Naoh h2co3 уравнение реакции образования кислых солей

Особенности взаимодействия кислых солей со щелочами.

Достаточно часто возникают затруднения при записи реакций кислых солей со щелочами. Ниже рассмотрим основные закономерности подобных взаимодействий. Под кислыми солями подразумеваем соли, в которых остались атомы водорода, способные к замещению на катионы металлов или аммония. Отсюда первый вывод: при добавлении щелочи водород в составе «кислого» аниона будет замещаться с образованием среднего аниона. По такой схеме будут идти простейшие примеры 1) и 2):

2) LiHS + LiOH = Li2S + H2O
Li + + HS − + Li + + OH − = 2Li + + S 2- + H2O
HS − + OH − = S 2- + H2O

При рассмотрении солей фосфорной кислоты будут возникать дополнительные варианты за счет образования двух видов кислых солей: гидрофосфатов и дигидрофосфатов. Тут следует обращать внимание на избыток/недостаток соли, либо щелочи. Сравните примеры 3) и 4):

Щелочи в примере 3) мало, не хватает для полного замещения атомов водорода в кислой соли.

В примере 4) щелочи много, заместит все возможные атомы водорода в кислой соли.

Значительно больше сложностей возникает при взаимодействии кислой соли и щелочи с разными катионами. Здесь все так же сперва происходит превращение кислого аниона в средний, а далее возможен обмен катионами. Влиять на такой обмен будет природа катионов, растворимость соответствующих средних солей, а также избыток/недостаток соли, либо щелочи. Рассмотрим возможные комбинации для солей двухосновной кислоты, например, угольной:

В описании задания случай 5) можно охарактеризовать фразой «в образовавшемся растворе практически отсутствовали гидроксид-ионы», что вполне понятно из ионного уравнения.

Для случая 6) можно записать «в образовавшемся растворе практически отсутствовали карбонат-ионы», что вполне понятно, поскольку они полностью перешли в состав осадка карбоната бария.

Различие в примерах 5) и 6) легко понять, если представить, что карбонат калия, образовавшийся на первой стадии, может далее вступить в обмен с избытком гидроксида бария.

Теперь давайте поменяем местами исходные катионы и убедимся, что тогда реакция может пойти единственным образом:

Почему невозможен вариант с получением гидроксида бария по аналогии со случаем 6)? Потому что карбонат бария уже является осадком и в дальнейшее взаимодействие с гидроксидом калия не вступает:

BaCO3 + KOH – нет реакции

Схожие рассуждения можно применить и для реакций с участием трехосновной фосфорной кислоты. Там так же будет больше вариантов протекания, если исходим из соли щелочного металла и щелочи, содержащей щелочноземельный металл:

Вариант 8) с образованием двух солей, по формулировке «в образовавшемся растворе практически отсутствовали гидроксид-ионы». Гидроксида кальция добавили мало, связать все фосфат-ионы в осадок не смог.

Вариант 9) с образованием соли и щелочи, по формулировке «в образовавшемся растворе практически отсутствовали фосфат-ионы». Гидроксида кальция взяли много, все фосфат-ионы перешли в осадок.

Если взять изначально соль щелочноземельного металла и гидроксид щелочного, то вариант будет только один:

Причина отсутствия гидроксида кальция в продуктах по аналогии с пунктом 7) – нерастворимость промежуточно образовавшегося фосфата кальция и отсутствие обмена с ним:

Реакции с дигидрофосфатами будут идти по аналогичным схемам и приводить к двум солям, либо соли и щелочи. Рассмотрим два примера из числа возможных:

Весь фосфат перешел в осадок.

Часть фосфата перешла в осадок, новый гидроксид образоваться не может.

Гидроксид натрия: способы получения и химические свойства

Гидроксид натрия (едкий натр) NaOH — белый, гигроскопичный, плавится и кипит без разложения. Хорошо растворяется в воде.

Относительная молекулярная масса Mr = 40; относительная плотность для тв. и ж. состояния d = 2,130; tпл = 321º C; tкип = 1390º C;

Способы получения

1. Гидроксид натрия получают электролизом раствора хлорида натрия :

2NaCl + 2H2O → 2NaOH + H2 + Cl2

2. При взаимодействии натрия, оксида натрия, гидрида натрия и пероксида натрия с водой также образуется гидроксид натрия:

2Na + 2H2O → 2NaOH + H2

Na2O + H2O → 2NaOH

2NaH + 2H2O → 2NaOH + H2

3. Карбонат натрия при взаимодействии с гидроксидом кальция образует гидроксид натрия:

Качественная реакция

Качественная реакция на гидроксид натрия — окрашивание фенолфталеина в малиновый цвет .

Химические свойства

1. Гидроксид натрия реагируют со всеми кислотами (и сильными, и слабыми, и растворимыми, и нерастворимыми). При этом образуются средние или кислые соли, в зависимости от соотношения реагентов:

2. Гидроксид натрия реагирует с кислотными оксидами . При этом образуются средние или кислые соли, в зависимости от соотношения реагентов:

3. Гидроксид натрия реагирует с амфотерными оксидами и гидроксидами . При этом в расплаве образуются средние соли, а в растворе комплексные соли:

в растворе образуется комплексная соль — тетрагидроксоалюминат:

4. С кислыми солями гидроксид натрия также может взаимодействовать. При этом образуются средние соли, или менее кислые соли:

5. Гидроксид натрия взаимодействует с простыми веществами-неметаллами (кроме инертных газов, азота, кислорода, водорода и углерода).

При этом кремний окисляется до силиката и водорода:

Фтор окисляет щелочь. При этом выделяется молекулярный кислород:

Другие галогены, сера и фосфордиспропорционируют в растворе гидроксида натрия:

Сера взаимодействует с гидроксидом натрия только при нагревании:

6. Гидроксид натрия взаимодействует с амфотерными металлами , кроме железа и хрома. При этом в расплаве образуются соль и водород:

В растворе образуются комплексная соль и водород:

2NaOH + 2Al + 6Н2О = 2Na[Al(OH)4] + 3Н2

7. Гидроксид натрия вступает в обменные реакции с растворимыми солями .

Хлорид меди (II) реагирует с гидроксидом натрия с образованием хлорида натрия и осадка гидроксида меди (II):

2NaOH + CuCl2 = Cu(OH)2↓+ 2NaCl

Также с гидроксидом натрия взаимодействуют соли аммония .

Например , при взаимодействии хлорида аммония и гидроксида натрия образуются хлорид натрия, аммиак и вода:

NH4Cl + NaOH = NH3 + H2O + NaCl

8. Гидроксид натрия разлагается при нагревании до температуры 600°С:

2NaOH → Na2O + H2O

9. Гидроксид натрия проявляет свойства сильного основания. В воде практически полностью диссоциирует , образуя щелочную среду и меняя окраску индикаторов.

NaOH ↔ Na + + OH —

10. Гидроксид натрия в расплаве подвергается электролизу . При этом на катоде восстанавливается натрий, а на аноде выделяется молекулярный кислород:

4NaOH → 4Na + O2 + 2H2O

Кислые соли

Задания на применение знаний о кислых солях встречаются в вариантах работ ЕГЭ
на разных уровнях сложности (А, В и С). Поэтому при подготовке учащихся к сдаче ЕГЭ
нужно рассмотреть следующие вопросы.

1. Определение и номенклатура.

Кислые соли – это продукты неполного замещения атомов водорода многоосновных кислот на металл. Номенклатура кислых солей отличается от средних только добавлением приставки «гидро…» или «дигидро…» к названию соли, например: NaHCO3гидрокарбонат натрия, Са(Н2РО4)2дигидрофосфат кальция.

Кислые соли получаются при взаимодействии кислот с металлами, оксидами металлов, гидроксидами металлов, солями, аммиаком, если кислота в избытке.

Na2S + HCl = NaHS + NaCl,

Также кислые соли получаются при взаимодействии кислотных оксидов со щелочами, если оксид в избытке. Например:

Средняя соль кислая соль; например:

K2СО3 KНСО3.

Чтобы из средней соли получить кислую, нужно добавить избыток кислоты или соответствующего оксида и воды:

Чтобы из кислой соли получить среднюю, нужно добавить избыток щелочи:

Гидрокарбонаты разлагаются с образованием карбонатов при кипячении:

2KНСО3 K2СО3 + Н2О + СО2.

Кислые соли проявляют свойства кислот, взаимодействуют с металлами, оксидами металлов, гидроксидами металлов, солями.

2KНSO4 + Mg = H2 + MgSO4 + K2SO4,

2KHSO4 + MgCO3 = H2O + CO2 + K2SO4 + MgSO4,

2KHSO4 + BaCl2 = BaSO4 + K2SO4 + 2HCl.

5. Задачи на кислые соли. Образование одной соли.

При решении задач на избыток и недостаток нужно помнить о возможности образования кислых солей, поэтому сначала составляют уравнения всех возможных реакций. После нахождения количеств реагирующих веществ делают вывод о том, какая соль получится, и решают задачу по соответствующему уравнению.

З а д а ч а 1. Через раствор, содержащий 60 г NaOH, пропустили 44,8 л СО2. Найти массу образовавшейся соли.

Дано:Найти: m(соли).
m(NaOH) = 60 г,
V(CO2) = 44,8 л.

(NaOH) = m/M = 60 (г)/40 (г/моль) = 1,5 моль;

(СО2) = V/Vm = 44,8 (л)/22,4 (л/моль) = 2 моль.

Поскольку (NaOH) : (CO2) = 1,5 : 2 = 0,75 : 1, то делаем вывод, что СО2 в избытке, следовательно, получится кислая соль:

Количество вещества образовавшейся соли равно количеству вещества прореагировавшего гидроксида натрия:

(NaHCO3) = 1,5 моль.

m(NaHCO3) = M= 84 (г/моль)•1,5 (моль) = 126 г.

З а д а ч а 2. Оксид фосфора(V) массой 2,84 г растворили в 120 г 9%-й ортофосфорной кислоты. Полученный раствор прокипятили, затем к нему добавили 6 г гидроксида натрия. Найти массу полученной соли.

Дано:Найти: m(соли).
m(P2O5) = 2,84 г,
m(р-ра)(H3PO4) = 120 г,
(H3PO4) = 9 %,
m(NaOH) = 6 г.

(P2O5) = m/M = 2,84 (г)/142 (г/моль) = 0,02 моль,

следовательно, 1(H3PO4 получ.) = 0,04 моль.

m(H3PO4) = m(р-ра)• = 120 (г)•0,09 = 10,8 г.

2(H3PO4) = m/M = 10,8 (г)/98 (г/моль) = 0,11 моль,

(H3PO4) = 1 + 2 = 0,11 + 0,04 = 0,15 моль.

(NaOH) = m/M = 6 (г)/40 (г/моль) = 0,15 моль.

(H3PO4) : (NaOH) = 0,15 : 0,15 = 1 : 1,

то получится дигидрофосфат натрия:

(NaH2PO4) = 0,15 моль,

m(NaH2PO4) = M• = 120 (г/моль)•0,15 (моль) = 18 г.

З а д а ч а 3. Сероводород объемом 8,96 л пропустили через 340 г 2%-го раствора аммиака. Назовите соль, получившуюся в результате реакции, и определите ее массу.

Ответ: гидросульфид аммония,
m(NH4HS) = 20,4 г.

З а д а ч а 4. Газ, полученный при сжигании 3,36 л пропана, прореагировал с 400 мл 6%-го раствора гидроксида калия ( = 1,05 г/мл). Найти состав полученного раствора и массовую долю соли в полученном растворе.

Ответ: (KНСО3) = 10,23 %.

З а д а ч а 5. Весь углекислый газ, полученный при сжигании 9,6 кг угля, пропустили через раствор, содержащий 29,6 кг гидроксида кальция. Найти массу полученной соли.

З а д а ч а 6. В 9,8 кг 20%-го раствора серной кислоты растворили 1,3 кг цинка. Найти массу полученной соли.

6. Задачи на кислые соли. Образование смеси двух солей.

Это более сложный вариант задач на кислые соли. В зависимости от количества реагирующих веществ возможно образование смеси двух солей.

Например, при нейтрализации оксида фосфора(V) щелочью в зависимости от молярного соотношения реагентов могут образоваться следующие продукты:

(P2O5):(NaOH) = 1:6;

(P2O5):(NaOH) = 1:4;

(P2O5):(NaOH) = 1:2.

Следует помнить, что при неполной нейтрализации возможно образование смеси двух соединений. При взаимодействии 0,2 моль Р2О5 с раствором щелочи, содержащим 0,9 моль NaOH, молярное соотношение находится между 1:4 и 1:6. В этом случае образуется смесь двух солей: фосфата натрия и гидрофосфата натрия.

Если раствор щелочи будет содержать 0,6 моль NaOH, то молярное соотношение будет другим: 0,2:0,6 = 1:3, оно находится между 1:2 и 1:4, поэтому получится смесь двух других солей: дигидрофосфата и гидрофосфата натрия.

Эти задачи можно решать разными способами. Мы будем исходить из предположения, что одновременно происходят две реакции.

А л г о р и т м р е ш е н и я

1. Составить уравнения всех возможных реакций.

2. Найти количества реагирующих веществ и по их соотношению определить уравнения двух реакций, которые происходят одновременно.

3. Обозначить количество одного из реагирующих веществ в первом уравнении как х моль, во втором – у моль.

4. Выразить через х и у количества другого реагирующего вещества согласно молярным соотношениям по уравнениям.

5. Составить систему уравнений с двумя неизвестными.

З а д а ч а 1. Оксид фосфора(V), полученный при сжигании 6,2 г фосфора, пропустили через 200 г 8,4%-го раствора гидроксида калия. Какие вещества и в каких количествах получаются?

Дано:Найти: 1; 2.
m(P) = 6,2 г,
m(р-ра KОН) = 200 г,
(KОН) = 8,4 %.

(P) = m/M = 6,2 (г)/31 (г/моль) = 0,2 моль,

следовательно, (P2O5) = 0,1 моль.

m(KOH) = m(р-ра) = 0,084•200 (г) = 16,8 г,

(KOH) = m/M = 16,8 (г)/56 (г/моль) = 0,3 моль.

Уравнения возможных реакций:

2О5):(KОН) = 0,1:0,3 = 1:3, следовательно, получится смесь двух солей – гидрофосфата и дигидрофосфата калия (уравнения 2 и 3).

Обозначим 2О5) в уравнении (2) как х моль, а 2О5) в уравнении (3) как у моль, тогда потребуется: (KОН) = 4х + 2у.

Составим систему уравнений:

х = 0,1 – 0,05 = 0,05.

Поскольку количество вещества образующейся соли вдвое больше количества вещества вступившего в реакцию оксида фосфора(V), то получится по 0,1 моль гидро- и дигидрофосфата калия:

(P2O5)2 = 0,05 моль —> (K2НРО4) = 0,1 моль,

2О5)3 = 0,05 моль —> (KН2РО4) = 0,1 моль.

Ответ: (K2НРО4) = 0,1 моль,
( KН2РО4) = 0,1 моль.

З а д а ч а 2. Найти массы и массовые доли солей, полученных при растворении 22,4 л углекислого газа в 480 г 10%-го раствора гидроксида натрия.

Ответ: m(Na2CO3) = 21,2 г, (Na2CO3) = 4,05%
m(NaHCO3) = 67,2 г, (NaHCO3) = 12,82 %.

З а д а ч а 3. Найти массовые доли солей в растворе, полученном при пропускании 100 м 3 аммиака через 500 кг 50%-го раствора фосфорной кислоты.

Ответ. ((NH4)2HPO4) = 43,8 %,
(NH4H2PO4) = 12,8 %.

З а д а ч а 4. К 50 г раствора ортофосфорной кислоты с массовой долей 11,76 % прибавили 150 г раствора гидроксида калия с массовой долей 5,6 %. Найти состав остатка, полученного при выпаривании раствора.

З а д а ч а 5. Сожгли 5,6 л бутана (н.у.) и образовавшийся углекислый газ пропустили через раствор, содержащий 102,6 г гидроксида бария. Найти массы полученных солей.


источники:

http://chemege.ru/gidroksid-natriya/

http://him.1sept.ru/article.php?ID=200901505