именно оттуда. Именно так координату Y’ и рассчитывали, согласно уравнению(1). Рисунок — это иллюстрация, не метод решения.

Тангенс угла β в этом случае равен:

(3) Тангенс угла β

Используя формулу тангенса произведем дальнейшие преобразования:

(4) Зависимость тангенса α от тангенса β

Таким образом, видим прямую зависимость угла α, который нужен нам в качестве параметра в уравнении(1), от угла β, координаты точки от которого хотим получить.

Нахождение координат

Угол α находим через арктангенс. В Delphi (и не только) для этих целей используется функция ArcTan2 из модуля math. Она корректно возвращает знак ± угла в зависимости от квадранта, а также предусмотрительно нечувствительна к возможным коллизиям, типа деления на 0.

Находим синус и косинус от требуемого угла β и подставляем в параметры функции ArcTan2, согласно последней формуле (4):

Расчет кривой второго порядка на плоскости по точкам

Элементы кривой второго порядка или координаты
Уравнения Ax^2+By^2+Cxy+Dx+Ey+F=0
A=
B=
C=
D=
E=
F=

Полученная формула
Коэффициенты через пробел

Калькулятор предназначен для расчета и создания уравнения кривых второго порядка на декартовой плоскости по нескольким точкам, от двух до пяти.

Не является секретом то, что уравнение кривой второго порядка может быть представлена формулой

Мы будем использовать чуть измененную формулу, разделив все коэффициенты на a6

отсюда видно, что кривую второго порядка можно однозначно определить по пяти точкам.

Кривая второго порядка при различных коэффициентах может превращатся в следующие «типы»:

— пара пересекающихся прямых

— пара паралельных несовпадающих прямых

— пары совпадающих прямых

— линии, вырождающиеся в точку

— «нулевые линии», то есть «линии», вовсе не имеющие точек

Если Вам интересны формулы при которых получаются все эти типы, то пожалуйста

— пара пересекающихся прямых

— пара параллельных прямых

— пара совпадающих прямых

Этот сервис позволяет Вам по заданным точкам определить, какую же кривую второго порядка провести через эти точки. Кроме этого, Вы увидите все основные параметры полученной кривой второго порядка.

От Вас лишь понадобится предоставить боту от двух до пяти декартовых координат, что бы бот мог решить эту задачу.

ИНВАРИАНТЫ И СВОДНАЯ ТАБЛИЦА

Любая кривая второго порядка характеризуется тремя инвариантами, имеющими вид

И одним семиинвариантом

если Вам интересно, откуда они появились, то рекомендуем прочитать книгу «Аналитическая геометрия — Делоне»

Характеристическое уравнение кривой второго порядка:

Таким образом сводная таблица имеет вид

Признак типаПризнак классаНазваниеПриведенное уравнениеКаноническое уравнение
Эллипс
0, & I_1K_2>0″ />Мнимый эллипс
0, & K_2=0″ />Точка
Гипербола
Пара пересекающихся прямых
Окружность
Парабола
Пара паралельных прямых
0″ />Пара мнимых паралельных прямых
Пара совпадающих прямых

Анализируя написанные онлайн калькуляторы по этой теме, нашел интересную «особенность». Попробовав рассчитать по трем точкам кривую второго порядка, зная что эти точки принадлежат окружности, я с завидным постоянством получал ответ, что графиком(формой)полученного уравнения кривой является эллипс.

Нет формально, конечно стоит признать что окружность является частным примером эллипса, но ведь можно пойти дальше и признать что и эллипс и гипербола и парабола, являются лишь частным примером кривой второго порядка общего вида, и в ответах таких калькуляторов выдавать ответ пользователю «вы получили уравнение второго порядка» и всё. не соврали же.

Такое сверхлегкое трактование и смешение определений геометрических фигур, никак не способствует пониманию и сути решаемых задач. Это как в анекдоте «А теперь нарисуем квадрат со сторонами 3 на 4″(с) И не поймешь то ли рисовать квадрат, то ли прямоугольник.

СИНТАКСИС

Jabber: kp2

Строкой является список чисел разделенное пробелами.

А каждое «число» представляет собой абсциссу и ординату точки разделенные двоеточием.

Координат или их «замен» должно быть ровно шесть

То есть если мы знаем пять координат то 6 элементом у нас будет единица.

В вкладке Пример Вы сможете увидеть решения некоторые.

Если в строке есть числа не имеющие : то это означает что это неизменяемый соответствующий коэффициент кривой второго порядка.

Например если в строке стоит ноль на первой позиции строки то это означает что A1=0

Бот вычисляет численные параметры кривой. Если же Вам надо нарисовать кривую второго порядка на плоскости, просьба использовать программу GeoGebra и материал Построить график функции c помощью GeoGebra

ПРИМЕРЫ

Начнем сразу с проверочного примера

Вообще, убедимся правильно ли считает бот?

Итак, есть у нас функция x*x+3x-11=y

определим значения при x=1,2,3,4,5

значения получились такие y=-7,-1,7,17,29

и зададим эти точки в качестве исходных

пишем kp2 1:-7 2:-1 3:7 4:17 5:29

в результате получаем следующее:

На первый взгляд получилось далеко не то, что должно получится.

Но если мы уберем нулевые коэффициенты, и разделим все на 0.09091 то результат будет такой

то есть

Что и требовалось доказать в качестве правильности расчетов нашего бота.

Теперь пусть у нас есть всего лишь три точки

С координатами x=1,2,3 и y=-7,-1,7

Логично, что это тоже самое уравнение параболы что мы разбирали в первом примере. НО! при трех точках такое решение не единственное.

Давайте попробуем задать боту всего три координаты и скажем ему какого вида уравнение мы хотим получить.

Это частное уравнение кривой второго порядка в котором коэффициенты а1 и а5 равны нулю

Скажем об этом боту

kp2 0 1:-7 2:-1 3:7 0 1

где 0- показывает какие коэффициенты нам НЕ надо учитывать, а 1 — это постоянный коэффициент, то есть его находить нет необходимости. Он известен.

Видим что не учитываем 1 и 5 коэффициент.

Кривая второго порядка a1*x*x+a2*y*y+a3*x*y+a4*x+a5*y+a6 = 0


источники:

http://ip76.ru/theory-and-practice/ellipse-point-coord/

http://abakbot.com/ru/online-2/krivaya-two