Написать уравнение гармонических колебаний совершающихся

Напишите уравнение гармонических колебаний если за 1 мин совершается 60 колебаний амплитуда 8 см?

Физика | 10 — 11 классы

Напишите уравнение гармонических колебаний если за 1 мин совершается 60 колебаний амплитуда 8 см.

Решение во вложении :

Амплитуда гармонических колебаний 10 см?

Амплитуда гармонических колебаний 10 см.

За время 0, 5 мин совершается 150 полных колебаний, начальная фаза / 3.

Написать уравнение колебаний.

Помогите решить лёгкую задачку по физике?

Помогите решить лёгкую задачку по физике.

Нужно дано, формулы и решение.

Напишите уравнение гармонических колебаний, если за 1 мин совершается 60 колебаний.

Амплитуда равна 8см, начальная фаза равна нулю.

1. Напишите закон гармонических колебаний для точки, если амплитуда ее колебаний 5 см, а период колебаний 1 с?

1. Напишите закон гармонических колебаний для точки, если амплитуда ее колебаний 5 см, а период колебаний 1 с.

Тело совершает гармоническое колебание по закону x = 20sinПt?

Тело совершает гармоническое колебание по закону x = 20sinПt.

Определите амплитуду, период колебаний и частоту.

Напишите уравнение гармонического колебания, если амплитуда колебания 0, 05 м, период колебания 0, 1 с?

Напишите уравнение гармонического колебания, если амплитуда колебания 0, 05 м, период колебания 0, 1 с.

Напишите уравнение гармонических колебаний, если за 1 минуту совершается 60 колебаний?

Напишите уравнение гармонических колебаний, если за 1 минуту совершается 60 колебаний.

Амплитуда равна 8 см.

Напишите уравнение гармонических колебаний, если амплетуда равна 7 см и за 2 мин совершает 240 колебаний?

Напишите уравнение гармонических колебаний, если амплетуда равна 7 см и за 2 мин совершает 240 колебаний.

Начальная фаза колебаний равна п / 2 рад.

Напиш и те уравнение гармонических колебаний если за 1 мин совершается 60 колебаний?

Напиш и те уравнение гармонических колебаний если за 1 мин совершается 60 колебаний.

Амплитуда равна 8 см.

Напишите уравнение колебаний если за 2 минуты совершается 60 колебаний амплитуда колебаний 5см?

Напишите уравнение колебаний если за 2 минуты совершается 60 колебаний амплитуда колебаний 5см.

Напишите уравнение гармонических колебаний совершающих по закону косинуса ?

Напишите уравнение гармонических колебаний совершающих по закону косинуса .

За 1 мин Тело совершает 60 колебаний амплитуда которых 8 см а начальная фаза 3 / 2П.

На этой странице находится вопрос Напишите уравнение гармонических колебаний если за 1 мин совершается 60 колебаний амплитуда 8 см?. Здесь же – ответы на него, и похожие вопросы в категории Физика, которые можно найти с помощью простой в использовании поисковой системы. Уровень сложности вопроса соответствует уровню подготовки учащихся 10 — 11 классов. В комментариях, оставленных ниже, ознакомьтесь с вариантами ответов посетителей страницы. С ними можно обсудить тему вопроса в режиме on-line. Если ни один из предложенных ответов не устраивает, сформулируйте новый вопрос в поисковой строке, расположенной вверху, и нажмите кнопку.

Электрикам, так как нужно всегда измерять силу тока, математика, думаю ясно зачем, швеям, для определения размеров тканей и тд, синоптикам, измерять различные погодные факторы, для определения погоды, это везде крч нужно.

Швея — что бы правильно пошить. Строитель — что бы построить здание.

Ep = mgh, следовательно, h = Ep : mg 400 г = 0, 4 кг h = 12 Дж : (0, 4 кг X 10) = 3 м.

1) v0 = 2, 5 м / с ; a = 2, 5 ; v = 2, 5 + 2, 5t ; s = 2, 5t + 2, 5t ^ 2 / 2 ; характер движения — равноускоренный 2) x0 = — 2 ; v0 = 1 ; a = 4 ; v = 1 + 4t ; s = t + 2t ^ 2 ; движение равноускоренное 1) a = (v — v0) / t, t = (v — v0) / a = (0 — 20) ..

2. 5 : 3помножити на 5 = 4. 1.

V = 0 10 = 4t t = 2, 5 — время до остановки автомобиля S = at ^ 2 / 2 a = 4(из формулы) S = 12, 5.

Q = m×c×△t количество теплоты = масса×удельную теплоемкость льда×на сколько нагрелся лёд с — удельная теплоёмкость льда = 357Дж / кг×°С 10. 5МДж = 10500000Дж 10500000Дж = 357Дж / кг×°С×10°С×m m = 10500000 / (357×10) m = 2900 кг Ответ : 2900кг.

Со стороны электрического поля F = q * E Со стороны магнитного поля F = q * V * B q * E = q * V * B V = E / B = 10 / 1 = 10 м / с.

Гармонические колебания

О чем эта статья:

9 класс, 11 класс, ЕГЭ/ОГЭ

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Механические колебания

Механические колебания — это физические процессы, которые точно или приблизительно повторяются через одинаковые интервалы времени.

Колебания делятся на два вида: свободные и вынужденные.

Свободные колебания

Это колебания, которые происходят под действием внутренних сил в колебательной системе.

Они всегда затухающие, потому что весь запас энергии, сообщенный в начале, в конце уходит на совершение работы по преодолению сил трения и сопротивления среды (в этом случае механическая энергия переходит во внутреннюю). Из-за этого свободные колебания почти не имеют практического применения.

Вынужденные колебания

А вот вынужденные колебания восполняют запас энергии внешним воздействием. Если это происходит каждый период, то колебания вообще затухать не будут.

Вынужденные колебания — это колебания, которые происходят под действием внешней периодически меняющейся силы.

Частота, с которой эта сила воздействует, равна частоте, с которой система будет колебаться.

Например, качели. Если вас кто-то будет на них качать, каждый раз давая толчок, когда вы приходите в одну и ту же точку — такое колебание будет считаться вынужденным.

Это колебание все еще будет считаться вынужденным, если вас будут раскачивать из положения равновесия. Просто в данном случае амплитуда (о которой речь пойдет чуть ниже) будет увеличиваться с каждым колебанием.

Автоколебания

Иногда вынужденному колебанию не нужно внешнего воздействия, чтобы случиться. Бывают такие системы, в которых это внешние воздействие возникает само из-за способности регулировать поступление энергии от постоянного источника.

У автоколебательной системы есть три важных составляющих:

  • сама колебательная система
  • источник энергии
  • устройство обратной связи, обеспечивающей связь между источником и системой

Часы с кукушкой — пример автоколебательной системы. Гиря на ниточке (цепочке) стремится вращать зубчатое колесо (храповик). При колебаниях маятника анкер цепляет за зубец, и вращение приостанавливается.

Но в результате маятник получает толчок, компенсирующий потери энергии из-за трения. Потенциальная энергия гири, которая постепенно опускается, расходуется на поддержание незатухающих колебаний.

Характеристики колебаний

Чтобы перейти к гармоническим колебаниям, нам нужно описать величины, которые помогут нам эти колебания охарактеризовать. Любое колебательное движение можно описать величинами: период, частота, амплитуда, фаза колебаний.

Период — это время одного полного колебания. Измеряется в секундах и обозначается буквой T.

Формула периода колебаний

T = t/N

N — количество колебаний [—]

Также есть величина, обратная периоду — частота. Она показывает, сколько колебаний совершает система в единицу времени.

Формула частоты

ν = N/t = 1/T

N — количество колебаний [—]

Амплитуда — это максимальное отклонение от положения равновесия. Измеряется в метрах и обозначается либо буквой A, либо x max .

Она используется в уравнении гармонических колебаний:

Гармонические колебания

Простейший вид колебательного процесса — простые гармонические колебания, которые описывают уравнением:

Уравнение гармонических колебаний

x — координата в момент времени t [м]

t — момент времени [с]

(2πνt) в этом уравнении — это фаза. Ее обозначают греческой буквой φ

Фаза колебаний

t — момент времени [с]

Фаза колебаний — это физическая величина, которая показывает отклонение точки от положения равновесия. Посмотрите на рисунок, на нем изображены одинаковые фазы:

Например, в тех же самых часах с кукушкой маятник совершает колебания. Он качается слева направо и приходит в самую правую точку. В той же фазе он будет находиться, когда придет в ту же точку, идя справа налево. Если мы возьмем точку на сантиметр левее самой правой, то идя в нее не слева направо, а справа налево, мы получим уже другую фазу.

На рисунке ниже показаны положения тела через одинаковые промежутки времени при гармонических колебаниях. Такую картину можно получить при освещении колеблющегося тела короткими периодическими вспышками света (стробоскопическое освещение). Стрелки изображают векторы скорости тела в различные моменты времени.

Если изменить период, начальную фазу или амплитуду колебания, графики тоже изменятся.

На рисунке ниже во всех трех случаях для синих кривых начальная фаза равна нулю, а в последнем (с) — красная кривая имеет меньшую начальную фазу.

В первом случае (а) красная кривая описывает колебание, у которого амплитуда больше колебания, описанного синей линией.

Во втором случае (b) красная кривая отличается от синей только значением периода — у красной период в два раза меньше.

Математический маятник

Математический маятник — отличный пример гармонических колебаний. Если мы подвесим шарик на нити, то это еще не будет математическим маятником — пока он только физический.

Математическим этот маятник станет, если размеры шарика много меньше длины нити (тогда этими размерами можно пренебречь и рассматривать шарик как материальную точку), растяжение нити очень мало, а масса нити во много раз меньше массы шарика.

Математическим маятником называется система, которая состоит из материальной точки массой m и невесомой нерастяжимой нити длиной l, на которой материальная точка подвешена, и которая находится в поле силы тяжести (или других сил).

Период малых колебаний математического маятника в поле силы тяжести Земли определяется по формуле:

Формула периода колебания математического маятника

l — длина нити [м]

g — ускорение свободного падения [м/с 2 ]

На планете Земля g = 9,8 м/с 2

Пружинный маятник

Пружинный маятник — это груз, прикрепленный к пружине, массой которой можно пренебречь.

В пружинном маятнике колебания совершаются под действием силы упругости.
Пока пружина не деформирована, сила упругости на тело не действует.

Формула периода колебания пружинного маятника

m — масса маятника [кг]

k — жесткость пружины [Н/м]

Закон сохранения энергии для гармонических колебаний

Физика — такая клевая наука, в которой ничего не исчезает бесследно и не появляется из ниоткуда. Эту особенность описывает закон сохранения энергии.

Рассмотрим его на примере математического маятника.

  • Когда маятник отклоняют на высоту h, его потенциальная энергия максимальна.
  • Когда маятник опускается, потенциальная энергия переходит в кинетическую. Причем в нижней точке, где потенциальная энергия равна нулю, кинетическая энергия максимальна и равна потенциальной энергии в верхней точке. Скорость груза в этой точке максимальна.

Онлайн-курсы физики в Skysmart не менее увлекательны, чем наши статьи!

I. Механика

Тестирование онлайн

Гармоническое колебание

Это периодическое колебание, при котором координата, скорость, ускорение, характеризующие движение, изменяются по закону синуса или косинуса.

График гармонического колебания

График устанавливает зависимость смещения тела со временем. Установим к пружинному маятнику карандаш, за маятником бумажную ленту, которая равномерно перемещается. Или математический маятник заставим оставлять след. На бумаге отобразится график движения.

Графиком гармонического колебания является синусоида (или косинусоида). По графику колебаний можно определить все характеристики колебательного движения.

Уравнение гармонического колебания

Уравнение гармонического колебания устанавливает зависимость координаты тела от времени

График косинуса в начальный момент имеет максимальное значение, а график синуса имеет в начальный момент нулевое значение. Если колебание начинаем исследовать из положения равновесия, то колебание будет повторять синусоиду. Если колебание начинаем рассматривать из положения максимального отклонения, то колебание опишет косинус. Или такое колебание можно описать формулой синуса с начальной фазой .

Изменение скорости и ускорения при гармоническом колебании

Не только координата тела изменяется со временем по закону синуса или косинуса. Но и такие величины, как сила, скорость и ускорение, тоже изменяются аналогично. Сила и ускорение максимальные, когда колеблющееся тело находится в крайних положениях, где смещение максимально, и равны нулю, когда тело проходит через положение равновесия. Скорость, наоборот, в крайних положениях равна нулю, а при прохождении телом положения равновесия — достигает максимального значения.

Если колебание описывать по закону косинуса

Если колебание описывать по закону синуса

Максимальные значения скорости и ускорения

Проанализировав уравнения зависимости v(t) и a(t), можно догадаться, что максимальные значения скорость и ускорение принимают в том случае, когда тригонометрический множитель равен 1 или -1. Определяются по формуле

Как получить зависимости v(t) и a(t)

Формулы зависимостей скорости от времени и ускорения от времени можно получить математически, зная зависимость координаты от времени. Аналогично равноускоренному движению, зависимость v(t) — это первая производная x(t). А зависимость a(t) — это вторая производная x(t).

При нахождении производной предполагаем, что переменной (то есть x в математике) является t, остальные физические величины воспринимаем как постоянные.


источники:

http://skysmart.ru/articles/physics/garmonicheskie-kolebaniya

http://fizmat.by/kursy/kolebanija_volny/garmonicheskoe