Написать каноническое уравнение прямой проходящей

Уравнение прямой, проходящей через две точки онлайн

С помощю этого онлайн калькулятора можно построить уравнение прямой, проходящей через две точки. Дается подробное решение с пояснениями. Для построения уравнения прямой задайте размерность (2-если рассматривается прямая на плоскости, 3- если рассматривается прямая в пространстве), введите координаты точек в ячейки и нажимайте на кнопку «Решить».

Предупреждение

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Уравнение прямой, проходящей через две точки − примеры и решения

Пример 1. Построить прямую, проходящую через точки A(2, 1, 1), B(3, 1, -2).

(1)

Подставив координаты точек A и B в уравнение (1), получим:

(Здесь 0 в знаменателе не означает деление на 0).

Составим параметрическое уравнение прямой:

Выразим переменные x, y, z через параметр t :

Каноническое уравнение прямой, проходящей через точки A(2, 1, 1), B(3, 1, -2) имеет следующий вид:

Параметрическое уравнение прямой, проходящей через точки A(2, 1, 1), B(3, 1, -2) имеет следующий вид:

Пример 2. Построить прямую, проходящую через точки A(1, 1/5, 1) и B(−2, 1/2, −2).

(2)

Подставив координаты точек A и B в уравнение (2), получим:

Составим параметрическое уравнение прямой:

Выразим переменные x, y, z через параметр t :

Каноническое уравнение прямой, проходящей через точки A(1, 1/5, 1) и B(−2, 1/2, −2) имеет следующий вид:

Параметрическое уравнение прямой, проходящей через точки A(1, 1/5, 1) и B(−2, 1/2, −2) имеет следующий вид:

Математический портал

Nav view search

Navigation

Search

  • Вы здесь:
  • Home
  • Аналитическая геометрия
  • Прямая в пространстве.

Прямая в пространстве, всевозможные уравнения.

Литература: Сборник задач по математике. Часть 1. Под ред А. В. Ефимова, Б. П. Демидовича.

Существуют такие формы записи уравнения прямой в пространстве:

1) $\left\<\beginA_1x+B_1y+C_1z+D_1=0\quad (P_1)\\ A_2x+B_2y+C_2z+D_2=0\quad (P_2)\end\right. — $ общее уравнение прямой $L$ в пространстве, как линии пересечения двух плоскостей $P_1$ и $P_2.$

2) $\frac=\frac=\frac

-$ каноническое уравнение прямой $L,$ которая проходит через точку $M(x_0, y_0, z_0)$ параллельно вектору $\overline=(m, n, p).$ Вектор $\overline S$ является направляющим вектором прямой $L.$

3) $\frac=\frac=\frac -$ уравнение прямой, которая проходит через две точки $A(x_1, y_1, z_1)$ и $B(x_2, y_2, z_2).$

4) Приравнивая каждую из частей канонического уравнения 2 к прараметру $t,$ получаем параметрическое уравнение прямой:

Расположение двух прямых в пространстве.

Условие параллельности двух прямых: Прямые $L_1$ и $L_2$ параллельны тогда и только тогда, когда $\overline_1\parallel\overline_2\Leftrightarrow$ $\frac=\frac=\frac.$

Условие перпендикулярности двух прямых: $L_1\perp L_2\Leftrightarrow$ $\overline_1\perp\overline_2\Leftrightarrow$ $\cdot+\cdot+p_1\cdot p_2=0.$

Угол между прямыми:

Расстояние от точки до прямой равно длине перпендикуляра, опущенного из точки на данную прямую.

Пусть прямая $L$ задана уравнением $\frac=\frac=\frac

,$ следовательно $\overline S=(m, n, p).$ Пусть также $M_2=(x_2, y_2, z_2) -$ произвольная точка, принадлежащая прямой $L.$ Тогда расстояние от точки $M_1=(x_1, y_1, z_1)$ до прямой $L$ можно найти по формуле: $$d(M_1, L)=\frac<|[\overline, \overline S]|><|\overline S|>.$$

Примеры.

2.198. Написать каноническое уравнение прямой, проходящей через точку $M_0(2, 0, -3)$ параллельно:

а) вектору $q(2, -3, 5);$

е) прямой $x=-2+t, y=2t, z=1-\frac<1><2>t.$

Решение.

а) Воспользуемся формулой (2) уравнения прямой в пространстве:

$\frac=\frac=\frac

-$ каноническое уравнение прямой $L,$ которая проходит через точку $M(x_0, y_0, z_0)$ параллельно вектору $\overline=(m, n, p).$

По условию $M_0(2, 0, -3)$ и $\overline=q(2,-3,5).$

б) Прямая, параллельная заданной прямой, должна быть параллельна ее направляющему вектору. Направляющий вектор прямой $\frac<5>=\frac<2>=\frac<-1>$ имеет координаты $\overline S(5, 2, -1).$ Далее, находим уравнение прямой проходящей точку $M_0(2, 0, -3)$ параллельно вектору $\overline S(5, 2, -1)$ как и в пункте а):

в) ось OX имеет направляющий вектор $i=(1, 0, 0).$ Таким образом, ищем уравнение прямой проходящей точку $M_0(2, 0, -3)$ параллельно вектору $i(1, 0, 0):$

д) Прямая, заданная как пересечение двух плоскостей перпендикулярна нормалям обеих плоскостей , поэтому Направляющий вектор прямой

$\left\<\begin3x-y+2z-7=0,\\ x+3y-2z-3=0; \end\right.$ можно найти как векторное произведение нормалей заданных плоскостей.

Для плоскости $P_1:$ $3x-y+2z-7=0$ нормальный вектор имеет координаты $N_1(3, -1, 2);$

для плосости $P_2:$ $x+3y-2z-3,$ нормальный вектор имеет координаты $N_2(1, 3, -2).$

Находим векторное произведение:

Таким образом, направляющий вектор прямой $\left\<\begin3x-y+2z-7=0,\\ x+3y-2z-3=0; \end\right.$ имеет координаты $\overline S (-4, 8, 10).$

Далее нам необходимо найти уравнение прямой проходящей точку $M_0(2, 0, -3)$ параллельно вектору $\overline S(-4, 8, 10):$

е) Найдем направляющий вектор прямой $x=-2+t, y=2t, z=1-\frac<1><2>t.$ Для этого запишем уравнение этой прямой в каноническом виде:

Отсюда находим направляющий вектор $\overline S\left(1, 2, -\frac<1><2>\right).$ Умножим координаты направляющего вектора на 2 (чтобы избавиться от дроби): $\overline S_1(2, 4, -1).$

Далее нам необходимо найти уравнение прямой проходящей точку $M_0(2, 0, -3)$ параллельно вектору $\overline S(2, 4, -1):$

2.199(a). Написать уравнение прямой, проходящей через две заданные точки $M_1 (1, -2, 1)$ и $M_2(3, 1, -1).$

Решение.

Воспользуемся формулой (3) уравнения прямой в пространстве:

$\frac=\frac=\frac -$ уравнение прямой, которая проходит через две точки $A(x_1, y_1, z_1)$ и $B(x_2, y_2, z_2).$

Подставляем заданные точки:

2.204. Найти расстояние между параллельными прямыми

Решение.

Расстояние между параллельными прямыми $L_1$ и $L_2$ равно расстоянию от произвольной точки прямой $L_1$ до прямой $L_2.$ Следовательно, его можно найти по формуле $$d(L_1, L_2)=d(M_1, L_2)=\frac<|[\overline, \overline S]|><|\overline S|>,$$ где $M_1-$ произвольная точка прямой $L_1,$ $M_2 — $произвольная точка прямой $L_2,$ $\overline S -$ направляющий вектор прямой $L_2.$

Из канонических уравнений прямых берем точки $M_1=(2, -1, 0)\in L_1,$ $M_2=(7, 1, 3)\in L_2,$ $\overline S=(3, 4, 2). $

Отсюда находим $\overline=(7-2, 1-(-1),3-0)=(5, 2, 3);$

Ответ: 3.

2.205 (а). Найти расстояние от точки $A(2, 3, -1)$ до заданной прямой $L:$ $\left\<\begin2x-2y+z+3=0,\\ 3x-2y+2z+17=0 \end\right.$

Решение.

Для того, чтобы найти расстояние от точки $A$ до прямой $L,$ нам необходимо выбрать произвольную точку $M,$ принадлежащую прямой $L$ и найти направляющий вектор этой прямой.

Выбираем точку $M.$ Пусть координата $z=0.$ Подставим это значение в данную систему:

Таким образом, $M=(-14, -\frac<25><2>, 0)$

Направляющий вектор найдем, как векторное произведение нормалей заданных плоскостей:

Для плоскости $P_1:$ $2x-2y+z+3=0$ нормальный вектор имеет координаты $N_1(2, -2, 1);$

для плосости $P_2:$ $3x+2y+2z+17=0,$ нормальный вектор имеет координаты $N_2(3, -2, 2).$

Находим векторное произведение:

Таким образом, направляющий вектор прямой $\left\<\begin2x-2y+z+3=0,\\ 3x-2y+2z+17=0 \end\right.$

имеет координаты $\overline S (-2, -1, 2).$

Теперь можно воспользоваться формулой $$d(A, L)=\frac<|[\overline, \overline S]|><|\overline S|>.$$

$\overline=\left(2-(-14),3-\left(-\frac<25><2>\right),-1-0\right)=\left(16, 15\frac<1><2>, -1\right)$

Ответ: $d(A, L)=15.$

2.212. Написать каноническое уравнение прямой, которая проходит через точку $M_0(3, -2, -4)$ параллельно плоскости $P: 3x-2y-3z-7=0$ и пересекает прямую $L: \frac<3>=\frac<-2>=\frac<2>.$

Решение.

Запишем уравнение плоскости $P_1,$ которая проходит через точку $M_0(3, -2, -4)$ параллельно плоскости $3x-2y-3z-7=0:$

$P: 3x-2y-3z-7=0\Rightarrow \overline N=(3; -2; -3).$ Искомая плоскость проходит через точку $M_0(3, -2, -4)$ перпендикулярно вектору $\overline N(3, -2, -3).$

$P_1: 3x-9-2y-4-3z-12=0 \Rightarrow$

Далее найдем точку пересечения плоскости $P_1$ и прямой $L.$ Для этого запишем уравнение прямой $L$ в параметрической форме:

Далее, подставим значения $x, y$ и $z,$ выраженные через $t$ в уравнение плоскости $P_1,$ и из полученного уравнения выразм $t:$

Подставляя найденное занчение $t$ в уравнение прямой $L,$ найдем координаты точки пересечения:

Таким образом, прямая $L$ и плоскость $P_1$ пересекаются в точке $M_1(8, -8, 5).$

Теперь запишем уравнение прямой, проходящей через точки $M_0(3, -2. -4)$ и $M_1(8, -8, 5)$— это и будет искомая прямая. Воспользуемся формулой ( 3) $\frac=\frac=\frac :$

2.199.

б) Написать уравнение прямой, проходящей через две заданные точки $M_1 (3, -1, 0)$ и $M_2(1, 0, -3).$

б) Найти расстояние от точки $A(2, 3, -1)$ до заданной прямой $ L:$ $\left\<\beginx=3t+5,\\ y=2t,\\z=-2t-25. \end\right.$

2.206. Доказать, что прямые $L_1: \left\<\begin2x+2y-z-10=0,\\ x-y-z-22=0, \end\right.$ и $L_2: \frac<3>=\frac<-1>=\frac<4>.$ параллельны и найти расстояние $\rho(L_1, L_2)$

2.207. Составить уравнения прямой, проходящей через точки пересечения плоскости $x-3y+2z+1=0$ с прямыми $\frac<5>=\frac<-2>=\frac<-1>$ и $\frac<4>=\frac<-6>=\frac<2>.$

2.211. Написать уравнение прямой, проходящей через точку $M_0(7, 1, 0)$ параллельно плоскости $2x+3y-z-15=0$ и пересекающей прямую $\frac<1>=\frac<4>=\frac<2>.$

Онлайн калькулятор. Уравнение прямой проходящей через две точки

Этот онлайн калькулятор позволит вам очень просто найти параметрическое и каноническое уравнение прямой проходящей через две точки.

Воспользовавшись онлайн калькулятором, вы получите детальное пошаговое решение вашей задачи, которое позволит понять алгоритм решения задач на составление уравнения прямой и закрепить пройденный материал.

Найти уравнение прямой

Выберите необходимую вам размерность:

Введите координаты точек.

Ввод данных в калькулятор для составления уравнения прямой

В онлайн калькулятор вводить можно числа или дроби. Более подробно читайте в правилах ввода чисел.

Дополнительные возможности калькулятора для составления уравнения прямой

  • Используйте кнопки и на клавиатуре, для перемещения между полями калькулятора.

Теория. Уравнение прямой.

Прямая — один из базовых элементов геометрии. Используя уравнения прямых можно существенно упростить решение многих задач.

Вводить можно числа или дроби (-2.4, 5/7, . ). Более подробно читайте в правилах ввода чисел.

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.


источники:

http://mathportal.net/index.php/analiticheskaya-geometriya/pryamaya-v-prostranstve

http://ru.onlinemschool.com/math/assistance/cartesian_coordinate/p_to_line/