Нахождение корня нелинейного уравнения включает

Определение области нахождения корней нелинейного уравнения

Читайте также:
  1. Access. Базы данных. Определение ключей и составление запросов.
  2. I. Определение основной и дополнительной зарплаты работников ведется с учетом рабочих, предусмотренных технологической картой.
  3. II. Цель и задачи государственной политики в области развития инновационной системы
  4. III. Определение оптимального уровня денежных средств.
  5. IV Деятельность в области таможенного дела
  6. IV. Механизмы и основные меры реализации государственной политики в области развития инновационной системы
  7. V Ответственность в области таможенного дела
  8. АБСЦЕССЫ И ФЛЕГМОНЫ ЧЕЛЮСТНО-ЛИЦЕВОЙ ОБЛАСТИ
  9. Аксиомы науки о безопасности жизнедеятельности. Определение и сущность.
  10. Альтернативные подходы в области информационной подготовки
  11. Анализ технологии законодательного процесса в Тюменской области.
  12. Анализ функциональной связи между затратами, объемом продаж и прибылью. Определение безубыточного объема продаж и зоны безопасности предприятия

Одной из часто встречающихся практических задач является вычисление корней нелинейного уравнения. В общем случае уравнение имеет вид

. (21.1)

Корнем уравнения называется такое значение аргумента х0, при котором это уравнение обращается в тождество. Графически корень уравнения соответствует значению аргумента х0, при котором график функции пересекает ось абсцисс.

Численные методы позволяют найти приближенное значение корня. Фактически всегда решается уравнение

или , (21.2)

где e — некоторая положительная достаточно малая величина. Попытка поиска точного решения или, что то же самое, задание в программе e=0 приводит к зацикливанию вычислительной программы.

Будем считать, что функция f(x) на интервале [a,b] непрерывна. При этом функция может не быть гладкой, т.е. содержать изломы, но на этом интервале не должна иметь разрывов.

Задача распадается на несколько отдельных задач:

1) оценить диапазон определения функции (диапазон значений, которые может принимать аргумент);

2) исследовать количество, характер и расположение корней;

3) найти приближенные значения корней;

4) выбрать из них интересующие и вычислить их с требуемой точностью.

Зависимость f(x) может выражаться с помощью системы уравнений и не иметь аналитического вида. Однако и в этом случае мы должны иметь возможность для любого х из допустимого диапазона найти соответствующее ему значение f(x).

Если аналитический вид уравнения известен, то первая задача решается путем анализа вида функции f(x). Например, в уравнении

х не может принимать значения, равные или меньше -3, т.к. логарифм нуля и отрицательных чисел не существует.

Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)

Лабораторная работа: Нахождение корня нелинейного уравнения. Методы решения системы нелинейных уравнений

На тему: НАХОЖДЕНИЕ КОРНЯ НЕЛИНЕЙНОГО УРАВНЕНИЯ. МЕТОДЫ РЕШЕНИЯ СИСТЕМЫ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

Москва, 2008 год

НАХОЖДЕНИЕ КОРНЯ НЕЛИНЕЙНОГО УРАВНЕНИЯ

1. Постановка задачи

Пусть задана функция , непрерывная вместе со своими несколькими производными. Требуется найти все или некоторые вещественные корни уравнения

. (1)

Данная задача распадается на несколько подзадач. Во-первых, необходимо определить количество корней, исследовать их характер и расположение. Во-вторых, найти приближенные значения корней. В-третьих, выбрать из них интересующие нас корни и вычислить их с требуемой точностью e. Первая и вторая задачи решаются, как правило, аналитическими или графическими методами. В случае, когда ищутся только вещественные корни уравнения (1), полезно составить таблицу значений функции . Если в двух соседних узлах таблицы функция имеет разные знаки, то между этими узлами лежит нечетное число корней уравнения (по меньшей мере, один). Если эти узлы близки, то, скорее всего, корень между ними только один.

Найденные приближенные значения корней можно уточнить с помощью различных итерационных методов. Рассмотрим три метода: 1) метод дихотомиии (или деление отрезка пополам); 2) метод простой итерации и 3) метод Ньютона.

2. Методы решения задачи

2.1 Метод деления отpезка пополам

Наиболее простым методом, позволяющим найти корень нелинейного уравнения (1), является метод половинного деления.

Пусть на отрезке [a, b] задана непрерывная функция Если значения функции на концах отрезка имеют разные знаки, т.е. то это означает, что внутри данного отрезка находится нечетное число корней. Пусть для определенности корень один. Суть метода состоит в сокращении на каждой итерации вдвое длины отрезка. Находим середину отрезка [a,b] (см. рис. 1) Вычисляем значение функции и выбираем тот отрезок, на котором функция меняет свой знак. Новый отрезок вновь делим пополам. И этот процесс продолжаем до тех пор, пока длина отрезка не сравняется с наперед заданной погрешностью вычисления корня e. Построение нескольких последовательных приближений по формуле (3) приведено на рисунке 1.

Итак, алгоритм метода дихотомии:

1. Задать отрезок [a,b] и погрешность e.

2. Если f(a) и f(b) имеют одинаковые знаки, выдать сообщение о невозможности отыскания корня и остановиться.

Рис.1. Метод деления отрезка пополам для решения уравнения вида f(х)=0.

3. В противном случае вычислить c=(a+b)/2

4. Если f(a) и f(c) имеют разные знаки, положить b=c, в противном случае a=c.

5. Если длина нового отрезка , то вычислить значение корня c=(a+b)/2 и остановиться, в противном случае перейти к шагу 3.

Так как за N шагов длина отрезка [a, b] сокращается в 2 N раз, то заданная погрешность отыскания корня e будет достигнута за итераций.

Как видно, скорость сходимости мала, но к достоинствам метода относятся простота и безусловная сходимость итерационного процесса. Если отрезок [a, b] содержит больше одного корня (но нечетное число), то всегда будет найден какой-нибудь один.

Замечание. Для определения интервала, в котором лежит корень, необходим дополнительный анализ функции , основанный либо на аналитических оценках, либо на использование графического способа решения. Можно также организовать перебор значений функции в различных точках, пока не встретится условие знакопеременности функции

2.2 Метод простой итерации

При использовании этого метода исходное нелинейное уравнение (1) необходимо переписать в виде

(2)

Обозначим корень этого уравнения C* . Пусть известно начальное приближение корня . Подставляя это значение в правую часть уравнения (2), получаем новое приближение

и т.д. Для (n+1)- шага получим следующее приближение

(3)

Таким образом, по формуле (3) получаем последовательность С0 , С1 ,…,Сn +1 , которая стремиться к корню С* при n®¥. Итерационный процесс прекращается, если результаты двух последовательных итераций близки, т. е. выполняется условие

(4)

Исследуем условие и скорость сходимости числовой последовательности n > при n®¥. Напомним определение скорости сходимости. Последовательность n >, сходящаяся к пределу С* , имеет скорость сходимости порядка a, если при n®¥ выполняется условие

(5)

Допустим, что имеет непрерывную производную, тогда погрешность на (n+1)-м итерационном шаге en +1 =Cn +1 -C* =g(Cn )-g(C* ) можно представить в виде ряда

Таким образом, получаем, что при выполнении условия

çg¢(C* ) ç 2 , можно положить

Нетрудно показать, что

Рис. 2. Графическая интерпретация метода простых итераций для решения уравнения вида x=g(х).

Построение нескольких последовательных приближений по формуле (3)

приведено на рисунке 2.

2.3 Метод Ньютона

В литературе этот метод часто называют методом касательных, а также методом линеаризации. Выбираем начальное приближение С0 . Допустим, что отклонение С0 от истинного значения корня С* мало, тогда, разлагая f(C* ) в ряд Тейлора в точке С0 , получим

Если f¢(C0 ) ¹ 0 , то в (8) можно ограничится линейными по DC =C-C0 членами. Учитывая, что f(C* )=0, из (9) можно найти следующее приближение для корня

или для (n+1)-го приближения

Для окончания итерационного процесса можно использовать одно из двух условий

Для вычислений используйте метод деления отрезка пополам (определите число итераций), а затем этот же корень найдите с помощью метода Ньютона (также определив число итерационных шагов).

Сравните полученные результаты.

1. x 3 –3x 2 +6x – 5 = 0 2. x 3 +sinx –12x-1=0

3. x 3 –3x 2 –14x – 8 = 0 4. 3x + cos x + 1 =0

5. x 2 +4sin x –1 = 0 6. 4x –ln x = 5

7. x 6 –3x 2 +x – 1 = 0 8. x 3 – 0.1x 2 +0.3x –0.6 = 0

9.10. ( x -1) 3 + 0.5e x = 0

11. 12. x 5 –3x 2 + 1 = 0

13. x 3 –4x 2 –10x –10 = 0 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24. x 4 — 2.9x 3 +0.1x 2 + 5.8x — 4.2=0

25. x 4 +2.83x 3 — 4.5x 2 -64x-20=0 26.

МЕТОДЫ РЕШЕНИЯ СИСТЕМЫ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

Пусть требуется решить систему n нелинейных уравнений:

(1)

Прямых методов решения системы (1) не существует. Лишь в отдельных случаях эту систему можно решить непосредственно. Например, для случая двух уравнений иногда удаётся выразить одну неизвестную переменную через другую и таким образом свести задачу к решению одного нелинейного уравнения относительно одного неизвестного.

Систему уравнений (1) можно кратко записать в векторном виде:

. (2)

Уравнение (2) может иметь один или несколько корней в области определения D. Требуется установить существование корней уравнения и найти приближённые значения этих корней. Для нахождения корней обычно применяют итерационные методы, в которых принципиальное значение имеет выбор начального приближения. Начальное приближение иногда известно из физических соображений. В случае двух неизвестных начальное приближение можно найти графически: построить на плоскости (x1 , x2 ) кривые f1 (x1 , x2 )=0 и f2 (x1 , x2 )=0 и найти точки их пересечения. Для трех и более переменных (а также для комплексных корней) удовлетворительных способов подбора начального приближения нет.

Рассмотрим два основных итерационных метода решения системы уравнений (1), (2) — метод простой итерации и метод Ньютона.

2. Методы решения системы нелинейных уравнений

2.1.Метод простой итерации

Представим систему (1) в виде

(3)

или в векторной форме:

(4)

Алгоритм метода простой итерации состоит в следующем. Выберем некоторое нулевое приближение

Следующее приближение находим по формулам:

или более подробно:

(5)

Итерационный процесс (5) продолжается до тех пор, пока изменения всех неизвестных в двух последовательных итерациях не станут малыми, т.е.

На практике часто вместо последнего условия используют неравенство:

(6)

где — среднеквадратичная норма n-мерного вектора , т.е.

При использовании данного метода успех во многом определяется удачным выбором начального приближения : оно должно быть достаточно близким к истинному решению. В противном случае итерационный процесс может не сойтись. Если процесс сходится, то его скорость сходимости является линейной.

2.2. Метод Ньютона

В переводной литературе можно встретить название метод Ньютона-Рафсона. Этот метод обладает гораздо более быстрой сходимостью, чем метод простой итерации.

Пусть известно некоторое приближение к корню , так что

Тогда исходную систему (2) можно записать следующим образом:

Разлагая уравнение (7) в ряд Тейлора в окрестности точки и ограничиваясь линейными членами по отклонению , получим:

,

или в координатной форме:

(8)

Систему (8) можно переписать в виде:

(9)

Полученная система (9) является системой линейных алгебраических уравнений относительно приращений

.

Значение функций F1 , F2 , …, Fn и их производные в (9) вычисляются при

.

Определителем системы (9) является якобиан J:

(10)

Для существования единственного решения системы уравнений (9) он должен быть отличен от нуля. Решив систему (9), например, методом Гаусса, найдём новое приближение:

.

Проверяем условие (6). Если оно не удовлетворяется, находим и якобиан (10) с новым приближением и опять решаем (9), таким образом, находим 2-е приближение и т.д.

Итерации прекращаются, как только выполнится условие (6).

Используя метод Ньютона, найдите решения системы нелинейных уравнений с заданной точностью . Исследуйте сходимость итерационного процесса.

1 2

3 4

5 6

7 8

9 10

11 12

13 14.

15. 16.

17. 18.

19. 20.

21. 22.

3.1. Отделение корней нелинейного уравнения

Отделение корней – это определение их наличия, количества и нахождение для каждого их них достаточно малого отрезка [a, b], которому он принадлежит.

На первом этапе определяется число корней, их тип. Определяется интервал, в котором находятся эти корни, или определяются приближенные значения корней.

В инженерных расчетах, как правило, необходимо определять только вещественные корни. Задача отделения вещественных корней решается Аналитическими и Графическими методами.

Аналитические методы основаны на функциональном анализе.

Для алгебраического многочлена n-ой степени (полинома) с действительными коэффициентами вида

Pn(x) = an x n + an-1xn-1 +. +a1x+ a0 = 0, (an >0) (3.2)

Верхняя граница положительных действительных корней определяется по формуле Лагранжа (Маклорена):

, (3.3)

Где: k ³ 1 – номер первого из отрицательных коэффициентов полинома;

B – максимальный по модулю отрицательный коэффициент.

Нижнюю границу положительных действительных корней можно определить из вспомогательного уравнения

(3.4)

Если для этого уравнения по формуле Лагранжа верхняя граница равна R1, то

= (3.5)

Тогда все положительные корни многочлена лежат в интервале

≤x+≤.

Интервал отрицательных действительных корней многочлена определяется с использованием следующих вспомогательных функций.

и .

≤x–≤ = =.

Рассмотрим пример отделения корней с использованием этого аналитического метода.

Методом Лагранжа определим границы положительных и отрицательных корней многочлена.

3×8 – 5×7 – 6×3 – x – 9 = 0

K = 1 B = |– 9| an = 3

= 4

9×8 + x7 + 6×5 + 5x – 3 = 0

Название: Нахождение корня нелинейного уравнения. Методы решения системы нелинейных уравнений
Раздел: Рефераты по математике
Тип: лабораторная работа Добавлен 12:17:31 08 июля 2009 Похожие работы
Просмотров: 1418 Комментариев: 22 Оценило: 3 человек Средний балл: 5 Оценка: неизвестно Скачать

k = 8 B = 3 an = 9

Отсюда границы положительных корней 0,5 ≤ x+ ≤ 4

3×8 + 5×7 + 6×3 + x – 9 = 0

=

9×8 – x7 – 6×5 – 5x – 3 = 0

K = 1 B = 6 an = 9

Следовательно, границы отрицательных корней –2 ≤ x– ≤ –0,6

Формула Лагранжа позволяет оценить интервал, в котором находятся все действительные корни, положительные или отрицательные. Поэтому, для определения расположения каждого корня необходимо проводить дополнительные исследования.

Для трансцендентных уравнений не существует общего метода оценки интервала, в котором находятся корни. Для этих уравнений оцениваются значения функции в особых точках: разрыва, экстремума, перегиба и других.

На практике получил большее распространение Графический метод приближённой оценки вещественных корней. Для этих целей строится график функции по вычисленным её значениям.

Графически корни можно отделить 2-мя способами:

1. Построить график функции y = f(x) и определить координаты пересечений с осью абсцисс− это приближенные значения корней уравнения.На графике 3 корня.

Рис. 3.1 Отделение корней на графике f(x).

2. Преобразовать f(x)=0 к виду j(x) = y(x), где j(x) и y(x) – элементарные функции, и определить абсциссу пересечений графиков этих функций.

На графике 2 корня.

Рис. 3.2 Отделение корней по графикам функций j(x) и y(x).

Графический метод решения нелинейных уравнений широко применяется в технических расчётах, где не требуется высокая точность.

Для отделения вещественных корней можно использовать ЭВМ. Алгоритм отделения корней основан на факте Изменения знака функции в окрестности корня. Действительно, если корень вещественный, то график функции пересекает ось абсцисс, а знак функции изменяется на противоположный.

Рассмотрим Схему алгоритма отделения корней нелинейного уравнения на заданном отрезке в области определения функции.

Алгоритм позволяет определить приближённые значения всех действительных корней на отрезке [a, b]. Введя незначительные изменения в алгоритм, его можно использовать для определения приближённого значения максимального или минимального корня.

Приращение неизвестного Δx не следует выбирать слишком большим, чтобы не «проскочить» два корня.

Недостаток метода – использование большого количества машинного времени.


источники:

http://www.bestreferat.ru/referat-120410.html

http://matica.org.ua/metodichki-i-knigi-po-matematike/vychislitelnaia-matematika/3-1-otdelenie-kornei-nelineinogo-uravneniia