Написать уравнения электролиза расплава гидроксида натрия

Please wait.

We are checking your browser. gomolog.ru

Why do I have to complete a CAPTCHA?

Completing the CAPTCHA proves you are a human and gives you temporary access to the web property.

What can I do to prevent this in the future?

If you are on a personal connection, like at home, you can run an anti-virus scan on your device to make sure it is not infected with malware.

If you are at an office or shared network, you can ask the network administrator to run a scan across the network looking for misconfigured or infected devices.

Another way to prevent getting this page in the future is to use Privacy Pass. You may need to download version 2.0 now from the Chrome Web Store.

Cloudflare Ray ID: 6de0ed60dd7775d7 • Your IP : 85.95.188.35 • Performance & security by Cloudflare

Составить уравнения процессов, протекающих при электролизе расплавов и растворов солей

Задача 686.
Составить уравнения процессов, протекающих при электролизе расплавов NaOH и NiCl2 с инертными электродами.
Решение:
а) Электролиз расплава едкого натра

В расплаве едкого натра содержатся ионы Na+ и OH-:

Ионы натрия восстанавливаются на катоде: NaOH ⇔ Na + + OH — .

На аноде ионы ОН — окисляются с образованием воды и кислорода:

2ОН — — 2 ⇔Н2О + О.

Два атома кислорода, соединяясь друг с другом, образуют молекулу:

Таким образом, процесс окисления ионов ОН — можно выразить уравнением:

4ОН — — 4 ⇔ 2Н2О + О2

Умножив уравнение катодного процесса на четыре, и сложив его с анодным процессом, получим:

4Na + + 4OH — ⇔ 4Na + H2O + O2
у катода у анода

Процесс в целом можно выразить уравнением:

Таким образом, при электролизе расплава едкого натра у катода выделяется металлический натрий, а у анода – газообразный кислород и вода.

б) Электролиз расплава соли NiCl2 находятся ионы Ni 2+ и Cl — : NiCl2 ⇔ Ni 2+ + 2Cl — .

В расплаве соли NiCl2 находятся ионы Ni 2+ и Cl — :

Образующиеся ионы никеля восстанавливаются на катоде с образованием металлического никеля:

Ni 2+ + 2 = Ni 0

На аноде будет происходить электролитическое окисление ионов хлора с образованием свободных атомов хлора, которые соединяясь друг с другом, образуют молекулу хлора:

2Cl — — 2 = 2Cl*
Cl* + Cl* = Cl2

Сложив уравнения катодного и анодного процессов, получим суммарное уравнение процесса:

Ni 2+ + 2Cl — = Ni + Cl2
у катода у анода

Таким образом, при электролизе расплава соли хлорида никеля (II) на катоде выделяется металлический никель, а на аноде – газообразный хлор.

Задача 687.
Составить схемы электролиза водных растворов Н2SO4, CuCl2, Pb(NO3)2 с платиновыми электродами.
Решение:
а) Электролиз водного раствора Н2SO4

Стандартный потенциал системы: 2Н + + 2 = Н2 равен 0,000 В, что значительно выше, чем в нейтральной среде. Поэтому на катоде будет происходить восстановление воды, сопровождающееся выделением газообразного водорода:

2О + 2 = Н2↑ + 2ОН — ,

Поскольку, отвечающий этой системе стандартный электродный потенциал (1,23В) значительно ниже, чем стандартный электродный потенциал (2,01 В), характеризующий систему:

2SO4 2- — 2 = S2O8 2- .

Ионы SO4 2- , движущиеся при электролизе к аноду, будут накапливаться в анодном пространстве. Умножая уравнение катодного процесса на два и складывая его с уравнением анодного процесса, получаем суммарное уравнение реакции электролиза серной кислоты:

Таким образом, одновременно с выделением водорода у катода и кислорода у анода образуется вода (катодное пространство) и серная кислота (анодное пространство). После приведения членов в обеих частях равенства получим:

2H2O — 4 = 2H2↑ + O2↑ + 4H +
у катода у анода

Вывод:
При электролизе раствора серной кислоты происходит разложение воды на катоде и аноде, в результате чего происходит выделение водорода (в катодном пространстве) и кислорода (в анодном пространстве), а серная кислота остаётся без изменения.

б) Электролиз водного раствора CuCl2

Медь располагается в ряду активности после водорода, поэтому на катоде восстанавливается металл:

Катод (–): Cu 2+ + 2ē = Cu 0

На аноде будет происходить электрохимическое окисление ионов Cl-, приводящее к выделению хлора:

Анод (+): 2Cl – — 2ē = 2Cl – → Cl2↑.

поскольку отвечающий этой системе стандартный электродный потенциал (+1,36 В) значительно выше, чем стандартный потенциал (+1,23 В), характеризующий систему

Вывод:
Таким образом, при электролизе водного раствора хлорида меди на катоде выделяется медь, на аноде – хлор.

в) Электролиз водного раствора Рb(NO3)2

Рb(NO3)2 – соль средней активности металла и кислородсодержащей кислоты. Стандартный электродный потенциал электрохимической системы:

Pb 2+ + 2 = Pb 0 (-0,13 В) положительнее потенциала водородного электрода в нейтральной среде (-0,41 В) незначительно. Поэтому на катоде будет выделяться свинец (2H + /H2) > 0 (Pb 2+ /Pb)):

Pb 2+ + 2 = Pb 0

На аноде будет происходить электрохимическое окисление воды, приводящее к выделению кислорода:

Ионы NO3 — , движущиеся при гидролизе к аноду, будут накапливаться в анодном пространстве. Умножим уравнение катодного процесса на два и сложим его с уравнением анодного процесса, получим суммарное уравнение:

2Pb 2+ + 2H2O = 2Pb + O2↑ + 4H +
у катода у анода

Приняв во внимание, что одновременно происходит накопление ионов NO3 — в анодном пространстве, суммарное уравнение процесса можно записать в следующей форме:

Вывод:
При электролизе водного раствора нитрата свинца на катоде выделяется свинец, на аноде – газообразный кислородрд, в растворе образуется азотная кислота (анодное пространство).

Электролиз

Электролиз

Химические реакции, сопровождающиеся переносом электронов (окислительно-восстановительные реакции) делятся на два типа: реакции, протекающие самопроизвольно и реакции, протекающие при прохождении тока через раствор или расплав электролита.

Раствор или расплав электролита помещают в специальную емкость — электролитическую ванну .

Электрический ток — это упорядоченное движение заряженных частиц — ионов, электронов и др. под действием внешнего электрического поля. Электрическое поле в растворе или расплаве электролита создают электроды .

Электроды — это, как правило, стержни из материала, проводящего электрический ток. Их помещают в раствор или расплав электролита, и подключают к электрической цепи с источником питания.

При этом отрицательно заряженный электрод катод — притягивает положительно заряженные ионы — катионы . Положительно заряженный электрод ( анод ) притягивает отрицательно заряженные частицы ( анионы ). Катод выступает в качестве восстановителя, а анод — в качестве окислителя.

Различают электролиз с активными и инертными электродами. Активные (растворимые) электроды подвергаются химическим превращениям в процессе электролиза. Обычно их изготавливают из меди, никеля и других металлов. Инертные (нерастворимые) электроды химическим превращениям не подвергаются. Их изготавливают из неактивных металлов, например, платины , или графита .

Электролиз растворов

Различают электролиз раствора или расплава химического вещества. В растворе присутствует дополнительное химическое вещество — вода, которая может принимать участие в окислительно-восстановительных реакциях.

Катодные процессы

В растворе солей катод притягивает катионы металлов. Катионы металлов могут выступать в качестве окислителей. Окислительные способности ионов металлов различаются. Для оценки окислительно-восстановительных способностей металлов применяют электро-химический ряд напряжений :

Каждый металл характеризуется значением электрохимического потен-циала. Чем меньше потенциал , тем больше восстановительные свойства металла и тем меньше окислительные свойства соответствующего иона этого металла. Разным ионам соответствуют разные значения этого потенциала. Электрохимический потенциал — относительная величина. Электрохимический потенциал водорода принят равным нулю.

Также около катода находятся молекулы воды Н2О. В составе воды есть окислитель — ион H + .

При электролизе растворов солей на катоде наблюдаются следующие закономерности:

1. Если металл в соли — активный ( до Al 3+ включительно в ряду напряжений ), то вместо металла на катоде восстанавливается (разряжается) водород , т.к. потенциал водорода намного больше. Протекает процесс восстановления молекулярного водорода из воды, при этом образуются ионы OH — , среда возле катода — щелочная:

2H2O +2ē → H2 + 2OH —

Например , при электролизе раствора хлорида натрия на катоде будет вос-станавливаться только водород из воды.

2. Если металл в соли – средней активности (между Al 3+ и Н + ) , то на катоде восстанавливается (разряжается) и металл , и водород , так как потенциал таких металлов сравним с потенциалом водорода:

Me n+ + nē → Me 0

2 H + 2O +2ē → H2 0 + 2OH —

Например , при электролизе раствора сульфата железа (II) на катоде будет восстанавливаться (разряжаться) и железо, и водород:

Fe 2+ + 2ē → Fe 0

2 H + 2O +2ē → H2 0 + 2OH —

3. Если металл в соли — неактивный (после водорода в ряду стандартных электрохимических металлов) , то ион такого металла является более сильным окислителем, чем ион водорода, и на катоде восстанавливается только металл:

Me n+ + nē → Me 0

Например, при электролизе раствора сульфата меди (II) на катоде будет восстанавливаться медь:

Cu 2+ + 2ē → Cu 0

4. Если на катод попадают катионы водорода H + , то они и восстанавливаются до молекулярного водорода:

2H + + 2ē → H2 0

Анодные процессы

Положительно заряженный анод притягивает анионы и молекулы воды. Анод – окислитель. В качестве восстановителей выступаю либо анионы кислотных остаток, либо молекулы воды (за счет кислорода в степени окисления -2: H 2 O -2 ).

При электролизе растворов солей на аноде наблюдаются следующие закономерности:

1. Если на анод попадает бескислородный кислотный остаток , то он окисляется до свободного состояния (до степени окисления 0):

неМе n- – nē = неМе 0

Например : при электролизе раствора хлорида натрия на аноде окисляют-ся хлорид-ионы:

2Cl — – 2ē = Cl2 0

Действительно, если вспомнить Периодический закон: при увеличении электроотрицательности неметалла его восстановительные свойства уменьшаются. А кислород – второй по величине электроотрицательности элемент. Таким образом, проще окислить практически любой неметалл, а не кислород. Правда, есть одно исключение . Наверное, вы уже догадались. Конечно же, это фтор. Ведь электроотрицательность фтора больше, чем у кислорода. Таким образом, при электролизе растворов фторидов окисляться будут именно молекулы воды, а не фторид-ионы :

2H2 O -2 – 4ē → O2 0 + 4H +

2. Если на анод попадает кислородсодержащий кислотный остаток, либо фторид-ион , то окислению подвергается вода с выделением молекулярно-го кислорода:

2H2 O -2 – 4ē → O2 0 + 4H +

3. Если на анод попадает гидроксид-ион, то он окисляется и происходит выделение молекулярного кислорода:

4 O -2 H – – 4ē → O2 0 + 2H2O

4. При электролизе растворов солей карбоновых кислот окислению под-вергается атом углерода карбоксильной группы, выделяется углекислый газ и соответствующий алкан.

Например , при электролизе растворов ацетатов выделяется углекислый газ и этан:

2 CH3 C +3 OO – –2ē → 2 C +4 O2+ CH3-CH3

Суммарные процессы электролиза

Рассмотрим электролиз растворов различных солей.

Например , электролиз раствора сульфата меди. На катоде восстанавливаются ионы меди:

Катод (–): Cu 2+ + 2ē → Cu 0

На аноде окисляются молекулы воды:

Анод (+): 2H2 O -2 – 4ē → O2 + 4H +

Сульфат-ионы в процессе не участвуют. Мы их запишем в итоговом уравнении с ионами водорода в виде серной кислоты:

2 Cu 2+ SO4 + 2H2 O -2 → 2 Cu 0 + 2H2SO4 + O2 0

Электролиз раствора хлорида натрия выглядит так:

На катоде восстанавливается водород:

Катод (–): 2 H + 2O +2ē → H2 0 + 2OH –

На аноде окисляются хлорид-ионы:

Анод (+): 2 Cl – – 2ē → Cl2 0

Ионы натрия в процессе электролиза не участвуют. Мы записываем их с гидроксид-анионами в суммарном уравнении электролиза раствора хлорида натрия :

2 H + 2O +2Na Cl – → H2 0 + 2NaOH + Cl2 0

Следующий пример : электролиз водного раствора карбоната калия.

На катоде восстанавливается водород из воды:

Катод (–): 2 H + 2O +2ē → H2 0 + 2OH –

На аноде окисляются молекулы воды до молекулярного кислорода:

Анод (+): 2H2 O -2 – 4ē → O2 0 + 4H +

Таким образом, при электролизе раствора карбоната калия ионы калия и карбонат-ионы в процессе не участвуют. Происходит электролиз воды:

2 H2 + O -2 → 2 H2 0 + O2 0

Еще один пример : электролиз водного раствора хлорида меди (II).

На катоде восстанавливается медь:

Катод (–): Cu 2+ + 2ē → Cu 0

На аноде окисляются хлорид-ионы до молекулярного хлора:

Анод (+): 2 Cl – – 2ē → Cl2 0

Таким образом, при электролизе раствора карбоната калия происходит электролиз воды:

Cu 2+ Cl2 – → Cu 0 + Cl2 0

Еще несколько примеров: электролиз раствора гидроксида натрия.

На катоде восстанавливается водород из воды:

Катод (–): 2 H + 2O +2ē → H2 0 + 2OH –

На аноде окисляются гидроксид-ионы до молекулярного кислорода:

Анод (+): 4 O -2 H – – 4ē → O2 0 + 2H2O

Таким образом, при электролизе раствора гидроксида натрия происходит разложение воды, катионы натрия в процессе не участвуют:

2 H2 + O -2 → 2 H2 0 + O2 0

Электролиз расплавов

При электролизе расплава на аноде окисляются анионы кислотных остатков, а на катоде восстанавливаются катионы металлов. Молекул воды в системе нет.

Например: электролиз расплава хлорида натрия. На катоде восстанавли-ваются катионы натрия:

Катод (–): Na + + ē → Na 0

На аноде окисляются анионы хлора:

Анод (+): 2 Cl – – 2ē → Cl2 0

Суммарное уравнение электролиза расплава хлорида натрия:

2 Na + Cl → 2 Na 0 + Cl2 0

Еще один пример: электролиз расплава гидроксида натрия. На катоде восстанавливаются катионы натрия:

Катод (–): Na + + ē → Na 0

На аноде окисляются гидроксид-ионы:

Анод (+): 4 OH – – 4ē → O2 0 + 2H2O

Суммарное уравнение электролиза расплава гидроксида натрия:

4 Na + OH → 4 Na 0 + O2 0 + 2H2O

Многие металлы получают в промышленности электролизом расплавов.

Например , алюминий получают электролизом раствора оксида алюминия в расплаве криолита. Криолит – Na3[AlF6] плавится при более низкой температуре (1100 о С), чем оксид алюминия (2050 о С). А оксид алюминия отлично растворяется в расплавленном криолите.

В растворе криолите оксид алюминия диссоциирует на ионы:

На катоде восстанавливаются катионы алюминия:

Катод (–): Al 3+ + 3ē → Al 0

На аноде окисляются алюминат-ионы:

Анод (+): 4Al O 3 3 – – 12ē → 2Al2O3 + 3 O2 0

Общее уравнение электролиза раствора оксида алюминия в расплаве криолита:

2 Al 2 О 3 = 4 Al 0 + 3 О 2 0

В промышленности при электролизе оксида алюминия в качестве электродов используют графитовые стержни. При этом электроды частично окисляются (сгорают) в выделяющемся кислороде:

C 0 + О2 0 = C +4 O2 -2

Электролиз с растворимыми электродами

Если материал электродов выполнен из того же металла, который присут-ствует в растворе в виде соли, или из более активного металла, то на аноде разряжаются не молекулы воды или анионы, а окисляются частицы самого металла в составе электрода.

Например , рассмотрим электролиз раствора сульфата меди (II) с медными электродами.

На катоде разряжаются ионы меди из раствора:

Катод (–): Cu 2+ + 2ē → Cu 0

На аноде окисляются частицы меди из электрода :

Анод (+): Cu 0 – 2ē → Cu 2+


источники:

http://buzani.ru/zadachi/khimiya-glinka/1236-elektroliz-rasplavov-gidroksida-natriya-i-khlorida-nikelya-zadachi-686-687

http://chemege.ru/electrolysis/