Написать уравнение гармонических колебаний движения

Написать уравнение гармонических колебаний движения

Гармоническое колебательное движение и волны

Написать уравнение гармонического колебательного движения, если максимальное ускорение точки amax = 49,3 см/с 2 , период колебаний T = 2 с и смещение точки от положения равновесия в начальный момент времени x0 = 25 мм.

Дано:

a max = 49,3 см/с 2 =49,3·10 -2 м/с 2

Решение:

Уравнение колебаний запишем в виде

Скорость колеблющейся точки

Ускорение колеблющейся точки

Циклическую частоту выразим через период колебаний Т

Начальную фазу найдем, зная х 0

Уравнение гармонического колебательного движения

Уравнение гармонических колебаний

п.1. Гармонические колебания как простейший периодический процесс

Например:
1) Вращение Луны вокруг Земли, Земли и других планет вокруг Солнца, Солнечной системы в целом вокруг центра Галактики;
2) Колебания атомов в молекуле, колебания электромагнитного поля;
3) Сокращения сердечной мышцы, колебания маятника часов, движение поршня в двигателе внутреннего сгорания, смена дня и ночи, приливы и отливы.

Например:
1) Период вращения минутной стрелки часов T=1 час
Период вращения Земли вокруг своей оси T=1 сут=24 ч
Период вращения Земли вокруг Солнца T=1 год=365 сут
2) Период колебаний атомов в двухатомных молекулах T=10 -14 с
Период вращения Солнца вокруг центра Галактики T=240 млн.лет.≈7,6·10 15 с

Если состояние системы характеризуется некоторой функцией от времени \(s=x(t)\), то для периодического процесса выполняется равенство: \(x(t+T)=x(t)\).
Простейшими периодическими функциями являются тригонометрические функции \(sin⁡t\) и \(cos⁡t\) с периодом \(T=2\pi\).

Множитель \(\omega\) перед аргументом \(t\) тригонометрической функции сокращает её период в \(\omega\) раз (см. §8 данного справочника). Поэтому:

Например:
Запишем закон колебаний математического маятника – шарика на нити, если в начальный момент времени он был отклонен на 5 см, а затем отпущен. При подсчете за 10 с он совершил 20 колебаний.
Отклонение в начальный момент соответствует амплитудному значению A=5 см при \(t_0=0\), значит, будем описывать колебания по закону косинуса с начальной фазой \(\varphi_0=0\). По условию за t=10 с зафиксировано N=20 колебаний, откуда частота: \begin \nu=\frac Nt,\ \ \omega=2\pi\nu=2\pi\frac Nt\\ \omega=2\pi\cdot\frac<20><10>=4\pi\ \text <(рад/с)>\end Получаем закон колебаний: \(x(t)=5cos(4\pi t)\)

п.2. Перемещение, скорость и ускорение при гармоническом движении

Пусть \(x(t)\) — координата тела, участвующего в периодическом движении по закону: $$ x(t)=Acos⁡\omega t $$ Найдем скорость как первую производную от координаты: $$ v(t)=x'(t)=-A\omega sin\omega t=A\omega cos⁡\left(\omega t+\frac\pi 2\right) $$ Мы видим, что колебания скорости происходят с той же частотой, что и колебания координаты, но опережают их по фазе на \(\frac\pi 2\). Амплитудное значение скорости: $$ v_m=A\omega $$ Найдем ускорение как первую производную от скорости (и соответственно, вторую производную от координаты): $$ a(t)=v'(t)=x»(t)=-A\omega^2 cos\omega t=A\omega^2 cos⁡(\omega t+\pi) $$ Колебания ускорения также происходят с той же частотой, опережая колебания скорости на \(\frac\pi 2\) и колебания координаты на \(\pi\). Амплитудное значение ускорения: $$ a_m=A\omega^2 $$ Например:
При A=2 и \(\omega=\frac12\) получаем такие синусоиды:

Из уравнения для ускорения получаем: $$ x»(t)=-A\omega^2cos\omega t=-\omega^2(Acos\omega t)=-\omega^2 x(t) $$ Откуда следует:

Решением этого уравнения в общем виде будут: $$ x(t)=Asin⁡(\omega t+\varphi_0)\ \text<или>\ x(t)=A cos⁡(\omega t+\varphi_0) $$ Для каждой из систем физический смысл \(x(t)\) и \(\omega\) будет разным.

п.3. Примеры

Пример 1. Получите уравнение гармонических колебаний для горизонтального пружинного маятника с массой m и жесткостью пружины k. Чему равна циклическая частота этих колебаний?

Горизонтальный пружинный маятник – это грузик массой m, прикрепленный к пружине жесткостью k. Грузик может перемещаться в горизонтальном направлении без трения.

По вертикали на грузик действую сила тяжести и реакция опоры, равнодействующая которых равна нулю.
По горизонтали на грузик действует только сила упругости: \(F=-k\cdot x(t)\)
Самое время вспомнить о втором законе Ньютона. Сила, действующая на грузик, приводит его в движение с ускорением a: \begin F=ma=m\cdot x»(t)\\ m\cdot x»(t)=-k\cdot x(t) \end Уравнение движения грузика: $$ x»(t)+\frac km x(t)=0 $$ что является уравнением гармонических колебаний с частотой: \(\omega=\sqrt<\frac km>\)
Общее решение уравнения: \(x(t)=Acos\left(\sqrt<\frac km>+\varphi_0\right)\)
Амплитудные значения скорости и ускорения: $$ v_m=A\sqrt<\frac km>,\ \ a_m=A\frac km $$ Ответ: \(\omega=\sqrt<\frac km>\)

Пример 2. Получите уравнение гармонических колебаний для малых углов отклонений математического маятника на нити длиной l при ускорении свободного падения g. Чему равна циклическая частота этих колебаний?

Математический маятник – это шарик, который можно считать материальной точкой, на длинной невесомой нерастяжимой нити длиной l в поле тяготения с ускорением свободного падения g.

Пример 3. Получите уравнение гармонических колебаний для L-контура.
Чему равна циклическая частота этих колебаний?

LC-контур – это электрическая цепь, состоящая из катушки индуктивностью L и конденсатора емкостью C.
Модель является идеальной, т.к. предполагает, что в цепи полностью отсутствует активное сопротивление R, и колебания не затухают со временем.

Напряжение на конденсаторе \(U_C(t)=\frac\). Ток, протекающий через катушку, создает ЭДС \(\varepsilon_L(t)=-L\frac<\triangle I><\triangle t>\). При переходе к пределу \(\triangle t\rightarrow 0\) получаем производную \(\varepsilon_L(t)=-LI'(t)\). По второму закону Кирхгофа для замкнутого контура: \begin U_c(t)=\varepsilon_L(t)\Rightarrow \frac=-LI'(t)\Rightarrow \frac+LI'(t)=0 \end Вспомним, что \(Q'(t)=I(t)\) – ток равен производной от заряда по времени.
Тогда первая производная от тока равна второй производной от заряда \(I'(t)=Q»(t)\).
\begin \frac+LQ»(t)=0 \end Получаем уравнение гармонических колебаний: $$ Q»(t)=\frac<1>Q(t)=0,\ \ \omega=\frac<1><\sqrt> $$ Общее решение уравнения: \(Q(t)=Q_m cos\left(\frac<1><\sqrt>t+\varphi_0\right)\)
Напряжение на конденсаторе: $$ U_C(t)=\frac=\fraccos\left(\frac<1><\sqrt>t+\varphi_0\right) $$ Амплитудное значение напряжения: \(U_m=\frac\)
Ток как скорость изменения заряда: $$ I(t)=Q'(t)=-\frac<\sqrt>sin\left(\frac<1><\sqrt>t+\varphi_0\right)=\frac<\sqrt>cos\left(\frac<1><\sqrt>t+\varphi_0+\frac\pi 2\right) $$ Амплитудное значение тока: \(I_m=\frac<\sqrt>\)
Ток опережает колебания заряда и напряжения на \(\frac\pi 2\)

Гармонические колебания

О чем эта статья:

9 класс, 11 класс, ЕГЭ/ОГЭ

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Механические колебания

Механические колебания — это физические процессы, которые точно или приблизительно повторяются через одинаковые интервалы времени.

Колебания делятся на два вида: свободные и вынужденные.

Свободные колебания

Это колебания, которые происходят под действием внутренних сил в колебательной системе.

Они всегда затухающие, потому что весь запас энергии, сообщенный в начале, в конце уходит на совершение работы по преодолению сил трения и сопротивления среды (в этом случае механическая энергия переходит во внутреннюю). Из-за этого свободные колебания почти не имеют практического применения.

Вынужденные колебания

А вот вынужденные колебания восполняют запас энергии внешним воздействием. Если это происходит каждый период, то колебания вообще затухать не будут.

Вынужденные колебания — это колебания, которые происходят под действием внешней периодически меняющейся силы.

Частота, с которой эта сила воздействует, равна частоте, с которой система будет колебаться.

Например, качели. Если вас кто-то будет на них качать, каждый раз давая толчок, когда вы приходите в одну и ту же точку — такое колебание будет считаться вынужденным.

Это колебание все еще будет считаться вынужденным, если вас будут раскачивать из положения равновесия. Просто в данном случае амплитуда (о которой речь пойдет чуть ниже) будет увеличиваться с каждым колебанием.

Автоколебания

Иногда вынужденному колебанию не нужно внешнего воздействия, чтобы случиться. Бывают такие системы, в которых это внешние воздействие возникает само из-за способности регулировать поступление энергии от постоянного источника.

У автоколебательной системы есть три важных составляющих:

  • сама колебательная система
  • источник энергии
  • устройство обратной связи, обеспечивающей связь между источником и системой

Часы с кукушкой — пример автоколебательной системы. Гиря на ниточке (цепочке) стремится вращать зубчатое колесо (храповик). При колебаниях маятника анкер цепляет за зубец, и вращение приостанавливается.

Но в результате маятник получает толчок, компенсирующий потери энергии из-за трения. Потенциальная энергия гири, которая постепенно опускается, расходуется на поддержание незатухающих колебаний.

Характеристики колебаний

Чтобы перейти к гармоническим колебаниям, нам нужно описать величины, которые помогут нам эти колебания охарактеризовать. Любое колебательное движение можно описать величинами: период, частота, амплитуда, фаза колебаний.

Период — это время одного полного колебания. Измеряется в секундах и обозначается буквой T.

Формула периода колебаний

T = t/N

N — количество колебаний [—]

Также есть величина, обратная периоду — частота. Она показывает, сколько колебаний совершает система в единицу времени.

Формула частоты

ν = N/t = 1/T

N — количество колебаний [—]

Амплитуда — это максимальное отклонение от положения равновесия. Измеряется в метрах и обозначается либо буквой A, либо x max .

Она используется в уравнении гармонических колебаний:

Гармонические колебания

Простейший вид колебательного процесса — простые гармонические колебания, которые описывают уравнением:

Уравнение гармонических колебаний

x — координата в момент времени t [м]

t — момент времени [с]

(2πνt) в этом уравнении — это фаза. Ее обозначают греческой буквой φ

Фаза колебаний

t — момент времени [с]

Фаза колебаний — это физическая величина, которая показывает отклонение точки от положения равновесия. Посмотрите на рисунок, на нем изображены одинаковые фазы:

Например, в тех же самых часах с кукушкой маятник совершает колебания. Он качается слева направо и приходит в самую правую точку. В той же фазе он будет находиться, когда придет в ту же точку, идя справа налево. Если мы возьмем точку на сантиметр левее самой правой, то идя в нее не слева направо, а справа налево, мы получим уже другую фазу.

На рисунке ниже показаны положения тела через одинаковые промежутки времени при гармонических колебаниях. Такую картину можно получить при освещении колеблющегося тела короткими периодическими вспышками света (стробоскопическое освещение). Стрелки изображают векторы скорости тела в различные моменты времени.

Если изменить период, начальную фазу или амплитуду колебания, графики тоже изменятся.

На рисунке ниже во всех трех случаях для синих кривых начальная фаза равна нулю, а в последнем (с) — красная кривая имеет меньшую начальную фазу.

В первом случае (а) красная кривая описывает колебание, у которого амплитуда больше колебания, описанного синей линией.

Во втором случае (b) красная кривая отличается от синей только значением периода — у красной период в два раза меньше.

Математический маятник

Математический маятник — отличный пример гармонических колебаний. Если мы подвесим шарик на нити, то это еще не будет математическим маятником — пока он только физический.

Математическим этот маятник станет, если размеры шарика много меньше длины нити (тогда этими размерами можно пренебречь и рассматривать шарик как материальную точку), растяжение нити очень мало, а масса нити во много раз меньше массы шарика.

Математическим маятником называется система, которая состоит из материальной точки массой m и невесомой нерастяжимой нити длиной l, на которой материальная точка подвешена, и которая находится в поле силы тяжести (или других сил).

Период малых колебаний математического маятника в поле силы тяжести Земли определяется по формуле:

Формула периода колебания математического маятника

l — длина нити [м]

g — ускорение свободного падения [м/с 2 ]

На планете Земля g = 9,8 м/с 2

Пружинный маятник

Пружинный маятник — это груз, прикрепленный к пружине, массой которой можно пренебречь.

В пружинном маятнике колебания совершаются под действием силы упругости.
Пока пружина не деформирована, сила упругости на тело не действует.

Формула периода колебания пружинного маятника

m — масса маятника [кг]

k — жесткость пружины [Н/м]

Закон сохранения энергии для гармонических колебаний

Физика — такая клевая наука, в которой ничего не исчезает бесследно и не появляется из ниоткуда. Эту особенность описывает закон сохранения энергии.

Рассмотрим его на примере математического маятника.

  • Когда маятник отклоняют на высоту h, его потенциальная энергия максимальна.
  • Когда маятник опускается, потенциальная энергия переходит в кинетическую. Причем в нижней точке, где потенциальная энергия равна нулю, кинетическая энергия максимальна и равна потенциальной энергии в верхней точке. Скорость груза в этой точке максимальна.

Онлайн-курсы физики в Skysmart не менее увлекательны, чем наши статьи!


источники:

http://reshator.com/sprav/algebra/10-11-klass/uravnenie-garmonicheskih-kolebanij/

http://skysmart.ru/articles/physics/garmonicheskie-kolebaniya