Написать полностью уравнения радиоактивного распада

—>Решение задач по химии —>

Глинка Н. Л. Задачи и упражнения по общей химии. Учебное пособие для вузов / Под ред. В. А. Рабиновича и Х. М. Рубиной. – 23-е изд., исправленное – Л.: Химия, 1985. – 264 с., ил.

Задачи 206-227

206. Символ одного из изотопов элемента 52 24Э. Указать: а) название элемента; б) число протонов и нейтронов в ядре; в) число электронов в электронной оболочке атома. Решение

207. Ядро атома некоторого элемента содержит 16 нейтронов, а электронная оболочка этого атома – 15 электронов. Назвать элемент, изотопом которого является данный атом. Привести запись его символа с указанием заряда ядра и массового числа. Решение

208. Массовое число атома некоторого элемента равно 181, в электронной оболочке атома содержится 73 электрона. Указать число протонов и нейтронов в ядре атома и название элемента. Решение

209. В природных соединениях хлор находится в виде изотопов 35 Cl [75,5% (масс.)] и 37 Cl [24,5% (масс.)]. Вычислить среднюю атомную массу природного хлора. Решение

210. Природный магний состоит из изотопов 24 Mg, 25 Mg, 26 Mg. Вычислить среднюю атомную массу природного магния, если содержание отдельных изотопов в атомных процентах соответственно равно 78,6, 10,1 и 11,3. Решение

211. Природный галлий состоит из изотопов 71 Ga и 69 Ga. В каком количественном соотношении находятся между собой числа атомов этих изотопов, если средняя атомная масса галлия равна 69,72? Решение с ключом

212. Найти массу изотопа 81 Sr (T½=8,5 ч), оставшуюся через 25,5 ч хранения, если первоначальная масса его составляла 200 мг. Решение

213. Вычислить процент атомов изотопа 128 I (T½=25 мин), оставшихся не распавшимися после его хранения в течение 2,5 ч. Решение с ключом

214. Период полураспада β — — радиоактивного изотопа 24 Na равен 14,8 ч. Написать уравнение реакции распада и вычислить, сколько граммов дочернего продукта образуется из 24 г 24 Na за 29,6 ч. Решение с ключом

215. Закончить уравнения реакций радиоактивного распада: а) 238 92U→α; б) 235 92U→α; в) 239 94Pu→α; г) 86 37Rb→β — ; д) 234 90Th→β — ; е) 57 25Mn→β — ; ж) 18 9F→β + ; з) 11 6C→β + ; и) 45 22Ti→β + . В каких случаях дочерний атом является изобаром материнского атома? Решение с ключом

216. Какой тип радиоактивного распада наблюдается при следующих превращениях: а) 226 88Ra→ 222 86Rn; б) 239 93Np→ 239 94Pu; в) 152 62Sm→ 148 60Nd; г) 111 46Pd→ 111 47Ag? Решение с ключом

218. Написать полные уравнения ядерных реакций: а) 70 30Zn[p, n]?; б) 51 23V[α, n]?; в) 56 26Fe[D, ?] 57 27Co; г) ?[α, D] 34 17Cl; д) 55 25Mn[?, α] 52 23V. Решение с ключом

219. Как изменяются массовое число и заряд атома изотопа: а) при последовательном испускании α-частицы и двух β-частиц; б) при поглощении ядром двух протонов и испускании двух нейтронов; в) при поглощении одной α-частицы и выбрасывании двух дейтронов? Решение с ключом

220. Сколько α и β — -частиц должно было потерять ядро 226 Ra для получения дочернего элемента с массовым числом 206, принадлежащего IV группе периодической системы элементов? Назвать этот элемент. Решение с ключом

221. Ядро атома изотопа 238 92U в результате радиоактивного распада превратилось в ядро 226 88Ra. Сколько α- и β — -частиц испустило при этом исходное ядро? Решение с ключом

222. Изотоп 40 K превращается в изотоп 40 Ca. Какой тип радиоактивного распада при этом реализуется: а) α-распад; б) β — -распад; в) β + -распад; г) захват электрона; д) спонтанное деление? Решение

223. Какой тип радиоактивного распада приведет к образованию дочернего ядра, являющегося изобаром по отношению к исходному ядру: а) α-распад; б) β — -распад; в) β + -распад; г) захват электрона; д) ни один из этих процессов? Решение

224. Как изменяется массовое число и заряд атома при испускании одной α-частицы и двух β — -частиц: а) заряд уменьшится на 2, а массовое число – на 4; б) заряд увеличится на 2, а массовое число уменьшится на 4; в) заряд не изменится, а массовое число уменьшится на 4; г) ни заряд, ни массовое число не изменятся? Решение

225. Фотон жесткого γ-излучения выбивает из ядра 26 12Mg протон. При этом образуется: а) ядро-изотоп 26 12Mg; б) ядро-изобар 26 12Mg; в) ядро-изотоп 23 11Na; г) ядро-изобар 23 11Na. Решение

226. К какому радиоактивному семейству относится изотоп 207 Pb: а) 232 Th; б) 237 Np; в) 227 Ac; г) 238 U? Решение

227. Может ли в природе находиться изотоп 222 Rn с T½=3,2 дня а) да; б) нет? Потому что: 1) период полураспада этого изотопа много меньше времени существования Земли; 2) этот изотоп является членом радиоактивного семейства; 3) у радона есть более долгоживущие изотопы. Решение

Химия

ОСНОВЫ ТЕОРЕТИЧЕСКОЙ ХИМИИ

3. Строение атома

Ядро атома и радиоактивные превращения. В настоящее время в ядре атома открыто большое число элементарных частиц. Важнейшими из них являются протоны (символ p ) и нейтроны (символ n ). Обе эти частицы рассматриваются как два различных состояния ядерной частицы нуклона. Элементарные частицы характеризуются определенной массой и зарядом. Протон обладает массой 1,0073 а.е.м. и зарядом +1. Масса нейтрона равна 1,0087 а.е.м., а его заряд — нулю (частица электрически нейтральна). Можно сказать, что массы протона и нейтрона почти одинаковы.

Вскоре после открытия нейтрона , была создана протонно-нейтронная теорию строения ядра. Согласно этой теории ядра всех атомов, кроме ядра атома водорода, состоят из Z протонов (А — Z) нейтронов, где Z — порядковый номер элемента, А — массовое число.

Массовое число А указывает суммарное число протонов Z и нейтронов N в ядре атома, т.е.

Силы, удерживающие протоны и нейтроны в ядре, называются ядерными. Это чрезвычайно большие силы, действующие на очень коротких расстояниях (порядка 10 -15 м) и превосходящие силы отталкивания. Природу этих сил изучает ядерная физика. В ядре сосредоточена почти вся масса атома. Массой электронов по сравнению с массой ядра можно практически пренебречь. Свойства ядра определяются главным образом числом протонов и нейтронов, т.е. составом ядра. Состав ядер атомов различных химических элементов не одинаков, а потому элементы отличаются по атомной массе. И поскольку в состав ядра входят протоны, ядро заряжено положительно. Так как заряд ядра численно равен порядковому номеру элемента Z , то он определяет число электронов в электронной оболочке атома и ее строение, а тем самым и свойства химического элемента. Поэтому положительный заряд ядра, а не атомная масса является главной характеристикой атома, а значит, и элемента.

Наряду с химическими реакциями, в которых принимают участие только электроны, существуют различные превращения, в которых изменению подвергаются ядра атомов (ядерные реакции).

Изотопы. Исследования показали, что в природе существуют атомы одного и того же элемента с разной массой. Так, встречаются атомы хлора с массой 35 и 37. Ядра этих атомов содержат одинаковое число протонов, но разное число нейтронов.

Атомы одного и того же элемента, имеющие разную массу (массовое число), называют изотопами. Каждый изотоп характеризуется двумя величинами: массовым числом (проставляется вверху слева от химического знака) и порядковым номером (проставляется внизу слева от химического знака) и обозначается символом соответствующего элемента. Например, изотоп углерода с массовым числом 12 записывается так: 12 6 С, или 12 С, или словами: “углерод-12”. Эта форма записи распространена и на элементарные частицы: электрон 0 1 е, нейтрон 1 0 n, протон 1 1 p или 1 1 Н, нейтрино 0 0 n . Изотопы известны для всех химических элементов.

Обычно изотопы различных элементов не имеют специальных названий. Единственным исключением является водород, изотопы которого имеют специальные химические символы и названия: 1 H — протий, 2 D — дейтерий, 3 T — тритий. Это связано с тем, что относительное отличие масс изотопов для водорода является максимальным среди всех химических элементов.

Атомная масса элемента равна среднему значению из масс всех его природных изотопов с учетом их распространенности.

Так, например, природный хлор состоит из 75,4% изотопа с массовым числом 35 и из 24,6% изотопа с массовым числом 37; средняя атомная масса хлора 35,453. Средняя атомная масса природного лития, содержащего 92,7% 7 3 Li и 7,3% 6 3 Li равна 6,94 и т.д. Атомные массы элементов, приводимые в периодической системе Д. И. Менделеева, есть средние массовые числа природных смесей изотопов. Это одна из причин, почему они отличаются от целочисленные значений. Наряду с термином “изотопы” используется термин “нуклид”. Нуклид — это атом со строго определенным значением массового числа, т.е. с фиксированным значением числа протонов и нейтронов в ядре. Радиоактивный нуклид сокращенно называют радионуклид. Термин “изотопы” следует применять только для обозначения стабильных и радиоактивных нуклидов одного элемента.

Устойчивые и неустойчивые изотопы. Все изотопы подразделяются на стабильные и радиоактивные. Стабильные изотопы не подвергаются радиоактивному распаду, поэтому они и сохраняются в природных условиях. Примерами стабильных изотопов являются 16 О, 12 С, 19 F. Большинство природных элементов состоит из смеси двух или большего числа стабильных изотопов. Из всех элементов наибольшее число стабильных изотопов имеет олово (10 изотопов). В редких случаях, например у алюминия, в природе встречается только один стабильный изотоп, а остальные изотопы неустойчивы.

Радиоактивные изотопы подразделяются, в свою очередь, на естественные и искусственные — и те и другие самопроизвольно распадаются, испуская при этом a — или b -частипы до тех пор, пока не образуется стабильный изотоп. Химические свойства всех изотопов в основном одинаковы. Эти свойства определяются главным образом зарядом ядра, а не его массой.

С помощью ядерных реакций получают изотопы, обладающие радиоактивностью (радиоактивные изотопы). Все они неустойчивы и в результате радиоактивного распада превращаются в изотопы других элементов.

Радиоактивные изотопы получены для всех химических элементов. Их известно около 1500. Элементы, состоящие только из радиоактивных изотопов, называются радиоактивными. Это элементы с Z = 43, 61 и 84 — 107.

Стабильных (нерадиоактивных) изотопов известно около 300. Из них состоит большинство химических элементов периодической системы элементов Д.И. Менделеева. У некоторых элементов наряду со стабильными имеются и долгоживущие радиоактивные изотопы. Это 40 19 K, 87 37 Rb, 115 49 In и др.

По химическим свойствам радиоактивные изотопы почти не отличаются от стабильных. Поэтому они служат в качестве “меченых” атомов, позволяющих по измерению их радиоактивности следить за поведением всех атомов данного элемента и за их передвижением. Радиоактивные изотопы широко применяются в научных исследованиях, в промышленности, сельском хозяйстве, медицине, биологии и химии. В настоящее время их получают в больших количествах.

Виды радиоактивного распада. Существует три основных вида самопроизвольных ядерных превращений.

1. a — распад. Ядро испускает a — частицу, которая представляет собой ядро атома гелия 4 Не и состоит из двух протонов и двух нейтронов. При a — распаде массовое число изотопа уменьшается на 4, а заряд ядра — на 2 :

2. b -распад. В неустойчивом ядре нейтрон превращается в протон, при этом ядро испускает электрон ( b -частицу) и антинейтрино:

При b -распаде массовое число изотопа не изменяется, поскольку общее число протонов и нейтронов сохраняется, а заряд ядра увеличивается на 1:

3. g -распад. Возбужденное ядро испускает электромагнитное излучение с очень малой длиной волны и очень высокой частотой ( g -излучение), при этом энергия ядра уменьшается, массовое число и заряд ядра остаются неизменными.

Радиоактивные превращения . Ядерные реакции — это превращение атомных ядер в результате их взаимодействия с элементарными частицами и друг с другом. Написание уравнений таких реакций основано на законах сохранения массы и заряда. Это означает, что сумма масс и сумма зарядов в левой части уравнения должна быть равна сумме масс и сумме зарядов в правой части уравнения :

Это уравнение показывает, что при взаимодействии атома алюминия с a -частицей образуются атом кремния и протон.

Более употребительна краткая запись ядерных реакций. Вначале записывают химический знак исходного ядра, затем (в скобках) кратко обозначают частицу, вызвавшую реакцию, и частицу, образовавшуюся в результате реакции, после чего ставят химический знак конечного ядра. При этом у символов исходного и конечного ядер обычно проставляются только массовые числа, так как заряды ядер легко определять по периодической системе элементов Д.И. Менделеева. Сокращенная запись рассмотренных ранее ядерных реакций следующая:

где a — обозначение a -частицы ( 4 2 Не); р — протона ( 1 1 Н); черточка означает отсутствие действующей частицы в случае радиоактивного распада.

Важнейшей особенностью ядерных реакций является выделение огромного количества энергии в форме кинетической энергии образующихся частиц или в форме энергии излучения. В химических реакциях энергия выделяется главным образом в форме теплоты. Энергия ядерных реакций превышает энергию химических реакций в миллионы раз. Этим объясняется неразрушимость ядер атомов при протекании химических реакций.

Скорость радиоактивного распада. Период полураспада. Скорости распада радиоактивных элементов сильно отличаются от одного элемента к другому и не зависят от внешних условий, таких, например, как температура (в этом состоит важное отличие ядерных реакций от обычных химических превращений). Каждый радиоактивный элемент характеризуется периодом полураспада t 1/2 , т. е. временем, за которое самопроизвольно распадается половина атомов исходного вещества. Для разных элементов период полураспада имеет сильно отличающиеся значения. Так, для урана 238 U период полураспада t 1/2 = 4,5 × 10 9 лет. Именно поэтому активность урана в течение нескольких лет заметно не меняется. Для радия 226 Ra период полураспада t 1/2 = 1600 лет, поэтому и активность радия больше, чем урана. Ясно, что чем меньше период полураспада, тем быстрее протекает радиоактивный распад. Для разных элементов период полураспада может изменяться от миллионных долей секунды до миллиардов лет.

На примере естественного распада урана 238 U показаны превращения, которые через промежуточные радиоактивные элементы приводят к устойчивому элементу — свинцу 206 Р b . Схема хорошо иллюстрирует различие в периодах полураспада t 1/2 для различных элементов (периоды полураспада даны внизу под стрелкой, частицы, испускаемые радиоактивными элементами, — над стрелкой).

Уравнение радиоактивного распада. Математическое уравнение, описывающее закон радиоактивного распада, связывает значение массы m(t) радиоактивного изотопа в момент времени t с начальной массой m 0 :

Кроме приведенного на рисунке естественного ряда радиоактивных элементов (так называемого ряда урана), известны еще два других естественных ряда — это ряд актиния, начинающийся с 235 U и заканчивающийся 208 Р b , и ряд тория, начинающийся с 232 Т h и заканчивающийся 208 Р b . Существует еще и четвертый ряд радиоактивных изотопов, этот ряд получен искусственно.

Искусственные превращения , ядерный синтез. Первая искусственная ядерная реакция была осуществлена Резерфордом путем бомбардировки атомов азота a частицами :

В настоящее время, чтобы осуществить искусственные превращения, чаще используют протоны или нейтроны, например:

В ядерных реакциях (в случае естественного или искусственного превращения элементов) сумма атомных масс (сумма индексов слева вверху) реагентов и продуктов всегда одинакова. Это относится и к зарядам ядер (индексы слева внизу, которые часто опускаются).

В 1930 г. был создан первый в мире циклотрон (ускоритель элементарных частиц — “снарядов” для бомбардировки ядер атомов), после чего было открыто и изучено множество разнообразных ядерных реакций. В настоящее время специальная область химии, ядерная химия, занимается изучением превращений элементов.

Особую важность представлял синтез неизвестных ранее элементов: технеция, франция, астата и др., а также всех трансурановых элементов (элементов, порядковый номер которых превышает 92). В настоящее время получено 17 трансурановых элементов (от Z = 93 до Z = 109 включительно). Работы в этой области проводятся в Объединенном институте ядерных исследований в г. Дубне. Там впервые были синтезированы элементы с порядковыми номерами 102, 103, 104, 105, 106, 107. Ведутся работы по синтезу элементов с более тяжелыми ядрами.

Основной закон радиоактивного распада. Дифференциальная форма закона.

Радиоактивный распад ядер одного и того же элемента происходит постепенно и с разной скоростью для разных радиоактивных элементов. Нельзя указать заранее момент распада ядра, но можно установить вероятность распада одного ядра за единицу времени. Вероятность распада характеризуется коэффициентом «λ» — постоянной распада, который зависит только от природы элемента.

Закон радиоактивного распада.(Слайд 32)

Экспериментально установлено, что:

За равные промежутки времени распадается одинаковая доля наличных (т.е. еще не распавшихся к началу данного промежутка) ядер данного элемента.

Дифференциальная форма закона радиоактивного распада.(слайд 33)

Устанавливает зависимость количества не распавшихся атомов в данный момент времени от начального количества атомов в нулевой момент начала отсчета, а так же от времени распада»t» и постоянной распада «λ».

Nt — наличное количество ядер.

dN — убыль наличного количества атомов;

dt — время распада.

«λ» — коэффициент пропорциональности, постоянная распада, характеризует долю наличных, еще не распавшихся ядер;

«–» — говорит том, что с течением времени количество распадающихся атомов уменьшается.

Следствие № 1: (слайд 34)

λ = –dN/Nt· dt — относительная скорость радиоактивного распада для данного вещества есть величина постоянная.

dN/Nt = – λ · Nt — абсолютная скорость радиоактивного распада пропорциональна количеству не распавшихся ядер к моменту времени dt. Она не является «const», т.к. уменьшатся с течением времени.

4. Интегральная форма закона радиоактивного распада.(слайд 35)

Устанавливает зависимость числа оставшихся атомов в данный момент времени (Nt) от их исходного количества (No), времени (t) и постоянной распада «λ». Интегральная форма получается из дифференциальной:

1. Разделим переменные:

2. Проинтегрируем обе части равенства:

3. Найдем интегралы Þ общее решение

4. Найдем частное решение:

Если t = t0 = 0 Þ Nt = N0 , подставим эти условия в общее решение

(начало (исходное число

Þ Таким образом:

интегральная форма закона р/акт. распада

Nt — число не распавшихся атомов к моменту времени t;

λ — постоянная распада;

Вывод: Наличное количество не распавшихся атомов

исходному количеству и убывает с течением времени по экспоненциальному закону. (слайд 37)

T2 3.

Þ

5.

Период полураспада изотопов различается в широких пределах: (слайд40)

238 U ® T = 4,51· 10 9 лет

60 Co ® T = 5,3 года

24 Na ® T = 15,06 часов

6. Активность. Её виды, единицы измерения и количественная оценка. Формула активности.(слайд 41)

На практике основное значение имеет общее число распадов, приходящихся в источнике радиоактивного излучения в единицу времени => количественно меру распада определяют активностью радиоактивного вещества.

Активность (А) зависит от относительной скорости распада «λ» и от наличного числа ядер (т.е. от массы изотопа).

«А» — характеризует абсолютную скорость распада изотопа.

3 варианта записи формулы активности: (слайд 42,43)

I. Из закона радиоактивного распада в дифференциальной форме следует:

Þ

активность (абсолютная скорость радиоактивного распада).

активность

II. Из закона радиоактивного распада в интегральной форме следует:

1. (домножим обе части равенства на «λ» ).

Þ

2. ; ( исходная активность при t = 0)

3. убыль активности идет по экспоненциальному закону

III. При использовании формулы связи постоянной распада «λ» с периодом полураспада «Т» следует:

1. (домножим обе части равенства на «Nt», что бы получить активность ). Þ и получаем формулу для активности

2.

Единицы измерения активности: (слайд 44)

А. Системные единицы измерения.

1[расп/с] = 1[Бк] – беккерель

1Мрасп/с =10 6 расп/с = 1 [Рд] — резерфорд

Б. Внесистемные единицы измерения.

[Ки]кюри (соответствует активности 1г радия).

1[Ки] = 3,7 · 10 10 [расп/с] — в 1г радия за 1с распадается 3,7· 10 10 радиоактивных ядер.

Виды активности: (слайд 45)

1. Удельная — это активность единицы массы вещества.

Её используют для характеристики порошкообразных и газообразных веществ.

2. Объёмная — это активность в единице объёма вещества или среды.

Её используют для характеристики жидких веществ.

На практике убыль активности измеряется с помощью специальных радиометрических приборов. Например, зная активность препарата и продукта, образующегося при распаде 1 ядра, можно вычислить, сколько частиц каждого вида испускает препарат за 1 секунду.

Если при делении ядра образуется нейтронов»n», то за 1с испускается поток нейтронов «N». N = n · А.


источники:

http://bobych.ru/lection/himiya/uch_chem_osnteorhim03.html

http://poisk-ru.ru/s42092t3.html