Напишите решение дифференциального уравнения движения колеблющегося маятника

Напишите решение дифференциального уравнения движения колеблющегося маятника

§2 Пружинный маятник.

Упругие и квазиупругие силы .

Уравнение колеблющейся пружины

Рассмотрим тело массы m , закрепленное на пружине с коэффициентом жесткости k (массой пружины пренебрегаем). Растянем пружину на х. Тогда по закону Гука на тело будет действовать сила упругости F упр :

1) величина силы пропорциональна величине отклонения системы от положения равновесия

2) направление сила противоположно направлении смещения, т.е. сила всегда направлена к положению равновесия (при х > 0, F упр F упр > 0)

3) В положении равновесия х = 0 и F упр = 0.

Систему, состоящую из материальной точки массы m и абсолютно упругой пружины с коэффициентом жесткости k , в которой возможны свободные колебания, называют пружинным маятником.

Запишем второй закон Ньютона для рис. б

Если сила не является по своей природе упругой, но подчиняется закону F = — k х , то она называется квазиупругой силой.

Получим уравнение пружинного маятника. Учтем в записи второго закона Ньютона, что

— дифференциальное уравнение точки, совершающей колебательное движение (дифференциальное уравнение пружинного маятника).

Решение дифференциального уравнения:

— уравнение колеблющейся точки (уравнение колеблющейся пружины).

— собственная частота колебаний.

§3 Математический и физический маятники.

Периоды колебаний математического и физического маятников

Математический маятник — материальная точка, подвешенная на невесомой нерастяжимой нити, и совершавшая колебания в вертикальной плоскости под действием силы тяжести. Материальная точка — тело, масса которого сосредоточена в центре масс и размерами которого в условиях данной задачи, можно пренебречь.

Математический маятник при колебаниях совершает движение по дуге окружности радиуса . Его движение подчиняется законам вращательного движения.

Основное уравнение вращательного цветения запишется в виде

(1)

М – момент сил, I – момент инерции, ε – угловое ускорение.

Равнодействующая сил и равна .

Из треугольника АВС

таким образом, колебания математического маятника происходят под действием квазиупругой силы — силы тяжести.

Тогда (1) запишется в виде

(2)

Знак минус учитывает, что векторы и имеют противоположные направления (угол поворота можно рассматривать, как псевдовектор углового смещения , направление вектора определяется по правилу правого винта, из-за знака минус направлен в противоположную сторону).

Сократив в (2) на m и получим

При малых углах колебаний α = 5 ÷6° , , получим

получим дифференциальное уравнение колебаний математического маятника

уравнение математического маятника.

из которого видно, что угол α изменяется по закону косинуса. α0 — амплитуда, ω0 — циклическая частота, φ0 — начальная фаза.

— период колебаний математического маятника

Физический маятник — твердое тело, колеблющееся под действием силы тяжести вокруг неподвижной горизонтальной оси, не проходящей через центр тяжести тела, называемой осью качания маятника.

Основное уравнение – вращательного движения для физического маятника запишется в виде

При малых углах колебаний и уравнение движения имеет вид

— дифференциальное уравнение физического маятника.

— период колебаний физического маятника

следовательно, математический маятник с длиной

Колебательное движение

Определение и основные понятия колебательного движения

Колебательное движение (колебание) — это любое движение или изменение состояния, которое повторяется во времени, соответственно повторяются значения физических величин, которые характеризуют данное движение или состояние.

Различные физические явления представляют собой колебания: звуковые колебания, электромагнитные, механические и т.д. У всех этих явлений существует общее в законах и математических методах, при помощи которых они описываются.

Колебательное движение называется периодическим, если переменные параметры этих колебаний повторяются через равные промежутки времени.

Колебания называются свободными, если они происходят в системе, на которую не действуют внешние силы (или действие их взаимно скомпенсировано).

Такая система один раз выводится из состояния равновесия. Если колебательная система консервативная, то рассеяния энергии при колебаниях нет. В таком случае свободные колебания являются незатухающими. Свободные незатухающие колебания, которые происходят под воздействием упругих сил, являются гармоническими.

Периодом незатухающих колебаний называют минимальный промежуток времени ($T$) по истечении которого происходит повторение значений всех физических параметров, которые характеризуют колебание.

Частотой колебаний ($\nu $) называют величину обратную периоду колебаний, это количество полных колебаний, которое совершает колебательная система:

Гармонические колебания

Самым простым типом колебаний считают гармонические колебания.

Колебания называют гармоническими, если изменения физической величины описывается при помощи закона синуса или косинуса.

Пусть происходят гармонические колебания никоторого параметра $s$, тогда они описываются как:

где $A=s_$ — амплитуда колебаний (постоянна во времени); $<\omega >_0$ — циклическая (круговая) частота колебаний (с течением времени не изменяется); $\varphi $ — начальная фаза колебаний (фаза при $t=0$); $(<\omega >_0t+\varphi )$ — фаза колебаний. Величина $s$ изменяется $-A\le s\le $+A.

Те же самые колебания можно описать как:

За время равное периоду колебаний фаза изменяется на величину равную $2\pi $, поэтому:

Циклическая частота $<\omega >_0$ равна числу полных колебаний, которые совершаются колебательной системой за $2\pi $c:

Дифференциальное уравнение колебательного движения

Линейное дифференциальное уравнение гармонических колебаний представляет собой выражение:

Решениями уравнения (6) является выражения (2) и (3). Уравнение вида (6) называют уравнением гармонического осциллятора, а колебательную систему, которая совершает эти колебания гармоническим осциллятором (примерами гармонических осцилляторов являются: пружинный маятник, физический маятник, электрический колебательный контур).

Представление гармонических колебаний в комплексной форме

Сложение, разложение на составляющие и другие операции при изучении гармонических колебаний проще проводить, если представить уравнение гармонических колебаний в комплексной форме. При этом вместо действительной формы записи (2 и 3) используют комплексную:

Величина $\tilde$ является комплексной и не дает реального физического отклонения, которое характеризуется вещественной величиной $s$ (2,3). Но мнимую часть величины $\tilde$ можно рассматривать как действительной гармоническое колебание выраженное синусом. С другой стороны действительная часть (7) равная:

представляет собой вещественное гармоническое колебание. Поэтому гармонические колебания можно записывать в комплексном виде (7) и выполнять все требуемые расчёты. При получении результата нужно взять действительную или мнимую часть для перехода к физическим величинам.

Примеры задач на колебательное движение

Задание: Материальная точка, массой $m=<10>^<-4>$кг совершает колебания согласно закону: $x=0,05<\cos (20t)\ >$. Каково максимальное значение возвращающей силы, действующей на точку ($F_$)?

Решение:В соответствии со вторым законом Ньютона на материальную точку действует сила:

Так как колебания точки происходят по оси X, то получим:

Вычислим вторую производную от $x\left(t\right)=0,05$, имеем:

Подставим правую часть выражения (1.3) в (1.2) вместо соответствующей производной, учитывая массу точки получаем:

Максимальное значение косинуса равно единице, значит:

Ответ: $\left|F_\right|=2\cdot <10>^<-3>$Н

Задание: Нарисуйте траекторию колебательного движения точки, если она участвует одновременно в двух взаимно перпендикулярных колебаниях, которые описывают законы:

Решение:Определим, каким является уравнение колебательного движения точки в плоскости XY. Используем формулу косинуса двойного угла:

Из условия задачи:

Получаем, что $y$ равен:

Ответ: $y\left(x\right)=A-\frac<<2x>^2>$

Уравнение колебаний маятника

Рис.1

Исследуем выражение (2) в зависимости от разности фаз (φ2 — φ1):

1) φ2 — φ1 = ±2mπ (m = 0, 1, 2, . ), тогда A=A1+A2, т. е. амплитуда результирующего колебания А будет равна сумме амплитуд складываемых колебаний;

2) φ2 — φ1 = ±(2m+1)π (m = 0, 1, 2, . ), тогда A=|A1–A2|, т. е. амплитуда результирующего колебания будет равна разности амплитуд складываемых колебаний.

Для практики представляет особый интерес случай, когда два складываемых гармонических колебания одинакового направления мало отличаются по частоте. После сложения этих колебаний получаются колебания с периодически изменяющейся амплитудой. Периодические изменения амплитуды колебания, которые возникают при сложении двух гармонических колебаний с близкими частотами, называются биениями.

Пусть амплитуды складываемых колебаний равны А, а частоты равны ω и ω+Δω, причем Δω

23 Колебания физического маятника.

Физический маятник — осциллятор, представляющий собой твёрдое тело, совершающее колебания в поле каких-либо сил относительно точки, не являющейся центром масс этого тела, или неподвижной оси, перпендикулярной направлению действия сил и не проходящей через центр масс этого тела.

Определения

  • — угол отклонения маятника от равновесия;
  • — начальный угол отклонения маятника;
  • — масса маятника;
  • — расстояние от точки подвеса до центра тяжести маятника;
  • — радиус инерции относительно оси, проходящей через центр тяжести.
  • — ускорение свободного падения.

Момент инерции относительно оси, проходящей через точку подвеса:

.

[править] Дифференциальное уравнение движения физического маятника

Основная статья: Приведённая длина

Пренебрегая сопротивлением среды, дифференциальное уравнение колебаний физического маятника в поле силы тяжести записывается следующим образом:

.

Полагая , предыдущее уравнение можно переписать в виде:

.

Последнее уравнение аналогично уравнению колебаний математического маятника длиной . Величина называется приведённой длиной физического маятника.

[править] Центр качания физического маятника

Центр качания — точка, в которой надо сосредоточить всю массу физического маятника, чтобы его период колебаний не изменился.

Поместим на луче, проходящем от точки подвеса через центр тяжести точку на расстоянии от точки подвеса. Эта точка и будет центром качания маятника.

Действительно, если всю массу сосредоточить в центре качания, то центр качания будет совпадать с центром масс. Тогда момент инерции относительно оси подвеса будет равен , а момент силы тяжести относительно той же оси . Легко заметить, что уравнение движения не изменится.

[править] Теорема Гюйгенса

[править] Формулировка

Если физический маятник подвесить за центр качания, то его период колебаний не изменится, а прежняя точка подвеса сделается новым центром качания.

[править] Доказательство

Вычислим приведенную длину для нового маятника:

.

Совпадение приведённых длин для двух случаев и доказывает утверждение, сделанное в теореме.

[править] Период колебаний физического маятника

Для того, чтобы найти период колебаний физического маятника, необходимо решить уравнение качания. Для этого умножим левую часть этого уравнения на , а правую часть на . Тогда:

.

Интегрируя это уравнение, получаем.

,

где произвольная постоянная. Её можно найти из граничного условия, что в моменты . Получаем: . Подставляем и преобразовываем получившееся уравнение:

.

Отделяем переменные и интегрируем это уравнение:

.

Удобно сделать замену переменной, полагая . Тогда искомое уравнение принимает вид:

.

Здесь — нормальный эллиптический интеграл Лежандра 1-го рода. Для периода колебаний получаем формулу:

.

Здесь — полный нормальный эллиптический интеграл Лежандра 1-го рода.

[править] Период малых колебаний физического маятника

Если амплитуда колебаний мала, то корень в знаменателе эллиптического интеграла приближенно равен единице. Такой интеграл легко берется, и получается хорошо известная формула малых колебаний:

.

24 Колебания математического маятника

Математи́ческий ма́ятник — осциллятор, представляющий собой механическую систему, состоящую из материальной точки, находящейся на невесомой нерастяжимой нити или на невесомом стержне в однородном поле сил тяготения. Период малых собственных колебаний математического маятника длины l неподвижно подвешенного в однородном поле тяжести с ускорением свободного падения g равен

и не зависит [1] от амплитуды и массы маятника.

Плоский математический маятник со стержнем — система с одной степенью свободы. Если же стержень заменить на растяжимую нить, то это система с двумя степенями свободы со связью. Пример школьной задачи, в которой важен переход от одной к двум степеням свободы.

При малых колебаниях физический маятник колеблется так же, как математический с приведённой длиной.

Уравнение колебаний маятника

Колебания математического маятника описываются обыкновенным дифференциальным уравнением вида

где ω ― положительная константа, определяемая исключительно из параметров маятника. Неизвестная функция x(t) ― это угол отклонения маятника в момент t от нижнего положения равновесия, выраженный в радианах; , где L ― длина подвеса, g ― ускорение свободного падения. Уравнение малых колебаний маятника около нижнего положения равновесия (т. н. гармоническое уравнение) имеет вид:

.

[править] Решения уравнения движения

[править] Гармонические колебания

Маятник, совершающий малые колебания, движется по синусоиде. Поскольку уравнение движения является обыкновенным ДУ второго порядка, для определения закона движения маятника необходимо задать два начальных условия — координату и скорость, из которых определяются две независимых константы:

где A — амплитуда колебаний маятника, θ0 — начальная фаза колебаний, ω — циклическая частота, которая определяется из уравнения движения. Движение, совершаемое маятником, называется гармоническими колебаниями

[править] Нелинейный маятник

Для маятника, совершающего колебания с большой амплитудой, закон движения более сложен:

где — это синус Якоби. Для он является периодической функцией, при малых совпадает с обычным тригонометрическим синусом.

Параметр определяется выражением

где — энергия маятника в единицах t −2 .

Период колебаний нелинейного маятника

где K — эллиптический интеграл первого рода.

[править] Движение по сепаратрисе

Движение маятника по сепаратрисе является непериодическим. В бесконечно далёкий момент времени он начинает падать из крайнего верхнего положения в какую-то сторону с нулевой скоростью, постепенно набирает её, и останавливается, возвратившись в исходное положение.

25 Затухающие колебания. Зависимость амплитуды от времени.

Затухающие колебания — колебания, энергия которых уменьшается с течением времени. Бесконечно длящийся процесс вида в природе невозможен. Свободные колебания любого осциллятора рано или поздно затухают и прекращаются. Поэтому на практике обычно имеют дело с затухающими колебаниями. Они характеризуются тем, что амплитуда колебаний A является убывающей функцией. Обычно затухание происходит под действием сил сопротивления среды, наиболее часто выражаемых линейной зависимостью от скорости колебаний или её квадрата.

Пускай имеется система, состоящая из пружины (подчиняющейся закону Гука), один конец которой жёстко закреплён, а на другом находится тело массой m. Колебания совершаются в среде, где сила сопротивления пропорциональна скорости с коэффициентом c (см. вязкое трение).

Тогда второй закон Ньютона для рассматриваемой системы запишется так:

где Fc — сила сопротивления, Fy — сила упругости

или в дифференциальной форме

где k — коэффициент упругости в законе Гука, c — коэффициент сопротивления, устанавливающий соотношение между скоростью движения грузика и возникающей при этом силой сопротивления.

Для упрощения вводятся следующие обозначения:

Величину ω называют собственной частотой системы, ζ — коэффициентом затухания.

Тогда дифференциальное уравнение принимает вид

Сделав замену x = e λt , получают характеристическое уравнение

Корни которого вычисляются по следующей формуле

[править] Решения

Зависимость графиков колебаний от значения ζ.

В зависимости от величины коэффициента затухания решение разделяется на три возможных варианта.

Если , то имеется два действительных корня, и решение дифференциального уравнения принимает вид:

В этом случае колебания с самого начала экспоненциально затухают.

  • Граница апериодичности

Если , два действительных корня совпадают , и решением уравнения является:

В данном случае может иметь место вре́менный рост, но потом — экспоненциальное затухание.

Если , то решением характеристического уравнения являются два комплексно сопряжённых корня

Тогда решением исходного дифференциального уравнения является

Где — собственная частота затухающих колебаний.

Константы c1 и c2 в каждом из случаев определяются из начальных условий:

26 Вынужденные колебания. Понятие резонанса.

Вынужденные колебания — колебания, происходящие под воздействием внешних сил, меняющихся во времени.

Автоколебания отличаются от вынужденных колебаний тем, что последние вызваны периодическим внешним воздействием и происходят с частотой этого воздействия, в то время как возникновение автоколебаний и их частота определяются внутренними свойствами самой автоколебательной системы.

Наиболее простой и содержательный пример вынужденных колебаний можно получить из рассмотрения гармонического осциллятора и вынуждающей силы, которая изменяется по закону: .


источники:

http://www.webmath.ru/poleznoe/fizika/fizika_76_kolebatelnoe_dvizhenie.php

http://poisk-ru.ru/s49779t9.html