Написать параметрическое уравнение прямой проходящей через точки

Каноническое и параметрическое уравнения прямой

Пусть l — некоторая прямая пространства. Как и в планиметрии, любой вектор

а =/= 0, коллинеарный прямой l, называется направляющим вектором этой прямой.

Положение прямой в пространстве полностью определяется заданием направляющего вектора и точки, принадлежащей прямой.

Пусть прямая l с направляющим вектором а проходит через точку M0 , а М — произвольная точка пространства. Очевидно, что точка М (рис. 197) принадлежит прямой l тогда и только тогда, когда вектор \(\overrightarrow\) коллинеарен вектору а, т. е.

Если точки М и M0 заданы своими радиус-векторами r и r0 (рис. 198) относительно некоторой точки О пространства, то \(\overrightarrow\) = r r0, и уравнение (1) принимает вид

Уравнения (1) и (2) называются векторно-параметрическими уравнениями прямой. Переменная t в векторно-параметрических уравнениях прямой называется параметром.

Пусть точка M0 прямой l и направляющий вектор а заданы своими координатами:

Тогда, если (х; у; z) — координаты произвольной точки М прямой l, то

и векторное уравнение (1) равносильно следующим трем уравнениям:

$$ \begin x = x_0 + ta_1 \\ y = y_0 + ta_2 \\ z = z_0 + ta_3, \;\;t\in R\end (3)$$

Уравнения (3) называются параметрическими уравнениями прямой в пространстве.

Задача 1. Написать параметрические уравнения прямой, проходящей через точку

M0(-3; 2; 4) и имеющей направляющий вектор а = (2; -5; 3).

В данном случае х0 = -3, у0 = 2, z0 = 4; а1 = 2; а2 = -5; а3 = 3. Подставив эти значения в формулы (3), получим параметрические уравнения данной прямой

$$ \begin x = -3 — 2t \\ y = 2 — 5t \\ z = 4 + 3t, \;\;t\in R\end $$

Исключим параметр t из уравнений (3). Это можно сделать, так как а =/= 0, и поэтому одна из координат вектора а заведомо отлична от нуля.

Пусть сначала все координаты отличны от нуля. Тогда

Эти уравнения называются каноническими уравнениями прямой.

Заметим, что уравнения (4) образуют систему двух уравнений с тремя переменными х, у и z.

Если в уравнениях (3) одна из координат вектора а, например а1 равна нулю, то, исключив параметр t, снова получим систему двух уравнений с тремя переменными х, у и z:

Эти уравнения также называются каноническими уравнениями прямой. Для единообразия их также условно записывают в виде (4)

считая, что если знаменатель равен нулю, то равен нулю и соответствующий числитель. Эти уравнения являются уравнениями прямой, проходящей через точку M0(х0; у0, z0) параллельно координатной плоскости yOz, так как этой плоскости параллелен ее направляющий вектор (0; а2; а3).

Наконец, если в уравнениях (3) две координаты вектора а, например а1 и а2 равны нулю, то эти уравнения принимают вид

Это уравнения прямой, проходящей через точку M0(х0; у0; z0) параллельно оси Oz. Для такой прямой х = х0, y = у0, a z — любое число. И в этом случае для единообразия уравнения прямой можно записывать (с той же оговоркой) в виде (4)

Таким образом, для любой прямой пространства можно написать канонические уравнения (4), и, наоборот, любое уравнение вида (4) при условии, что хотя бы один из коэффициентов а1 , а2 , а3 не равен нулю, задает некоторую прямую пространства.

Задача 2. Написать канонические уравнения прямой, проходящей через точку M0(- 1; 1, 7) параллельно вектору а = (1; 2; 3).

Уравнения (4) в данном случае записываются слeдующим образом:

Выведем уравнения прямой, проходящей через две данные точки M1(х1; у1; z1) и

Это и есть уравнения прямой, проходящей через две точки M1(х1; у1; z1) и

Задача 3. Написать уравнения прямой, проходящей через точки M1(-4; 1; -3) и M2(-5; 0; 3).

Задача 4. Написать уравнения прямой, проходящей через точки M1(3; -2; 1) и

После подстановки координат точек M1 и M2 в уравнения (5) получим

Уравнение прямой

Уравнение прямой на плоскости

Любую прямую на плоскости можно задать уравнением прямой первой степени вида

где A и B не могут быть одновременно равны нулю.

Уравнение прямой с угловым коэффициентом

Общее уравнение прямой при B≠0 можно привести к виду

где k — угловой коэффициент равный тангенсу угла, образованного данной прямой и положительным направлением оси ОХ.

Уравнение прямой в отрезках на осях

Если прямая пересекает оси OX и OY в точках с координатами ( a , 0) и (0, b ), то она может быть найдена используя формулу уравнения прямой в отрезках

x+y= 1
ab

Уравнение прямой, проходящей через две различные точки на плоскости

Если прямая проходит через две точки M( x 1, y 1) и N( x 2, y 2), такие что x 1 ≠ x 2 и y 1 ≠ y 2, то уравнение прямой можно найти, используя следующую формулу

x — x 1=y — y 1
x 2 — x 1y 2 — y 1

Параметрическое уравнение прямой на плоскости

Параметрические уравнения прямой могут быть записаны следующим образом

x = l t + x 0 y = m t + y 0

где N( x 0, y 0) — координаты точки лежащей на прямой, a = < l , m >— координаты направляющего вектора прямой.

Каноническое уравнение прямой на плоскости

Если известны координаты точки N( x 0, y 0) лежащей на прямой и направляющего вектора a = ( l и m не равны нулю), то уравнение прямой можно записать в каноническом виде, используя следующую формулу

x — x 0=y — y 0
lm

Решение. Воспользуемся формулой для уравнения прямой проходящей через две точки

x — 1 2 — 1 = y — 7 3 — 7

Упростив это уравнение получим каноническое уравнение прямой

Выразим y через x и получим уравнение прямой с угловым коэффициентом

Найдем параметрическое уравнение прямой. В качестве направляющего вектора можно взять вектор MN .

Взяв в качестве координат точки лежащей на прямой, координаты точки М, запишем параметрическое уравнение прямой

x = t + 1 y = -4 t + 7

Решение. Так как M y — N y = 0, то невозможно записать уравнение прямой проходящей через две точки.

Найдем параметрическое уравнение прямой. В качестве направляющего вектора можно взять вектор MN .

Взяв в качестве координат точки лежащей на прямой, координаты точки М, запишем параметрическое уравнение прямой

Уравнение прямой в пространстве

Уравнение прямой, проходящей через две различные точки в пространстве

Если прямая проходит через две точки M( x 1, y 1, z 1) и N( x 2, y 2, z 2), такие что x 1 ≠ x 2, y 1 ≠ y 2 и z 1 ≠ z 2, то уравнение прямой можно найти используя следующую формулу

x — x 1=y — y 1=z — z 1
x 2 — x 1y 2 — y 1z 2 — z 1

Параметрическое уравнение прямой в пространстве

Параметрические уравнения прямой могут быть записаны следующим образом

x = l t + x 0
y = m t + y 0
z = n t + z 0

где ( x 0, y 0, z 0) — координаты точки лежащей на прямой, — координаты направляющего вектора прямой.

Каноническое уравнение прямой в пространстве

Если известны координаты точки M( x 0, y 0, z 0) лежащей на прямой и направляющего вектора n = , то уравнение прямой можно записать в каноническом виде, используя следующую формулу

x — x 0=y — y 0=z — z 0
lmn

Прямая как линия пересечения двух плоскостей

Если прямая является пересечением двух плоскостей, то ее уравнение можно задать следующей системой уравнений

Параметрическое уравнение прямой проходящей через две точки: онлайн-калькулятор

Параметрическое уравнение прямой можно легко составить с помощью онлайн-калькулятора. Просто выберите размерность (плоскость или трехмерное пространство), укажите координаты точек и нажмите «рассчитать». Онлайн-калькулятор выдаст подробное пошаговое решение.

Как найти параметрическое уравнение прямой, проходящей через две точки, с помощью онлайн-калькулятора

Рассмотрим пример, наглядно демонстрирующий работу с онлайн-калькулятором. Найдем параметрическое уравнение прямой, проходящей через точки с координатами (1;4) и (3;0). Для этого:

  1. Укажем размерность. Калькулятор позволяет работать с объектами на плоскости (2), или в пространстве (3). В нашем конкретном примере выберем плоскость (2):
  2. Зададим прямую по двум точкам. Для этого впишем координаты этих точек в пустые поля калькулятора:
  3. Нажмем «Рассчитать» и получим ответ с решением:

Материалы, которые помогут вам лучше разобраться в теме:

Параметрическое уравнение прямой онлайн

Параметрическое уравнение прямой представляет собой систему из двух или трех уравнений. Чтобы задать прямую на плоскости или в пространстве параметрически, достаточно знать координаты двух точек, через которые эта прямая проходит. Онлайн-калькулятор позволяет найти параметрическое уравнение прямой в один клик, минуя все расчеты.

Интерфейс онлайн-калькулятора устроен максимально понятно и просто: вы можете не только получить ответ, но и разобраться с ходом решения примера, так как программа выдает все математические выкладки с подробным пояснением.

Данный сервис будет полезен студентам, школьникам, преподавателям, а также всем людям, интересующимся математикой.


источники:

http://ru.onlinemschool.com/math/library/analytic_geometry/line/

http://zaochnik.com/online-calculators/tochka-pryamaya-ploskost/parametricheskoe-uravnenie-pryamoj-prohodyashej-cherez-dve-tochki/